首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A mutant library of subtilisin E containing random combinations of various mutagenized sites was constructed by one-round mutagenesis with 15 mutagenic oligonucleotides. Mutants were screened through dot blot hybridization and DNA sequencing. A single-point mutant (Met 222Ala) and a three-point (Asn 76Asp/Asn109Ser/ I le 205/Cys) mutant gene from the library were expressed. The mutant proteins exhibited conspicuously improved resistance to oxidation and heat treatment, as reported before. The results show that the library is reliable and very useful for protease subtilisin E engineering.  相似文献   

2.
A mutant subtilisin E with enhanced thermostability   总被引:1,自引:0,他引:1  
A mutant subtilisin E with remarkably thermostability is reported. It is more active against the typical substrate s-AAPF-pna than the wild-type subtilisin E. The time required for getting 50% residual activity of Ser236Cys subtilisin E at 60 °C in aqueous solution was approximately 80 min which is 4 times longer than that of wild-type subtilisin E. Similar to the wild-type subtilisin E, the amidase activity of Ser236Cys subtilisin E is dramatically reduced in the presence of dimethylformamide (DMF).  相似文献   

3.
Yang Y  Jiang L  Zhu L  Wu Y  Yang S 《Journal of biotechnology》2000,81(2-3):113-118
A remarkable thermal stable and oxidation-resistant mutant was obtained using the random mutagenesis PCR technique on the mutant M222A gene of subtilisin E. Sequencing analysis revealed an A was replaced by G at nucleotide 671 of the subtilisin E gene, converting the asparagine codon (AAT) to serine codon (AGT) at position 118. The half-life of M222A/N118S enzyme activity, when heated at 65 degrees C, was approximately 80 min while the half-life of M222A and wild-type subtilisin E were 13 min and 15 min, respectively. This suggested the stability of the M222A/N118S mutant was five times greater than that of the wild-type enzyme. The mutant was also as oxidation resistant as the mutant M222A of subtilisin E. These results indicated the M222A/N118S mutant is both an oxidation-resistant and a heat-stable variant of subtilisin E.  相似文献   

4.
Sites for Cys substitutions to form a disulfide bond were chosen in subtilisin E from Bacillus subtilis, a cysteine-free bacterial serine protease, based on the structure of aqualysin I of Thermus aquaticus YT-1 (a thermophilic subtilisin-type protease containing two disulfide bonds). Cys residues were introduced at positions 61 (wild-type, Gly) and 98 (Ser) in subtilisin E by site-directed mutagenesis. The Cys-61/Cys-98 mutant subtilisin appeared to form a disulfide bond spontaneously in the expression system used and showed a catalytic efficiency equivalent to that of the wild-type enzyme for hydrolysis of a synthetic peptide substrate. The thermodynamic characteristics of these enzymes were examined in terms of enzyme autolysis (t1/2) and thermal stability (Tm). The half-life of the Cys-61/Cys-98 mutant was found to be 2-3 times longer than that of the wild-type enzyme. Similar results were obtained by differential scanning calorimetry. The disulfide mutant showed a Tm of 63.0 degrees C, which was 4.5 degrees C higher than that observed for the wild-type enzyme. Under reducing conditions, however, the characteristics of the mutant enzyme were found to revert to those of the wild-type enzyme. These results strongly suggest that the introduction of a disulfide bond by site-directed mutagenesis enhanced the thermostability of subtilisin E without changing the catalytic efficiency of the enzyme.  相似文献   

5.
以合成的单链序列特异性标签为模板,通过PCR得到双链DNA标签并将其克隆到自杀质粒pUT-Tn5 Km2的转座子中,转化大肠杆菌S17-1λpir;然后用经转化的S17-1λpir与福氏志贺菌2a 2457T交配,挑出对氨苄青霉素敏感,对卡那霉素和萘啶酮酸抗性的菌落,结果表明构建了包含4376个福氏志贺菌突变体信号标签诱变库,为进一步鉴定该病原体的毒力基因打下了基础。  相似文献   

