首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the aim of finding new adenosine receptor (AR) ligands, a preliminary investigation focusing on the thieno[2,3-d]pyridazin-5(4H)-one scaffold was undertaken. The synthesized compounds 111 were evaluated for their binding at hA1, hA2A and hA3 ARs and efficacy at hA2B subtype in order to determine the affinity at the human adenosine receptor subtypes. Small structural changes on this scaffold highly influenced affinity; compound 5 (5-ethyl-7-(thiazol-2-yl)thieno[2,3-d]pyridazin-4(5H)-one) emerged as the best of this series. The simplicity of the synthetic process, the capability of the scaffold to be easily decorated, together with the predicted ADME properties confirm the role of these compounds as promising hits. A molecular docking investigation at the hA1AR crystal structure was performed to rationalize the SARs of the herein reported thienopyridazinones.  相似文献   

2.
The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki = 0.06 μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs.  相似文献   

3.
With the aim of finding new adenosine receptor (AR) ligands presenting the 3-amidocoumarin scaffold, a study focusing on the discovery of new chemical entities was carried out. The synthesized compounds 18 were evaluated in radioligand binding (A1, A2A and A3) and adenylyl cyclase activity (A2B) assays in order to determine their affinity for human AR subtypes. The 3-benzamide derivative 4 showed the highest affinity of the whole series and was more than 30-fold selective for the A3 AR (Ki = 3.24 μM). The current study supported that small structural changes in this scaffold allowed modulating the affinity resulting in novel promising classes of A1, A2A, and/or A3 AR ligands. We also performed docking calculations in hA2A and hA3 to identify the hypothetical binding mode for the most active compounds. In addition, some ADME properties were calculated in order to better understand the potential of these compounds as drug candidates.  相似文献   

4.
The expression levels and the subcellular localization of adenosine receptors (ARs) are affected in several pathological conditions as a consequence of changes in adenosine release and metabolism. In this respect, labelled probes able to monitor the AR expression could be a useful tool to investigate different pathological conditions. Herein, novel ligands for ARs, bearing the fluorescent 7-nitrobenzofurazan (NBD) group linked to the N1 (1,2) or N10 (3,4) nitrogen of a triazinobenzimidazole scaffold, were synthesized. The compounds were biologically evaluated as fluorescent probes for labelling A1 and A2B AR subtypes in bone marrow-derived mesenchymal stem cells (BM-MSCs) that express both receptor subtypes. The binding affinity of the synthetized compounds towards the different AR subtypes was determined. The probe 3 revealed a higher affinity to A1 and A2B ARs, showing interesting spectroscopic properties, and it was selected as the most suitable candidate to label both AR subtypes in undifferentiated MSCs.Fluorescence confocal microscopy showed that compound 3 significantly labelled ARs on cell membranes and the fluorescence signal was decreased by the cell pre-incubation with the A1 AR and A2B AR selective agonists, R-PIA and BAY 60-6583, respectively, thus confirming the specificity of the obtained signal. In conclusion, compound 3 could represent a useful tool to investigate the expression pattern of both A1 and A2B ARs in different pathological and physiological processes. Furthermore, these results provide an important basis for the design of new and more selective derivatives able to monitor the expression and localization of each different ARs in several tissues and living cells.  相似文献   

5.
In this study a new set of thiazolo[5,4-d]pyrimidine derivatives was synthesized. These derivatives bear different substituents at positions 2 and 5 of the thiazolopyrimidine core while maintaining a free amino group at position-7. The new compounds were tested for their affinity and potency at human (h) A1, A2A, A2B and A3 adenosine receptors expressed in CHO cells. The results reveal that the higher affinity of these new set of thiazolopyrimidines is toward the hA1 and hA2A adenosine receptors subtypes and is tuned by the substitution pattern at both the 2 and 5 positions of the thiazolopyrimidine nucleus. Functional studies evidenced that the compounds behaved as dual A1/A2A antagonists/inverse agonists. Compound 3, bearing a 5-((2-methoxyphenyl) methylamino) group and a phenyl moiety at position 2, displayed the highest affinity (hA1 Ki?=?10.2?nM; hA2A Ki?=?4.72?nM) and behaved as a potent A1/A2A antagonist/inverse agonist (hA1 IC50?=?13.4?nM; hA2A IC50?=?5.34?nM).  相似文献   

