首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable polymers of the axonal cytoskeleton: the axoplasmic ghost   总被引:31,自引:22,他引:9       下载免费PDF全文
We have examined the monomer-polymer equilibria which form the cytoskeletal polymers in squid axoplasm by extracting protein at low concentrations of monomer. The solution conditions inside the axon were matched as closely as possible by the extraction buffer (buffer P) to preserve the types of protein associations that occur in axoplasm. Upon extraction in buffer P, all of the neurofilament proteins in axoplasm remain polymerized as part of the stable neurofilament network. In contrast, most of the polymerized tubulin and actin in axoplasm is soluble although a fraction of these proteins also exists as a stable polymer. Thus, the axoplasmic cytoskeleton contains both stable polymers and soluble polymers. We propose that stable polymers, such as neurofilaments, conserve cytoskeletal organization because they tend to remain polymerized, whereas soluble polymers increase the plasticity of the cytoskeleton because they permit rapid and reversible changes in cytoskeletal organization.  相似文献   

2.
The distribution and length of actin microfilaments (MF) was determined in axoplasm extruded from the giant axons of the squid (Loligo pealeii). Extruded axoplasm that was separated from the axonal cortex contains approximately 92% of the total axonal actin, and 60% of this actin is polymerized (Morris, J., and R. Lasek. 1984. J. Cell Biol. 98:2064-2076). Localization of MF with rhodamine-phalloidin indicated that the MF were organized in fine columns oriented longitudinally within the axoplasm. In the electron microscope, MF were surrounded by a dense matrix and they were associated with the microtubule domains of the axoplasm. The surrounding matrix tended to obscure the MF which may explain why MF have rarely been recognized before in the inner regions of the axon. The axoplasmic MF are relatively short (number average length of 0.55 micron). Length measurements of MF prepared either in the presence or absence of the actin-filament stabilizing drug phalloidin indicate that axoplasm contains two populations of MF: stable MF (number average length of 0.79 micron) and metastable MF (number average length of 0.41 micron). Although individual axonal MF are much shorter than axonal microtubules, the combined length of the total MF is twice that of the total microtubules. Apparently, these numerous short MF have an important structural role in the architecture of the inner axonal cytoskeleton.  相似文献   

3.
Giant axons of the spiny lobster, Panulirus argus, are filled with microtubules that are decorated with fine, irregular filaments. Mitochondria and membrane-limited clear vesicles are the only other distinguishable elements in the axoplasm and are located around the periphery of the axon near the axolemma. Neither 100 A neurofilaments nor 70 A microfilaments are evident in fixed, intact axons or in negatively stained axoplasm. Actin-like microfilaments are a prominent constituent of the glial cells that closely ensheathe the axons, and gel electrophoresis studies suggest that most of the actin in the nerve fibers is located in the glia rather than in the axons. Studies of isolated axoplasm indicate that microtubules are the primary elements stabilizing the axoplasm. The microtubules in the isolated axoplasm are disrupted by Ca2+ in the medium in the presence of protease inhibitors.  相似文献   

4.
Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate), which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm also represents a new tool to study axon biology.  相似文献   