6.
We have devised a procedure using monovalent phage display to select for stable mutants in the pro-domain of the serine protease, subtilisin BPN'. In complex with subtilisin, the pro-domain assumes a compact structure with a four-stranded antiparallel beta-sheet and two three-turn alpha-helices. When isolated, however, the pro-domain is 97% unfolded. These experiments use combinatorial mutagenesis to select for stabilizing amino acid combinations at a particular structural locus and determine how many combinations are close to the maximum protein stability. The selection for stability is based on the fact that the independent stability of the pro-domain is very low and that binding to subtilisin is thermodynamically linked to folding. Two libraries of mutant pro-domains were constructed and analyzed to determine how many combinations of amino acids at a particular structural locus result in the maximum stability. A library comprises all combinations of four amino acids at a structural locus. Previous studies using combinatorial genetics have shown that many different combinations of amino acids can be accommodated in a selected locus without destroying function. The present results indicate that the number of sequence combinations at a structural locus, which are close to the maximum stability, is small. The most striking example is a selection at an interior locus of the pro-domain. After two rounds of phagemid selection, one amino acid combination is found in 40% of sequenced mutants. The most frequently selected mutant has a deltaG(unfolding) = 4 kcal/mol at 25 degrees C, an increase of 6 kcal/mol relative to the naturally occurring sequence. Some implications of these results on the amount of sequence information needed to specify a unique tertiary fold are discussed. Apart from possible implications on the folding code, the phage display selection described here should be useful in optimizing the stability of other proteins, which can be displayed on the phage surface.  相似文献   

7.
用定点突变的方法研究S221C/P225A,N118S/S221C/P225A,D60N/S221C/P225A和Q103R/S221C/P225A突变对蛋白酶活性,酯酶活性与蛋白酶活性之比的影响。结果表明:S221C/P225A突变使蛋白酶活性比枯草蛋白酶E低73000多倍,酯酶活性与蛋白酶活性之比是Subtiligase的3倍;N118S/S221C/P225A突变使蛋白酶活性和酯酶活性分别比S221C/P225A突变下降3.6倍和15倍,酯酶与蛋白酶活性之比下降4倍,同时增加变体酶的热稳定性;D60N/N118S/S221C/P225A突变使蛋白酶活性比N118S/S221C/P225A突变体下降15倍,但对酯酶活性几乎没有影响,酯酶与蛋白酶活性之比增加14倍,分别是S221C/P225A突变体和Subtiligase的3.3倍和10.3倍;但是,Q103R/N118S/S221C/P225A突变使蛋白酶活性比N118S/S221C/P225A突变体增加5倍,酯酶活性下降55倍,酯酶与蛋白酶活性之比下降1000倍。  相似文献   

8.
We examined the effect of a novel disulfide bond engineered in subtilisin E from Bacillus subtilis based on the structure of a thermophilic subtilisin-type serine protease aqualysin I. Four sites (Ser163/Ser194, Lys170/Ser194, Lys170/Glu195, and Pro172/Glu195) in subtilisin E were chosen as candidates for Cys substitutions by site-directed mutagenesis. The Cys170/Cys195 mutant subtilisin formed a disulfide bond in B. subtilis, and showed a 5-10-fold increase in specific activity for an authentic peptide substrate for subtilisin, N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide, compared with the single-Cys mutants. However, the disulfide mutant had a 50% decrease in catalytic efficiency due to a smaller k(cat) and was thermolabile relative to the wild-type enzyme, whereas it was greatly stabilized relative to its reduced form. These results suggest that an electrostatic interaction between Lys170 and Glu195 is important for catalysis and stability in subtilisin E. Interestingly, the disulfide mutant was found to be more stable in polar organic solvents, such as dimethylformamide and ethanol, than the wild-type enzyme, even under reducing conditions; this is probably due to the substitution of uncharged Cys by charged surface residues (Lys170 and Glu195). Further, the amino-terminal engineered disulfide bond (Gly61Cys/Ser98Cys) and the mutation Ile31Leu were introduced to enhance the stability and catalytic activity. A prominent 3-4-fold increase in the catalytic efficiency occurred in the quintet mutant enzyme over the range of dimethylformamide concentration (up to 40%).  相似文献   

9.
A site-directed mutagenesis strategy was employed to obtain four mutants of wheat subtilisin/chymotrypsin inhibitor (WSCI), with the aim to produce inactive forms of this protein. The mutants were expressed in Escherichia coli as fusion proteins and, after the tag removal, were purified to homogeneity. Three mutants, containing a single mutation at the sequence positions 49 or 50, were named E49S, E49P and Y50G, respectively. These mutants exhibited anti-subtilisin activities comparable to that of the wild type protein; instead, anti-chymotrypsin activity was detectable only for the mutant E49S. A fourth mutant (M48P-E49G), containing a double amino acid substitution at the inhibitor reactive site (P1–P1′), was inactive against both subtilisin and chymotrypsin. In order to investigate the interactions between the putative susceptible enzymes and the mutated forms of WSCI, we performed time-course hydrolysis experiments by incubating samples of the mutants with subtilisin–agarose and chymotrypsin–agarose, respectively. These experiments yielded information on the E/I complex formation, as well as on the timing of the cleavage pattern of some of these mutants. Molecular modeling studies were carried out with the 3D models of the mutants and of their putative complexes with subtilisin and chymotrypsin. In terms of inter- and intra-chain H-bond networks, the observations made for each theoretical E/I complex were found to be fully coherent with experimental data (kinetic and time-course hydrolysis) and supplied specific modalities of interaction of each mutant with the enzyme counterpart.  相似文献   

