首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tetrapetide containing an Aib residue, Boc-Asn-Aib-Thr-Aib-OMe, was synthesized as a peptide model for the N-glycosylation site in N-glycoproteins. Backbone conformation of the peptide and possible intramolecular interaction between the Asn and Thr side chains were elucidated by means of n.m.r. spectroscopy. Temperature dependence of NH proton chemical shift and NOE experiments showed that Boc-Asn-Aib-Thr-Aib-OMe has a tendency to form a β-turn structure with a hydrogen bond involving Thr and Aib4 NH groups. Incorporation of Aib residues in the peptide model promotes folding of the peptide backbone. With folded backbone conformation, carboxyamide protons of the Asn residue are not involved in hydrogen bond network, while the OH group of the Thr residue is a candidate for a hydrogen bond in DMSO-d6 solution.  相似文献   

2.
A tetrapetide containing an Aib residue, Boc-Asn-Aib-Thr-Aib-OMe, was synthesized as a peptide model for the N-glycosylation site in N-glycoproteins. Backbone conformation of the peptide and possible intramolecular interaction between the Asn and Thr side chains were elucidated by means of n.m.r. spectroscopy. Temperature dependence of NH proton chemical shift and NOE experiments showed that Boc-Asn-Aib-Thr-Aib-OMe has a tendency to form a β-turn structure with a hydrogen bond involving Thr and Aib4 NH groups. Incorporation of Aib residues in the peptide model promotes folding of the peptide backbone. With folded backbone conformation, carboxyamide protons of the Asn residue are not involved in hydrogen bond network, while the OH group of the Thr residue is a candidate for a hydrogen bond in DMSO-d6 solution.  相似文献   

3.
The solution conformation of didemnin B, the most potent member of a family of depsipeptides that shows antitumour, antiviral, and immunosuppressive activity, has been studied in chloroform solution using n.m.r. spectroscopy. 1H and 13C spectra have been assigned from analysis of a number of two-dimensional homonuclear and heteronuclear chemical shift correlation experiments which confirm the recently corrected primary structure of the molecule. The conformation of the peptide has been deduced from measurements of the temperature dependence of the NH chemical shifts, analysis of coupling constant data and primarily through NOE effects observed in the rotating frame. Interproton distance bounds determined from a quantitative analysis of the ROE data provide 41 constraints from which a family of closely related structures were calculated using distance geometry algorithms. A type II beta-turn involving residues Thr6, Leu7, and Pro8 is well represented in the computed conformers as is a hydrogen bonding interaction between the NH of Leu3 and the carbonyl oxygen of Thr6. This latter interaction causes the linear portion of the structure to fold back over the depsipeptide ring, imparting to it a degree of structural stability as well as giving the molecule a somewhat globular character. Only one transannular hydrogen bond, between Ist1 NH and Leu3 carbonyl, stabilizes the conformation of the depsipeptide, which has an irregular non-planar configuration. The small temperature coefficients (less than 2.0 x 10(-3) ppm/degrees C) for the NHs of Ist1 and Leu3 are consistent with their involvement in these hydrogen bonding interactions. We find that many of the structural features observed in the crystalline form of didemnin B are conserved in solution. Analysis of the 13C spin-lattice relaxation rates of the protonated carbons reveals small variations in effective correlation times at specific sites in the molecule. The data suggests that the peptide segment encompassing residues Leu3 through to Thr6 is in a more motionally restricted part of the structure.  相似文献   

4.
The conformation of the peptide Boc-L-Met-Aib-L-Phe-OMe has been studied in the solid state and solution by X-ray diffraction and 1H n.m.r., respectively. The peptide differs only in the N-terminal protecting group from the biologically active chemotactic peptide analog formyl-L-Met-Aib-L-Phe-OMe. The molecules adopt a type-II beta-turn in the solid state with Met and Aib as the corner residues (phi Met = -51.8 degrees, psi Met = 139.5 degrees, phi Aib = 58.1 degrees, psi Aib = 37.0 degrees). A single, weak 4----1 intramolecular hydrogen bond is observed between the Boc CO and Phe NH groups (N---O 3.25 A, N-H---O 128.4 degrees). 1H n.m.r. studies, using solvent and temperature dependencies of NH chemical shifts and paramagnetic radical induced line broadening of NH resonances, suggest that the Phe NH is solvent shielded in CDCl3 and (CD3)2SO. Nuclear Overhauser effects observed between Met C alpha H and Aib NH protons provide evidence of the occurrence of Met-Aib type-II beta-turns in these solvents.  相似文献   