5.
In the preceding paper (Kobayashi, T., S. Tsukita, S. Tsukita, Y. Yamamoto, and G. Matsumoto, 1986, J. Cell Biol., 102:1710-1725), we demonstrated biochemically that the subaxolemmal cytoskeleton of the squid giant axon was highly specialized and mainly composed of tubulin, actin, axolinin, and a 255-kD protein. In this paper, we analyzed morphologically the molecular organization of the subaxolemmal cytoskeleton in situ. For thin section electron microscopy, the subaxolemmal cytoskeleton was chemically fixed by the intraaxonal perfusion of the fixative containing tannic acid. With this fixation method, the ultrastructural integrity was well preserved. For freeze-etch replica electron microscopy, the intraaxonally perfused axon was opened and rapidly frozen by touching its inner surface against a cooled copper block (4 degrees K), thus permitting the direct stereoscopic observation of the cytoplasmic surface of the axolemma. Using these techniques, it became clear that the major constituents of the subaxolemmal cytoskeleton were microfilaments and microtubules. The microfilaments were observed to be associated with the axolemma through a specialized meshwork of thin strands, forming spot-like clusters just beneath the axolemma. These filaments were decorated with heavy meromyosin showing a characteristic arrowhead appearance. The microtubules were seen to run parallel to the axolemma and embedded in the fine three-dimensional meshwork of thin strands. In vitro observations of the aggregates of axolinin and immunoelectron microscopic analysis showed that this fine meshwork around microtubules mainly consisted of axolinin. Some microtubules grazed along the axolemma and associated laterally with it through slender strands. Therefore, we were led to conclude that the axolemma of the squid giant axon was specialized into two domains (microtubule- and microfilament-associated domains) by its underlying cytoskeletons.  相似文献   

6.
Sites of Tubulin Polymerization in PC 12 Cells   总被引:2,自引:0,他引:2  
The site at which tubulin enters into polymer in the neuritic process is a very important datum in terms of our understanding of the mechanism of transport of the microtubular cytoskeleton out the axon. If the form of tubulin being transported out the axon is the microtubule, then assembly of tubulin into microtubules should occur at or near the cell body; if, however, the form of tubulin transported is free tubulin dimer, then assembly can occur at any free microtubule end out the neurite. We have injected a fluorescent analog of tubulin into differentiated PC 12 cells and used differential extraction protocols to extract free dimer but not microtubules. We have imaged these cells before and after extraction by low-light-level video fluorescence microscopy and have used image analysis to examine the sites of tubulin incorporation into polymer or other unextracted components as a function of time. We find that tubulin in the distal reaches of the neurite is found initially as monomer and that its appearance in the unextracted component occurs later. This pattern of appearance of fluorescent tubulin initially in the soluble fraction and later in the unextractable component is qualitatively similar to that reported by other workers for biotinylated tubulin, but we see a larger gap between the rates of appearance in soluble fraction and in polymer. Quantitative analysis of fluorescence intensities in the two compartments with distance out the neurite reveals substantial variation between different neurites: In some neurites, the pattern of variation of unextracted/total tubulin suggests that tubulin enters into the unextracted component primarily near the cell body and that this unextracted component moves out the neurite with time, and in other neurites it suggest that monomer adds into microtubule ends staggered out the neurite. In no case do we see a pattern suggesting that distal addition predominates. These analyses of fluorescence intensities in extracted and unextracted neurites suggest that both transport of polymerized microtubules and monomer addition onto staggered microtubule ends occur in PC12 neurites and that in individual neurites one or the other of these two behaviors may predominate.  相似文献   

7.
Summary Over the last 25 yr, success in characterizing the individual protein components of animal cytoskeletons was possible, in part, due to technical advances in the isolation and purification of anucleate cytoskeletons from animal cells. As a step towards characterizing protein components of the plant cytoskeleton, we have isolated cytoskeletons from cytoplasts (anucleate protoplasts) prepared from cotton fiber cells grown in ovule culture. Cytoplasts isolated into a hypertonic, Ca2+-free medium at pH 6.8 retained internal structures after extraction with the detergent, Triton X-100. These structures were shown to include microtubule and microfilament arrays by immunofluorescence and electron microscopy. Actin and tubulin were the only abundant proteins in these preparations, suggesting that microfilaments and microtubules were the major cytoskeleta elements in the isolated cytoskeletons. The absence of additional, relatively abundant proteins suggests that (a) other cytoskeletal arrays potentially present in fiber cells (e.g., intermediate filaments) were either lost during detergent extraction or were minor components of the fiber cell cytoskeleton; and (b) high ratios of individual cytoskeletal-associated proteins relative to actin and tubulin were not required to maintain microtubules and microfilaments in organized structures.  相似文献   