10.
Modification of substrate specificity of an autoprocessing enzyme is accompanied by a risk of significant failure of self-cleavage of the pro-region essential for activation. Therefore, to enhance processing, we engineered the pro-region of mutant subtilisins E of Bacillus subtilis with altered substrate specificity. A high-activity mutant subtilisin E with Ile31Leu replacement (I31L) as well as the wild-type enzyme show poor recognition of acid residues as the P1 substrate. To increase the P1 substrate preference for acid residues, Glu156Gln and Gly166Lys/Arg substitutions were introduced into the I31L gene based upon a report on subtilisin BPN' [Wells et al. (1987) Proc. Natl. Acad. Sci. USA 84, 1219-1223]. The apparent P1 specificity of four mutants (E156Q/G166K, E156Q/G166R, G166K, and G166R) was extended to acid residues, but the halo-forming activity of Escherichia coli expressing the mutant genes on skim milk-containing plates was significantly decreased due to the lower autoprocessing efficiency. A marked increase in active enzyme production occurred when Tyr(-1) in the pro-region of these mutants was then replaced by Asp or Glu. Five mutants with Glu(-2)Ala/Val/Gly or Tyr(-1)Cys/Ser substitution showing enhanced halo-forming activity were further isolated by PCR random mutagenesis in the pro-region of the E156Q/G166K mutant. These results indicated that introduction of an optimum arrangement at the cleavage site in the pro-region is an effective method for obtaining a higher yield of active enzymes.  相似文献   

11.
应用基因工程手段,获得了枯草杆菌蛋白酶E的双突变体基因(M222A,N118S),此基因在枯草芽孢杆菌中表达得到了既抗氧又耐高温的碱性蛋白酶,含M222,N118S碱性蛋白酶基因的枯草杆菌发酵液经过硫酸铵分级沉淀和DEAESephadexA-25阴离子交换层析柱,再在FPLC层析系统上用Hiload26/10SSepharoseHP阳离子交换柱分离得到SDS-PAGE电泳纯的蛋白酶样品。突变体酶的等电点为pH8.9,分子量为27400,用四肽底物测得的动力学参数也有较大的变化。对该突变体酶进行了晶体生长研究,获得了较大的单晶体。  相似文献   

12.
Q103R subtilisin E was isolated following random mutagenesis and screening for improved activity in the presence of dimethylformamide (DMF). Our goal is to identify the mechanism(s) by which amino acid substitutions can enhance enzyme activity in polar organic solvents. A quantitative framework for comparing substrate binding and catalytic activities of mutant and wild-type enzymes in the presence and absence of DMF is outlined. Kinetic experiments performed at high salt concentration (1M KCl) reveal that the mechanism behind the Q103R variant's enhanced activity toward succinyl-Ala-Ala-Pro-Phe-p-nitroanilide is both electrostatic and nonelectrostatic in origin. Favorable electrostatic interactions between the negatively charged succinyl group of the substrate and the positive charge on Arg 103 are responsible for tighter substrate binding. This conclusion is supported by kinetic experiments performed on the related substrate Ala-Ala-Pro-Phe-p-nitroanilide and the hydrolysis kinetics of the Q103E, Q103K, and Q103S variants constructed by site-directed mutagenesis. These results highlight the importance of the choice of the substrate used to screen for improvements in catalytic activity.  相似文献   

13.
Rsp5 is an essential ubiquitin-protein ligase in Saccharomyces cerevisiae . We found previously that the Ala401Glu rsp 5 mutant is hypersensitive to various stresses that induce protein misfolding, suggesting that Rsp5 is a key enzyme for yeast cell growth under stress conditions. To isolate new Rsp5 variants as suppressors of the A401E mutant, PCR random mutagenesis was used in the rsp5 A401E gene, and the mutagenized plasmid library was introduced into rsp5 A401E cells. As a phenotypic suppressor of rsp5 A401E cells, we isolated a quadruple variant (Thr357Ala/Glu401Gly/Lys764Glu/Glu767Gly) on a minimal medium containing the toxic proline analogue azetidine-2-carboxylate (AZC). Site-directed mutagenesis experiments showed that the rsp5 T357A/K764E cells were much more tolerant to AZC than the wild-type cells, due to the smaller amounts of intracellular AZC. However, the T357A/K764E variant Rsp5 did not reverse the hypersensitivity of rsp5 A401E cells to other stresses such as high growth temperature, ethanol, and freezing treatment. Interestingly, immunoblot and localization analyses indicated that the general amino acid permease Gap1, which is involved in AZC uptake, was absent on the plasma membrane and degraded in the vacuole of rsp5 T357A/K764E cells before the addition of ammonium ions. These results suggest that the T357A/K764E variant Rsp5 induces constitutive inactivation of Gap1.  相似文献   