5.
The depsipeptide DNA-intercalating antibiotic luzopeptin was studied in solution by n.m.r. methods. Two-dimensional 1H double-quantum-filtered correlation spectroscopy (DQF-COSY) and nuclear-Overhauser-effect spectroscopy (NOESY) confirm the primary structure and twofold symmetry of luzopeptin and provide details of its three-dimensional conformation in solution. Trans-annular hydrogen bonds between the glycine NH groups and carbonyl oxygen atoms have been identified in the crystalline state [Arnold & Clardy (1981) J. Am. Chem. Soc. 103, 1243-1244], and are important in maintaining an antiparallel beta-sheet conformation. The n.m.r. data indicate that the glycine NH protons are appreciably shielded from the solvent molecules, which suggests that these hydrogen bonds are maintained in solution. The orientation of the quinoline chromophores is defined by two-dimensional NOE cross-peaks that position the N-methyl group of the L-beta-hydroxyvaline residue close in space to both the quinoline H-8 and serine NH proton. This pattern of NOEs is in accord both with the chromophore configuration found in the crystal and one where the quinoline rings are aligned in a parallel manner at right-angles to the depsipeptide ring. The n.m.r. data are consistent with a hydrogen bond between the quinoline hydroxy groups and the quinoline carbonyl oxygen atoms. The pyridazine acetylmethyl groups give NOEs to the C(alpha)H groups of the beta-hydroxy-N-methylvaline residues, showing that the acetyl groups, for at least some of the time, stretch over the depsipeptide ring, occluding one face of the molecule. Both of the latter features are also found in the crystal structure. Resonances in the 13C-n.m.r. spectrum of luzopeptin have been assigned by transferring 1H assignments to their covalently bonded carbon atoms via a heteronuclear shift-correlation experiment (HETCOR). The measurement of spin-lattice relaxation times and 1H-13C NOEs at specific sites in the molecule has led us to conclude that segmental motions within the depsipeptide ring are restricted and that the 13C relaxation data for luzopeptin's protonated carbon atoms are adequately described by isotropic tumbling in solution. Furthermore, relaxation data for the carbon atoms of the quinoline chromophores show that these rings exhibit similar motion to the depsipeptide ring and are not rotating rapidly with respect to it. Taken together all the data imply that luzopeptin is fairly rigid in solution, on the time scale of molecular tumbling, and has, or can readily attain, a staple-like structure suitable for bisintercalation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The 13C-n.m.r. spectra of 19 2-phenyl-1,3-dioxolane, -1,3-dioxane and -1,3-dioxopane derivatives were examined and it was found that both the 13C-n.m.r. chemical shift for the acetal carbon atom and the one-bond coupling constant between the acetal carbon atom and the acetal proton had values that could be used to distinguish between acetals having different ring sizes. In addition, the presence of axial substituents at positions 4 or 6 in substituted 2-phenyl-1,3-dioxane rings and 4 or 7 in substituted 2-phenyl-1,3-dioxepane rings could be readily detected. The structures of a number of carbohydrate examples were determined by using these two parameters and also the chemical shift of the acetal proton from 1H-n.m.r. spectra. The use of all three parameters made assignment of benzylidene acetal ring-size unambiguous.  相似文献   

7.
The undecapeptide physalaemin was investigated by n.m.r. spectroscopy in DMSO solution under acidic and neutral conditions. Large changes of the NH chemical shifts and the temperature gradients of the NH protons occurred on going from pH 3.5 to pH 7.0 for residues around the charged amino acids Asp and Lys. At pH 3.5 the data are in accord with a flexible conformation of the peptide. The results at neutral pH are interpreted in terms of a folded structure having two interresidue and one intraresidue hydrogen bond. They include a beta turn with proline in position i + 1 and asparagine in position i + 2.  相似文献   