8.
Rotavirus infection induces an increase in [Ca2+]cyto, which in turn may affect the distribution of the cytoskeleton proteins in the infected cell. Changes in microfilaments, including the formation of stress fibers, were observed starting at 0.5 h.p.i. using fluorescent phalloidin. Western blot analysis indicated that RhoA is activated between 0.5 and 1 h.p.i. Neither the phosphorylation of RhoA nor the formation of stress fibers were observed in cells infected with virions pre-treated with an anti-VP5* non-neutralizing mAb, suggesting that RhoA activation is stimulated by the interaction of the virus with integrins forming the cell receptor complex. In addition, the structure of the tubulin cytoskeleton was also studied. Alterations of the microtubules were evident starting at 3 h.p.i. and by 7 h.p.i. when microtubules were markedly displaced toward the periphery of the cell cytoplasm. Loading of rotavirus-infected cells with either a Ca2+ chelator (BAPTA) or transfection with siRNAs to silence NSP4, reversed the changes observed in both the microfilaments and microtubules distribution, but not the appearance of stress fibers. These results indicate that alterations in the distribution of actin microfilaments are initiated early during infection by the activation of RhoA, and that latter changes in the Ca2+ homeostasis promoted by NSP4 during infection may be responsible for other alterations in the actin and tubulin cytoskeleton.  相似文献   

9.
This review highlights the effects of ??classic?? phytohormones (auxins, cytokinins, gibberellins, abscisic acid, ethylene, and brassinosteroids) and also of important signaling molecules, such as jasmonic acid, strigolactones, and nitric oxide, on the main components of the plant cytoskeleton, microtubules and microfilaments. The effects of these growth regulators on orientation and organization of microtubules and actin filaments, realization of cytoskeleton-dependent processes, expression of tubulin and actin genes, and interaction of various phytohormones in their influence on the cytoskeleton are discussed.  相似文献   

10.
Bearer  E. L.  Reese  T. S. 《Brain Cell Biology》1999,28(2):85-98
Axoplasmic organelles move on actin as well as microtubules in vitro and axons contain a large amount of actin, but little is known about the organization and distribution of actin filaments within the axon. Here we undertake to define the relationship of the microtubule bundles typically found in axons to actin filaments by applying three microscopic techniques: laser-scanning confocal microscopy of immuno-labeled squid axoplasm; electronmicroscopy of conventionally prepared thin sections; and electronmicroscopy of touch preparations-a thin layer of axoplasm transferred to a specimen grid and negatively stained. Light microscopy shows that longitudinal actin filaments are abundant and usually coincide with longitudinal microtubule bundles. Electron microscopy shows that microfilaments are interwoven with the longitudinal bundles of microtubules. These bundles maintain their integrity when neurofilaments are extracted. Some, though not all microfilaments decorate with the S1 fragment of myosin, and some also act as nucleation sites for polymerization of exogenous actin, and hence are definitively identified as actin filaments. These actin filaments range in minimum length from 0.5 to 1.5 µm with some at least as long as 3.5 µm. We conclude that the microtubule-based tracks for fast organelle transport also include actin filaments. These actin filaments are sufficiently long and abundant to be ancillary or supportive of fast transport along microtubules within bundles, or to extend transport outside of the bundle. These actin filaments could also be essential for maintaining the structural integrity of the microtubule bundles.  相似文献   