14.
枯草杆菌蛋白酶E的156和165位突变   总被引:1,自引:0,他引:1  
应用定点突变方法,在M222A突变的枯草杆菌蛋白酶E基因上进行E156S和V165I定点突变. 将突变基因插入大肠杆菌-枯草杆菌穿梭质粒pBE-2中,在碱性和中性蛋白酶缺陷型的枯草杆菌DB104中进行表达,得到突变种(M222A,E156S)和(M222A,E156S,V165I)蛋白酶E. 性质测定表明,E156S突变使蛋白酶比活力增加90%,并不影响酶的热稳定性和抗氧化性. 而V165I突变使蛋白酶比活力降低.  相似文献   

15.
Single amino acid substitutions increase the activity and stability of subtilisin E in mixtures of organic solvents and water, and the effects of these mutations are additive. A variant of subtilisin E that exhibits higher activity in mixtures of dimethylformamide (DMF) and water (Q103R) was created by random mutagenesis combined with screening for improved activity (K. Chen and F. H. Arnold, in preparation). Another mutation, N218S, known to improve both the activity and stability of subtilisin BPN', also improves the activity and stability of subtilisin E in the presence of DMF. The effects of the two substitutions on transition-state stabilization are additive. Furthermore, the Q103R mutation that improves activity has no deleterious effect on subtilisin stability. The double mutant Q103R+N218S is 10 times more active than the wild-type enzyme in 20% (v/v) DMF and twice as stable in 40% DMF. Although the effects of single mutations can be impressive, a practical strategy for engineering enzymes that function in nonaqueous solvents will most likely require multiple changes in the amino acid sequence. These results demonstrate the excellent potential for engineering nonaqueous-solvent-compatible enzymes.  相似文献   

16.
蛋白质前体加工酶参与许多重要蛋白质闪体的加工成熟过程,哺乳动物来源的furin和酵母中的kexin是该家族的重要成员。首先人工合成了编码枯草杆菌蛋白酶抑制剂eglin C的基因片段,组装后在大肠杆菌中得到表达。以定点突变方法在野生型eglin C抑制活性中心的P1、P2和P4位引入碱性氨基酸残基可以将其改造为很强的furin抑制剂(Ki约10^-9mol/L),和kexin抑制剂(Ki约10^-11mol/L)。同时根据枯草杆菌蛋白酶和eglin C复合物的晶体结构,计算机同源模建了前体加工酶与eglin C突变体结构之间的相互作用,并结合实验数据得到以下结果:(1)P1位引入的碱性残基是该抑制剂活力的前提;(2)P4位碱性残基的引入可以极大地提高抑制剂活力约两个数量级;(3)P2 的碱性残基将有效提高抑制剂的活力。然而同时可以破坏抑制剂本身的稳定性。(4)野生型P3位的疏水性残基参与抑制剂活性环附近疏水核心的构成。  相似文献   

17.
精氨酸脱亚胺酶(arginine deiminase,EC 3.5.3.6,ADI)因其可作为精氨酸营养缺陷型肿瘤细胞的靶向治疗药物而受到广泛关注. 目前,支原体来源的重组ADI处于肝癌和黑素瘤的三期临床研究阶段. 作为药用酶,当前报道的ADI在体内生理条件下普遍存在酶活低、半衰期短、底物亲和性弱等局限性.本研究结合随机突变及基于理性设计的定点突变两种方法,对研究室前期自主筛选得到的变形假单胞菌Pseudomonas plecoglossicida来源的ADI经一轮定向进化后所获优势突变株M314(A128T/H404R/I410L)进行分子改造.通过对随机突变法获得的1480个突变株进行96孔板高通量筛选,得到优良突变株M173(A128T/H404R/I410L/K272R);同时,基于同源序列比对及ADI蛋白三维结构同源建模,采用PyMOL软件理性预测和分析其活性中心及附近保守区域氨基酸位点对蛋白功能的影响,选择了6个位点D78E、L223I、P230I、S245D、A275N、R400M分别在M314的基础上进行定点突变,最终获得优势突变株M04(A128T/H404R/I410L/S245D). 通过对突变株的酶学性质以及动力学参数分析发现:生理pH值下,突变株M173的酶比活(12.32 U/mg)在M314(9.02 U/mg)的基础上提升3659%,Kcat/Km提高5236%;而突变株M04的最适pH由6.5升高至7.0,更接近体内生理pH,其比酶活(14.66 U/mg)较M314提升62.53 %,Kcat/Km提高了37.12%. 综上结果,本研究结合两种分子改造方法成功地对该ADI在生理pH条件下的酶活和酶学性质进行了改良,并为蛋白质的分子改造策略提供了理论基础和实验依据.  相似文献   