8.
1H and 13C n.m.r. study of pseudo-peptide analogues of the C-terminal tetrapeptide of gastrin, obtained by replacing each peptide bond by a "reduced peptide bond", one at a time, e.g. Boc-Trp psi (CH2NH)Leu-Asp-Phe-NH2 2, Boc-Trp-Leu psi (CH2NH) Asp-Phe-NH2 3, Boc-Trp-Leu-Asp psi (CH2NH)Phe-NH2 4, were reported. The CH2NH bond was completely characterized. 1H and 13C spectroscopic data were reported. It appeared from the present work that the modifications produced by the replacement of a peptide bond by a CH2NH bond were localized around the CH2NH.  相似文献   

9.
The aqueous solution conformation of Tyr-Asn-Ile-Gln-Lys (UB5) corresponding to positions 59-63 of the polypeptide, ubiquitin, has been investigated by proton NMR. Like the parent protein, UB5 induces nonspecifically both T and B lymphocyte differentiation. The various NH and CH resonances of this pentapeptide have been assigned, and its solution conformation has been probed through a study of chemical shift variations with pH, temperature dependence of amide hydrogen chemical shifts, vicinal NH--C alpha H and C alpha H--C beta H2 coupling constant data, and amide hydrogen-exchange rates. The latter were measured in H2O by using a combination of transfer of solvent saturation and saturation recovery NMR experiments. The data are compatible with the assumption of a highly motile dynamic equilibrium among different conformations for this peptide. The various secondary amide hydrogens remain essentially exposed to the solvent. The temperature-dependence study of the amide hydrogen chemical shifts also did not reveal any strong internal hydrogen bonds. A rotamer population analysis of tyrosine and asparagine side chains suggests that two of the rotomers are predominantly populated for each of these residues. From these results, a picture emerges of the dynamic conformation of UB5 in aqueous solution.  相似文献   

10.
A synthetic half-operator DNA-duplex, d(GCTACTGTATGT), containing a portion of the proposed recognition sequence (CTGT) of several "SOS" genes, has been synthesized. The dodecamer has been characterized through 1H-NMR spectroscopy. Complete assignment of exchangeable hydrogen bonded imino protons has been achieved by applying 1D NOE techniques and an analysis of the temperature dependence of the chemical shifts. In order to determine the specific role of the CTGT consensus sequence in the overall recognition process, the oligonucleotide duplex has been titrated with the amino terminal DNA binding domain of the LexA repressor. The observation of substantial changes of 1H-NMR chemical shifts in the imino proton region upon interaction with the protein strongly suggests that the protein binds specifically to the operator DNA. The largest deviations of 1H-NMR chemical shifts upon protein binding have been observed for protons assigned to the CTGT segment, thus strongly suggesting a direct involvement of this sequence in the binding process. At high potassium chloride concentrations the 1H-NMR chemical shift deviations are reverted which is consistent with the known drop in the affinity constant of LexA for operator DNA at high salt concentrations.  相似文献   

11.
Isolation, purification and 360 MHz 1H- and 13C-n.m.r. spectra of the residue corresponding to the NH2-terminal peptide fragment [1-24] of human serum albumin are reported. The various resonances have been assigned to individual amino acid residues and their spatial microenvironment has been determined in a straightforward manner on the basis of (i) pH dependent chemical shifts; (ii) combined use of multiple and selective proton-decoupled 1H- and 13C-n.m.r. spectra; (iii) the characteristic pK values exhibited by protons adjacent to sites of ionization in the molecule; and (iv) comparison of the spectra with the NH2-terminal tripeptide segment of human albumin. The pK values of different ionizable groups all fall in the normal range expected for each titrating sites and support a model of peptide fragment [1-24] in which there is no special structure-forming strong associations. These results are in agreement with those obtained by CD spectroscopy.  相似文献   

12.
Synthesis, proton magnetic resonance and carbon-13 magnetic resonance characterizations, including complete assignments, are reported for the polyhexapeptide of elastin, HCO-Val(Ala1-Pro2-Gly3-Val4-Gly5-Val6)18-OMe. Temperature dependence of peptide NH chemical shifts and solvent dependence of peptide C-O chemical shifts have been determined in several solvents and have been interpreted in terms of four hydrogen bonded rings for each repeat of the polyhexapeptide. The more stable hydrogen bonded ring is a beta-turn involving Ala1C-O--HN-Val4. More dynamic hydrogen bonds are an 11-atom hydrogen bonded ring Gly3NH--O-C Gly5, a 7-atom hydrogen bonded ring (a gamma-turn) Gly3 C-O--NH-Gly5, and a 23-atom hydrogen bonded ring Val6inH--O-C Val6(i+1). This set of hydrogen bonds results in a right-handed beta-spiral structure with slightly more than two repeats (approximately 2.2) per turn of spiral. The beta-spiral structure is briefly discussed relative to data on the elastic fiber.  相似文献   