11.
Yoneda A  Kutsuna N  Higaki T  Oda Y  Sano T  Hasezawa S 《Protoplasma》2007,230(3-4):129-139
Summary. In higher-plant cells, microtubules, actin microfilaments, and vacuoles play important roles in a variety of cellular events, including cell division, morphogenesis, and cell differentiation. These intracellular structures undergo dynamic changes in their shapes and functions during cell division and differentiation, and to analyse these sequential structural changes, the vital labelling technique, using the green-fluorescent protein or other fluorescent proteins, has commonly been used to follow the localisation and translocation of specific proteins. To visualise microtubules, actin filaments, and vacuoles, several strategies are available for selecting the appropriate fluorescent-protein fusion partner: microtubule-binding proteins, tubulin, and plus-end-tracking proteins are most suitable for microtubule labelling; the actin binding domain of mouse talin and plant fimbrin for actin microfilament visualisation; and the tonoplast-intrinsic proteins and syntaxin-related proteins for vacuolar imaging. In addition, three-dimensional reconstruction methods are indispensable for localising the widely distributed organelles within the cell. The maximum intensity projection method is suitable for cytoskeletal structures, while contour-based surface modelling possesses many advantages for vacuolar membranes. In this article, we summarise the recent progress in living cell imaging of the plant cytoskeleton and vacuoles using various fusions with green-fluorescent proteins and three-dimensional imaging techniques. Correspondence and reprints: Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8562, Japan.  相似文献   

12.
Using the squid giant axon, we analyzed biochemically the molecular organization of the axonal cytoskeleton underlying the axolemma (subaxolemmal cytoskeleton). The preparation enriched in the subaxolemmal cytoskeleton was obtained by squeezing out the central part of the axoplasm using a roller. The electrophoretic banding pattern of the subaxolemmal cytoskeleton was characterized by large amounts of two high-molecular-weight (HMW) proteins (260 and 255 kD). The alpha, beta-tubulin, actin, and some other proteins were also its major constituents. The 260-kD protein is known to play an important role in maintaining the excitability of the axolemma (Matsumoto, G., M. Ichikawa, A. Tasaki, H. Murofushi, and H. Sakai, 1983, J. Membr. Biol., 77:77-91) and was recently designated "axolinin" (Sakai, H., G. Matsumoto, and H. Murofushi, 1985, Adv. Biophys., 19:43-89). We purified axolinin and the 255-kD protein in their native forms and further characterized their biochemical properties. The purified axolinin was soluble in 0.6 M NaCl solution but insoluble in 0.1 M NaCl solution. It co-sedimented with microtubules but not with actin filaments. In low-angle rotary-shadowing electron microscopy, the axolinin molecule in 0.6 M NaCl solution looked like a straight rod approximately 105 nm in length with a globular head at one end. On the other hand, the purified 255-kD protein was soluble in both 0.1 and 0.6 M NaCl solution and co-sedimented with actin filaments but not with microtubules. The 255-kD protein molecule appeared as a characteristic horseshoe-shaped structure approximately 35 nm in diameter. Furthermore, the 255-kD protein showed no cross-reactivity to the anti-axolinin antibody. Taken together, these characteristics lead us to conclude that the subaxolemmal cytoskeleton in the squid giant axon is highly specialized, and is mainly composed of microtubules and a microtubule-associated HMW protein (axolinin), and actin filaments and an actin filament-associated HMW protein (255-kD protein).  相似文献   

13.
Plastid stromules are stroma-filled tubular extensions of the plastid envelope membrane. These structures, which have been observed in a number of species, allow transfer of proteins between interconnected plastids. The dramatic shape of stromules and their dynamic movement within the cell provide an opportunity to study the control of morphology and motion of plastids. Using inhibitors of actin and tubulin, we found that both microfilaments and microtubules affect the shape and motility of non-green plastids. Actin and tubulin control plastid and stromule structure by independent mechanisms, while plastid movement is promoted by microfilaments but inhibited by microtubules. The presence or absence of stromules does not affect the motility of plastids. Photobleaching experiments indicate that actin and tubulin are not necessary for the bulk of green fluorescent protein (GFP) movement between plastids via stromules.  相似文献   