6.
In the present study, an attempt has been made to develop a new series of 1,3,7,8-tetrasubstituted xanthine based potent and selective AR ligands for the treatment of Parkinson's disease. Antagonistic interactions between dopamine and A2A adenosine receptors serve as the basis for the development of AR antagonists as potential drug candidates for PD. All the synthesized compounds have been evaluated for their affinity toward AR subtypes using in vitro radioligand binding assays. 1,3-Dipropylxanthine 7a with a methyl substituent at N-7 position represents the most potent compound of the series and displayed highest affinity (A2A, Ki = 0.108 µM), however incorporation of a propargyl group at 7-positon of the xanthine nucleus seems to be the most appropriate substitution to improve selectivity towards the A2A subtype along with reasonable potency. Antiparkinsonian activity has been evaluated using perphenazine induced catatonia in rats. Most of the synthesized xanthines significantly lowered the catatonic score as compared to control and displayed antiparkinsonian effects comparable to standard drug. All the synthesized compounds were subjected to grid-based molecular docking studies to understand the key structural requirements for the development of new molecules well-endowed with intrinsic efficacy and selectivity as adenosine receptor ligands. In silico studies carried out on newly synthesized xanthines provided further support to the pharmacological results.  相似文献   

7.
Four bis-N-n-propyl analogues (36) in the uracil ring of two hybrid molecules (1 and 2) of caffeine and eudistomin D, a β-carboline alkaloid from a marine tunicate, were synthesized, and their affinity and selectivity for adenosine receptors A1, A2A, and A3 were examined. All the compounds (36) showed better potency as adenosine receptor ligands than caffeine. Bis-N-n-propylation (3 and 4, respectively) of the uracil ring in 1 and 2 resulted in higher affinity for A1 and A2A adenosine receptors. Furthermore, it was found that a compound (5) possessing a n-propyloxy group at C-7 in compound 3 with a nitrogen at the β-position of the pyridine ring (β-N type) enhanced remarkably affinity for adenosine receptor A3 subtype, while n-propyloxy substitution (compound 6) at C-5 in compound 4 with a nitrogen at the δ-position of the pyridine ring (δ-N type) reduced affinity for all the adenosine receptor, A1, A2A, and A3. Among all the compounds (16) examined, compound 5 showed the most potent affinity for adenosine receptor A3 subtype (Ki value, 0.00382 μM).  相似文献   

8.
Previous research has shown that bicyclic 6:5-fused heteroaromatic compounds with two N-atoms have variable degrees of adenosine A1 receptor antagonistic activity. Prompted by this imidazo[1,2-α]pyridine analogues were synthesized and evaluated for their adenosine A1 and A2A receptor affinity via radioligand binding studies and subjected to a GTP shift assay to determine its adenosine A1 receptor agonistic or antagonistic functionality. Imidazo[1,2-α]pyridine, the parent scaffold, was found devoid of affinity for the adenosine A1 and A2A receptors. The influence of substitution on position C2 showed no improvement for either adenosine A1 or A2A receptor affinity. The addition of an amino or a cyclohexylamino group to position C3 also showed no improvement of adenosine A1 or A2A receptor affinity. Surprisingly para-substitution on the phenyl ring at position C2 in combination with a cyclohexylamino group at position C3 led to adenosine A1 receptor affinity in the low micromolar range with compound 4d showing: (1) the highest affinity for the adenosine A1 receptor with a Ki value of 2.06 µM and (2) adenosine A1 receptor antagonistic properties. This pilot study concludes that para-substituted 3-cyclohexylamino-2-phenyl-imidazo[1,2-α]pyridine analogues represent an interesting scaffold to investigate further structure-activity relationships in the design of novel imidazo[1,2-α]pyridine-based adenosine A1 receptor antagonists for the treatment of neurodegenerative disorders.  相似文献   