13.
The complexation of cyclo(Ala*-Ala) with the cobaltous ions in aqueous solution was investigated by 17O and 14N n.m.r. spectroscopy. The 17O and 14N transverse relaxation time (T2p) and chemical shift (delta omega a) of cyclo(Ala*-Ala) were measured as a function of the temperature at pH = 7.03 +/- 0.02, and pH = 6.45 +/- 0.02, and as a function of pH at room temperature. No effects of pH on the transverse relaxation time and chemical shift were observed. Complementary 17O studies of the solvent water molecules were also carried out. The hyperfine coupling constant and the entropy and enthalpy of activation for the exchange of cyclo(Ala*-Ala) and water molecules between the coordinated and noncoordinated states were determined by least-square fit of theoretical equation for the chemical shift delta omega a to experimental data. The hyperfine coupling constant of the peptide bound oxygen was determined to be (-1.6 +/- 0.1) X 10(5) Hz and the entropy and enthalpy (32.0 +/- 3.0) kJ/mol and (-12.0 +/- 1.0) e.u, respectively. Information obtained from 17O n.m.r. study allows some inferences concerning the probable coordination sphere of the cobaltous ion. There are three types of complexes: Co(H2O)6(2+), CoL X 5H2O and CoL2 X 4H2O, with relative concentrations 19.9%, 2.9%, and 77.2%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Recent 1H nuclear magnetic resonance (n.m.r.) hydrogen exchange experiments on five different proteins have delineated the secondary structures formed in trapped, partially folded intermediates. The early forming structural elements are identifiable through a technique described in this work to predict folding pathways. The method assumes that the sequential selection of structural fragments such as alpha-helices and beta-strands involved in the folding process is founded upon the maximal burial of solvent accessible surface from both the formation of internal structure and substructure association. The substructural elements were defined objectively by major changes in main-chain direction. The predicted folding pathways are in complete correspondence with the n.m.r. results in that the formed structural fragments found in the folding intermediates are those predicted earliest in the pathways. The technique was also applied to proteins of known tertiary structure and with fold similar to one of the five proteins examined by 1H n.m.r. The pathways for these structures also showed general consistency with the n.m.r. observations, suggesting conservation of a secondary structural framework or molten globule about which folding nucleates and proceeds.  相似文献   

15.
15N n.m.r. (9.12 MHz) spectra of acetamide, polyglycine, poly([l-alanine) and poly(l-leucine) were measured in various acidic solvents. These solvents include dichloroacetic acid (DCA), trifluoroacetic acid (TFA), methane sulphonic acid (MSA) and fluorosulphonic acid (FSA). Full protonation of both amides and polypeptides causes downfield shifts of 17–20 ppm. Furthermore, the concentration dependence of the chemical shift was measured. In solvents which cause partial protonation, decreasing concentration of amide groups may cause downfield shifts up to 8.5 ppm, while in the case of full protonation or in the absence of protonation no concentration dependence is observable. The protonation of peptide groups induces H/D-exchange of the αC proton which was monitored by 1H n.m.r. spectroscopy. The mechanism of this H/D-exchange is discussed.  相似文献   

16.
Based on the nuclear magnetic resonance assignments of a dimeric protein, Streptomyces subtilisin inhibitor (SSI), microscopic details of secondary structures in solution have been elucidated. The chemical shift index of C(alpha) signals, together with information on the hydrogen exchange rates of the backbone amide protons, were used to identify secondary structures. The locations of these secondary structures were found to be different in some critical points from those determined earlier by X-ray crystallography of the crystal. Notably, the beta3 strand is completely missing and the alpha2 helix is extended toward the C-terminus. Furthermore, hydrogen exchange experiments of individual peptide NH protons under strongly folding conditions revealed mechanisms of global and local structural fluctuation within the dimeric structure. It has been suggested that the global fluctuation of the monomeric unit occurs without affecting the accompanying monomer, in contrast to the equilibrium thermal unfolding, which is cooperative. Higher protection against hydrogen exchange for residues in part of the beta4 strand implies that this region might serve as a folding core.  相似文献   