14.
Cytoskeletal proteins-neurofilament polypeptides, tubulin and actin-are transported along axons by slow transport. How or in what form they are transported is not known. One hypothesis is that they are assembled into the cytoskeleton at the cell body and transported as intact polymers down the axon. However, recent radiolabeling and photobleaching studies have shown that tubulin and actin exist in both a mobile phase and a stationary phase in the axon. Consequently, it is more likely that cytoskeletal proteins move along the axon in some form of transport complex and are assembled into a cytoskeleton which is stationary. In this overview we discuss these topics and consider the evidence for the existence of transport complexes associated with slow axonal flow. Such evidence includes the slow transport of particulate complexes containing tubulin and neurofilament polypeptides along reconstituted microtubules in vitro, and the coordinate slow transport of actin with actin-binding in vivo.Special issue dedicated to Dr. Lawrence Austin.  相似文献   

15.
Summary The distribution of tropomyosin, actin and tubulin in the supporting cells of the organ of Corti was studied by immunofluorescent localization of antibodies to these proteins. Tropomyosin colocalizes with actin and tubulin in the regions of the tunnel pillar and Deiters cells where actin microfilaments and microtubules had previously been observed ultrastructurally. Despite the implications of the presence of antiparallel actin filaments in the supporting cells, the presence of tropomyosin and the absence of myosin suggest that the role of tropomyosin may be to confer rigidity to the actin filaments. Thus the primary function of the cytoskeletal proteins in the supporting cells may be structural.  相似文献   

16.
Ooplasmic segregation in the late interphase zygote of the leech Theromyzon trizonare is accomplished by reorganization of an ectoplasmic cytoskeleton formed by polar rings and meridional bands. The dynamic properties of this cytoskeleton were explored by time-lapse confocal and video microscopy. Cytoskeleton assembly was investigated in zygotes pulse-labeled with microinjected fluorophore-tagged or biotin-tagged dimeric tubulin and G-actin. Cytoskeleton disassembly was studied by comparing the linear dimensions of the cytoskeleton at different time points during late interphase. The relative distributions of F- and-G-actin were determined after microinjection of rhodamine-labeled actin and fluorescein-labeled DNase I. Results showed that labeled precursors were readily incorporated into a network of microtubules or actin filaments. Bipolar translocation of the rings and meridional bands was accompanied by the rapid assembly and disassembly of microtubules and actin filaments. Because labeled microtubules and microfilaments gradually decreased, the rate of cytoskeleton disassembly was greater than the rate of cytoskeleton assembly. Hence, ooplasmic segregation was accompanied by the rapid turnover of cytoskeletal components. Co-distribution of F- and-G-actin during mid and late interphase may favor polymer-monomer interchange. We conclude that cytoskeleton reorganization during foundation of cytoplasmic domains can be conveniently studied in the live leech zygote after microinjection of labeled precursors.  相似文献   

17.
The intracellular polymerization of cytoskeletal proteins into their supramolecular assemblies raises many questions regarding the regulatory patterns that control this process. Binding experiments using the ELISA solid phase system, together with protein assembly assays and electron microscopical studies provided clues on the protein-protein associations in the polymerization of tubulin and actin networks. In vitro reconstitution experiments of these cytoskeletal filaments using purified tau, tubulin, and actin proteins were carried out. Tau protein association with tubulin immobilized in a solid phase support system was inhibited by actin monomer, and a higher inhibition was attained in the presence of preassembled actin filaments. Conversely, tubulin and assembled microtubules strongly inhibited tau interaction with actin in the solid phase system. Actin filaments decreased the extent of in vitro tau-induced tubulin assembly. Studies on the morphological aspects of microtubules and actin filaments coexisting in vitro, revealed the association between both cytoskeletal filaments, and in some cases, the presence of fine filamentous structures bridging these polymers. Immunogold studies showed the association of tau along polymerized microtubules and actin filaments, even though a preferential localization of labeled tau with microtubules was revealed. The studies provide further evidence for the involvement of tau protein in modulating the interactions of microtubules and actin polymers in the organization of the cytsokeletal network.  相似文献   