9.
A new series of 7-aminopyrazolo[4,3-d]pyrimidine derivatives (131) were synthesized to evaluate some structural modifications at the 2- and 5-positions aimed at shifting affinity towards the human (h) A2A adenosine receptor (AR) or both hA2A and hA1 ARs. The most active compounds were those featured by a 2-furyl or 5-methylfuran-2-yl moiety at position 5, combined with a benzyl or a substituted-benzyl group at position 2. Several of these derivatives (2231) displayed nanomolar affinity for the hA2A AR (Ki = 3.62–57 nM) and slightly lower for the hA1 ARs, thus showing different degrees (3–22 fold) of hA2A versus hA1 selectivity. In particular, the 2-(2-methoxybenzyl)-5-(5-methylfuran-2-yl) derivative 25 possessed the highest hA2A and hA1 AR affinities (Ki = 3.62 nM and 18 nM, respectively) and behaved as potent antagonist at both these receptors (cAMP assays). Its 2-(2-hydroxybenzyl) analog 26 also showed a high affinity for the hA2A AR (Ki = 5.26 nM) and was 22-fold selective versus the hA1 subtype. Molecular docking investigations performed at the hA2A AR crystal structure and at a homology model of the hA1 AR allowed us to represent the hypothetical binding mode of our derivatives and to rationalize the observed SARs.  相似文献   

10.
A new series of pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (PTP) derivatives has been developed in order to explore their affinity and selectivity profile at the four adenosine receptor subtypes. In particular, the PTP scaffold was conjugated at the C2 position with the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole, a group believed to confer potency and selectivity toward the human (h) A2B adenosine receptor (AR) to the xanthine ligand 8-(1-(3-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (CVT 6975). Interestingly, the synthesized compounds turned out to be inactive at the hA2B AR but they displayed affinity at the hA3 AR in the nanomolar range. The best compound of the series (6) shows both high affinity (hA3 AR Ki = 11 nM) and selectivity (A1/A3 and A2A/A3 > 9090; A2B/A3 > 909) at the hA3 AR. To better rationalize these results, a molecular docking study on the four AR subtypes was performed for all the synthesized compounds. In addition, CTV 6975 and two close analogues have been subjected to the same molecular docking protocol to investigate the role of the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole on the binding at the four ARs.  相似文献   

11.
From a collection containing more than 1500 academic compounds, in silico screening identified a hit for the human A1 adenosine receptor containing a new purine scaffold. To study the structure activity relationships of this new chemical series for adenosine receptors, a library of 24 purines was synthesized and tested in radioligand binding assays at human A1, A2A, A2B and A3 adenosine receptor subtypes. Fourteen molecules showed potent antagonism at A1, A3 or dual A1/A3 adenosine receptors. This purine scaffold is an important source for novel biochemical tools and/or therapeutic drugs.  相似文献   

12.
In this work, an enlarged series of 1,2,4-triazolo[4,3-a]pyrazin-3-ones was designed to target the human (h) A2A adenosine receptor (AR) or both hA1 and hA2A ARs. The novel 8-amino-1,2,4-triazolopyrazin-3-one derivatives 1–25 featured a phenyl or a benzyl pendant at position 2 while different aryl/heteroaryl substituents were placed at position 6. Two compounds (8 and 10) endowed with high affinity (Ki = 7.2 and 10.6 nM) and a complete selectivity for the hA2A AR were identified. Moreover, several derivatives possessed nanomolar affinity for both hA1 and hA2A ARs (both Ki < 20 nM) and different degrees of selectivity versus the hA3 AR. Two selected compounds (10 and 25) demonstrated ability in preventing β-amyloid peptide (25–35)-induced neurotoxicity in SH-SY5Y cells. Results of docking studies at the hA2A and hA1 AR crystal structures helped us to rationalize the observed affinity data and to highlight that the steric hindrance of the substituents at the 2- and 6-position of the bicyclic core affects the binding mode in the receptor cavity.  相似文献   