17.
The conformations of the dipeptide t-Boc-Pro-DAla-OH and the tripeptide t-Boc-Pro-DAla-Ala-OH have been determined in the crystalline state by X-ray diffraction and in solution by CD, n.m.r. and i.r. techniques. The unit cell of the dipeptide crystal contains two independent molecules connected by intermolecular hydrogen bonds. The urethane-proline peptide bond is in the cis orientation in both the molecular forms while the peptide bond between Pro and DAla is in the trans orientation. The single dipeptide molecule exhibits a "bent" structure which approximates to a partial beta-turn. The tripeptide adopts the 4----1 hydrogen-bonded type II beta-turn with all trans peptide bonds. In solution, the CD and i.r. data on the dipeptide indicate an ordered conformation with an intramolecular hydrogen bond. N.m.r. data indicate a significant proportion of the conformer with a trans orientation at the urethane-proline peptide bond. The temperature coefficient of the amide proton of this conformer in DMSO-d6 points to a 3----1 intramolecular hydrogen bond. Taken together, the data on the dipeptide in solution indicate the presence (in addition to the cis conformer) of a C7 conformation which is absent in the crystalline state. The spectral data on the tripeptide indicate the presence of the type II beta-turn in solution in addition to the nonhydrogen-bonded conformer with the cis peptide bond between the urethane and proline residues. The relevance of these data to studies on the substrate specificity of collagen prolylhydroxylase is pointed out.  相似文献   

18.
The three-dimensional structure of part of the coat protein in the filamentous bacteriophage fd is described by nuclear magnetic resonance (n.m.r.). Residues 40 to 45 are in a somewhat distorted alpha-helix. This n.m.r. approach for determining protein structure relies on the spectral manifestations of chemical shift and heteronuclear dipolar couplings in a symmetrical assembly of protein subunits oriented parallel to the applied magnetic field. The angles between individual peptide linkages and the filament axis of the virion constitute the basic source of structural information. These angles are directly related to x, y, z co-ordinates for describing the protein structure.  相似文献   

19.
Two isomeric, acyclic tetrapeptides containing a Z-dehydrophenylalanine residue (delta Z-Phe) at position 2 or 3, Boc-Leu-Ala-delta Z-Phe-Leu-OMe (1) and Boc-Leu-delta Z-Phe-Ala-Leu-OMe (2), have been synthesized and their solution conformations investigated by 270 MHz 1H n.m.r. spectroscopy. In peptide 1 the Leu(4) NH group appears to be partially shielded from solvent, while in peptide 2 both Ala(3) and Leu(4) NH groups show limited solvent accessibility. Extensive difference nuclear Overhauser effect (n.O.e.) studies establish the occurrence of several diagnostic inter-residue n.O.e.s (Ci alpha H----Ni+1H and NiH----Ni+1H) between backbone protons. The simultaneous observation of "mutually exclusive" n.O.e.s suggests the presence of multiple solution conformations for both peptides. In peptide 1 the n.O.e. data are consistent with a dynamic equilibrium between an -Ala-delta Z-Phe- Type II beta-turn structure and a second species with delta Z-Phe adopting a partially extended conformation with psi values of +/- 100 degrees to +/- 150 degrees. In peptide 2 the results are compatible with an equilibrium between a highly folded consecutive beta-turn structure for the -Leu-delta Z-Phe-Ala- segment and an almost completely extended conformation.  相似文献   

20.
The peptide Gly-Arg-Ala-Ser-Asp-Tyr-Lys-Ser, derived from myelin basic protein (MBP), is part of an epitope to monoclonal antibodies to human MBP. Its conformation has been studied in aqueous solution by high-resolution one- and two-dimensional 1H and 13C n.m.r. Two-dimensional correlated spectroscopy, pH titrations and one-dimensional spin-decoupling techniques were employed to assign the spectra observed from both nuclei. Amide proton temperature coefficients, coupling constants, 13C spin-lattice relaxation times and nuclear-Overhauser-effect data provide evidence that the solution conformations of the octapeptide include a type-II beta-turn with a hydrogen bond between the CO group of Arg2 and the NH group of Asp5. The results are discussed in view of a possible conformation of the antibody receptor site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号