18.
Tubulin is synthesized in the cell body and must be delivered to the axon to support axonal growth. However, the exact form in which these proteins, in particular tubulin, move within the axon remains contentious. According to the "polymer transport model", tubulin is transported in the form of microtubules. In an alternative hypothesis, the "short oligomer transport model", tubulin is added to existing, stationary microtubules along the axon. In this study, we measured the translocation of microtubule plus ends in soma segments, the middle of axonal shafts and the growth cone areas, by expressing GFP-EB3 in cultured Xenopus embryonic spinal neurons. We found that none of the microtubules in the three compartments were transported rapidly as would be expected from the polymer transport model. These results suggest that microtubules are stationary in most segments of the axon, thus supporting the model according to which tubulin is transported in non-polymeric form in rapidly growing Xenopus neurons.  相似文献   

19.
GABA(A) receptor-associated protein (GABARAP) was isolated on the basis of its interaction with the gamma2 subunit of GABA(A) receptors. It has sequence similarity to light chain 3 (LC3) of microtubule-associated proteins 1A and 1B. This suggests that GABARAP may link GABA(A) receptors to the cytoskeleton. GABARAP associates with tubulin in vitro. However, little is known about the mechanism for the interaction, and it is not clear whether the interaction occurs in vivo. Here, we report that GABARAP interacts directly with both tubulin and microtubules in a salt-sensitive manner, indicating the association is mediated by ionic interactions. GABARAP coimmunoprecipitates with tubulin and associates with both microtubules and microfilaments in intact cells. The cellular distribution is altered by treatment with taxol, nocodazole, and cytochalasin D. The tubulin binding domain was located at the N terminus of GABARAP by using synthetic peptides and deletion constructs and is marked by a specific arrangement of basic amino acids. The interaction between GABARAP and actin might be mediated by other proteins. These results demonstrate the GABARAP interacts with the cytoskeleton both in vitro and in cells and suggest a role of GABARAP in the interaction between GABA(A) receptors and the cytoskeleton. Such interactions are presumably needed for receptor trafficking, anchoring, and/or synaptic clustering. The structural arrangement of the basic amino acids present in the tubulin binding domain of GABARAP may aid in recognition of the potential of tubulin binding activity in other known proteins.  相似文献   

20.
The development of morphological neuronal polarity starts by the formation and elongation of an axon. At the same time the axon initial segment (AIS) is generated and creates a diffusion barrier which differentiate axon and somatodendritic compartment. Different structural and functional proteins that contribute to the generation of neuronal action potential are concentrated at the axon initial segment. While axonal elongation is controlled by signalling pathways that regulate cytoskeleton through microtubule associated proteins and tubulin modifications, the microtubule cytoskeleton under the AIS is mostly unknown. Thus, understanding which proteins modify tubulin, where in the neuron and at which developmental stage is crucial to understanding how morphological and functional neuronal polarity is achieved. In this study performed in mice and using a well established model of murine cultured hippocampal neurons, we report that the tubulin deacetylase HDAC6 is localized at the distal region of the axon, and its inhibition with TSA or tubacin slows down axonal growth. Suppression of HDAC6 expression with HDAC6 shRNAs or expression of a non-active mutant of HDAC6 also reduces axonal length. Furthermore, HDAC6 inhibition or suppression avoids the concentration of ankyrinG and sodium channels at the axon initial segment (AIS). Moreover, treatment of mouse cultured hippocampal neurons with detergents to eliminate the soluble pool of microtubules identified a pool of detergent resistant acetylated microtubules at the AIS, not present at the rest of the axon. Inhibition or suppression of HDAC6 increases acetylation all along the axon and disrupts the specificity of AIS cytoskeleton, modifying the axonal distal gradient localization of KIF5C to a somatodendritic and axonal localization. In conclusion, our results reveal a new role of HDAC6 tubulin deacetylase as a regulator of microtubule characteristics in the axon distal region where axonal elongation takes place, and allowing the development of acetylated microtubules microdomains where HDAC6 is not concentrated, such as the axon initial segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号