13.
In this work, further structural investigations on the 8-amino-2-phenyl-6-aryl-1,2,4-triazolo[4,3-a]pyrazin-3-one series were carried out to achieve potent and selective human A2A adenosine receptor (AR) antagonists. Different ether and amide moieties were attached at the para-position of the 6-phenyl ring, thus leading to compounds 19 and 1018, respectively. Most of these moieties contained terminal basic rings (pyrrolidine, morpholine, piperidine and substituted piperazines) which were thought to confer good physicochemical and drug-like properties.Compounds 1116, bearing the amide linker, possessed high affinity and selectivity for the hA2A AR (Ki = 3.6–11.8 nM). Also derivatives 19, featuring an ether linker, preferentially targeted the hA2A AR but with lower affinity, compared to those of the relative amide compounds. Docking studies, carried out at the hA2A AR binding site, highlighted some crucial ligand-receptor interactions, particularly those provided by the appended substituent whose nature deeply affected hA2A AR affinity.  相似文献   

14.
In the present study, a molecular simplification approach was employed to design novel bicyclic pyrazolo[3,4-d]pyrimidine (PP) derivatives from tricyclic pyrazolo[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines (PTP) as promising human A3 adenosine receptor (hA3AR) antagonists. All the target compounds were synthesized using novel and efficient synthetic schemes and the structure–activity relationship studies of these PPs were explored through the synthesis of a series of PTP analogues with various substituents. Substituents with different lipophilicity and steric hindrance (e.g., alkyl and aryl–alkyl) functions were introduced at N2 position of the pyrazole ring, while acyl groups with different electronic properties were introduced at C6 position of the bicyclic nucleus to probe both electronic and positional effects. Most of the synthesized derivatives of the PP series presented good affinity at the hA3AR, as indicated by the low micromolar range of Ki values and among them, compound 63 with N2 neopentyl substituents showed most potent hA3AR affinity with Ki value of 0.9 μM and high selectivity (hA1AR/hA3AR = >111 & hA2AAR/hA3AR = >111) towards other adenosine receptor subtypes. Interestingly, small isopropyl groups at N2 position displayed high affinity at another receptor subtype (hA2AAR, e.g., compound 55, with Ki hA2AAR = 0.8 μM), while they were less favorable at the hA3AR. Molecular docking analysis was also performed to predict the possible binding mode of target compounds inside the hA3AR and hA2AAR. Overall, PP derivatives represent promising starting points for new AR antagonists.  相似文献   

15.
A new series of 1H‐imidazol‐1‐yl substituted 8‐phenylxanthine analogs has been synthesized to study the effects of the imidazole group on the binding affinity of compounds for adenosine receptors. Competition binding studies of these compounds were carried out in vitro with human cloned receptors using [3H]DPCPX and [3H]ZM 241385 as radioligands at A1 and A2A adenosine receptors, respectively. The effect of the substitution pattern of the (imidazolyl)alkoxy group on various positions of the phenyl ring at C(8) was also studied. The xanthine derivatives displayed varying degrees of affinity and selectivity towards A1 and A2A receptor subtypes despite a common but variedly substituted Ar C(8).  相似文献   

16.
The goal of the present study was to explore, in our previously developed hybrid template, the effect of introduction of additional heterocyclic rings (mimicking catechol hydroxyl groups as bioisosteric replacement) on selectivity and affinity for the D3 versus D2 receptor. In addition, we wanted to explore the effect of derivatization of functional groups of the agonist binding moiety in compounds developed by us earlier from the hybrid template. Binding affinity (Ki) of the new compounds was measured with tritiated spiperone as the radioligand and HEK-293 cells expressing either D2 or D3 receptors. Functional activity of selected compounds was assessed in the GTPγS binding assay. In the imidazole series, compound 10a exhibited the highest D3 affinity whereas the indole derivative 13 exhibited similar high D3 affinity. Functionalization of the amino group in agonist (+)-9d with different sulfonamides derivatives improved the D3 affinity significantly with (+)-14f exhibiting the highest affinity. However, functionalization of the hydroxyl and amino groups of 15 and (+)-9d, known agonist and partial agonist, to sulfonate ester and amide in general modulated the affinity. In both cases loss of agonist potency resulted from such derivatization.  相似文献   

17.
On the basis of potent and selective binding affinity of truncated 4′-thioadenosine derivatives at the human A3 adenosine receptor (AR), their bioisosteric 4′-oxo derivatives were designed and synthesized from commercially available 2,3-O-isopropylidene-d-erythrono lactone. The derivatives tested in AR binding assays were substituted at the C2 and N6 positions. All synthesized nucleosides exhibited potent and selective binding affinity at the human A3 AR. They were less potent than the corresponding 4′-thio analogues, but showed still selective to other subtypes. The 2-Cl series generally were better than the 2-H series in view of binding affinity and selectivity. Among compounds tested, compound 5d (X = Cl, R = 3-bromobenzyl) showed the highest binding affinity (Ki = 13.0 ± 6.9 nM) at the hA3 AR with high selectivity (at least 88-fold) in comparison to other AR subtypes. Like the corresponding truncated 4′-thio series, compound 5d antagonized the action of an agonist to inhibit forskolin-stimulated adenylate cyclase in hA3 AR-expressing CHO cells. Although the 4′-oxo series were less potent than the 4′-thio series, this class of human A3 AR antagonists is also regarded as another good template for the design of A3 AR antagonists and for further drug development.  相似文献   

18.
A number of novel xanthines bearing a variety of substituents at positions 1, 3, 7 and 8 were prepared and evaluated for their binding affinity to the human adenosine receptor A1, A2A, A2B and A3 subtypes. Several of the 1,3,8- and 1,3,7,8-substituted xanthines showed moderate-to-high affinity at human A2B and A1 receptors, with the most active compound (14q) having a pKi of 7.57 nM for hA2B receptors and a selectivity over hA2A receptors of 8.1-fold and hA1 receptors of 3.7-fold.  相似文献   

19.
A new series of 2,6,9-trisubstituted adenines (5–14) have been prepared and evaluated in radioligand binding studies for their affinity at the human A1, A2A and A3 adenosine receptors and in adenylyl cyclase experiments for their potency at the human A2B subtype. From this preliminary study the conclusion can be drawn that introduction of bulky chains at the N 6 position of 9-propyladenine significantly increased binding affinity at the human A1 and A3 adenosine receptors, while the presence of a chlorine atom at the 2 position resulted in a not univocal effect, depending on the receptor subtype and/or on the substituent present in the N 6 position. However, in all cases, the presence in the 2 position of a chlorine atom favoured the interaction with the A2A subtype. These results demonstrated that, although the synthesized compounds were found to be quite inactive at the human A2B subtype, adenine is a useful template for further development of simplified adenosine receptor antagonists with distinct receptor selectivity profiles.  相似文献   

20.
We described herein the design, synthesis, and pharmacological evaluation of N-phenylpiperazine heterocyclic derivatives as multi-target compounds potentially useful for the treatment of schizophrenia. The isosteric replacement of the heterocyclic ring at the biaryl motif generating pyrazole, 1,2,3-triazole, and 2-methylimidazole[1,2-a]pyridine derivatives resulted in 21 analogues with different substitutions at the para-biaryl and para-phenylpiperazine positions. Among the compounds prepared, 4 (LASSBio-579) and 10 (LASSBio-664) exhibited an adequate binding profile and a potential for schizophrenia positive symptoms treatment without cataleptogenic effects. Structural features of this molecular scaffold are discussed regarding binding affinity and selectivity for D2-like, 5-HT1A, and 5-HT2A receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号