18.
We developed a protocol for efficient expression of the functional serine protease, subtilisin E, in Escherichia coli periplasm that permits direct in vivo measurement of the enzyme's catalytic activity. Activity assays and SDS-PAGE/Western blot analysis showed that the levels of expressed subtilisin varied and were correlated with both the culture conditions and the induction procedures. The highest level of subtilisin expression was achieved at 0.10-0.15% (w/v) of arabinose as inducer and a temperature of 20-22 degrees C, and was ca. eightfold higher as compared to the expression level at 30 degrees C. Cultivation of bacterial cells to a steady state of balanced growth before induction was required for uniform subtilisin expression in cell cultures growing in wells of microtiter plates. Amidase and esterase cell-based kinetic assays on microtiter plates were developed based on the direct measurement of subtilisin activity in vivo. Intact E. coli cells displaying wild-type, dimethylformamide-resistant, and temperature-resistant subtilisins were assayed on N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide and N-acetyl-Phe-p-nitrophenyl ester for their amidase and esterase activity, respectively. Additionally, the periplasmic fractions were isolated from the three E. coli strains expressing the respective subtilisins and tested for amidase activity. The amidase activity of the three subtilisins was ca. 15-fold higher than the esterolytic activity when measured in both the intact cells and in the periplasmic fractions. The strategy combining periplasmic expression of subtilisins with two cell-based kinetic assays permits rapid screening of subtilisin mutant libraries for desired activities.  相似文献   

19.
A procedure has been developed for the isolation and identification of mutants in the bacterial serine protease subtilisin that exhibit enhanced thermal stability. The cloned subtilisin BPN' gene from Bacillus amyloliquefaciens was treated with bisulfite, a chemical mutagen that deaminates cytosine to uracil in single-stranded DNA. Strains containing the cloned, mutagenized subtilisin gene which produced subtilisin with enhanced thermal stability were selected by a simple plate assay procedure which screens for esterase activity on nitrocellulose filters after preincubation at elevated temperatures. One thermostable subtilisin variant, designated 7150, has been fully characterized and found to differ from wild-type subtilisin by a single substitution of Ser for Asn at position 218. The 7150 enzyme was found to undergo thermal inactivation at one-fourth the rate of the wild-type enzyme when incubated at elevated temperatures. Moreover, the mid-point in the thermally induced transition from the folded to unfolded state was found to be 2.4-3.9 degrees C higher for 7150 as determined by differential scanning calorimetry under a variety of conditions. The refined, 1.8-A crystal structures of the wild-type and 7150 subtilisin have been compared in detail, leading to the conclusion that slight improvements in hydrogen bond parameters in the vicinity of position 218 result in the enhanced thermal stability of 7150.  相似文献   

20.
Protein engineering techniques were used to construct a derivative of the serine protease subtilisin that ligates peptides efficiently in water. The subtilisin double mutant in which the catalytic Ser221 was converted to Cys (S221C) and Pro225 converted to Ala (P225A) has 10-fold higher peptide ligase activity and at least 100-fold lower amidase activity than the singly mutated thiolsubtilisin (S221C) that was previously shown to have some peptide ligase activity [Nakatsuka, T., Sasaki, T., & Kaiser, E.T. (1987) J. Am. Chem. Soc. 109, 3808-3810]. A 1.5-A X-ray crystal structure of an oxidized derivative of the double mutant (S221C/P225A) supports the protein design strategy in showing that the P225A mutation partly relieves the steric crowding expected from the S221C substitution, thus accounting for its improved catalytic efficiency. Stable and synthetically reasonable alkyl ester peptide substrates were prepared that rapidly acylate the S221C/P225A enzyme, and aminolysis of the resulting thioacyl-enzyme intermediate by various peptides is strongly preferred over hydrolysis. The efficiency of aminolysis is relatively insensitive to the sequence of the first two residues in the acyl acceptor peptide whose alpha-amino group attacks the thioacyl-enzyme. To obtain greater flexibility in the choice of coupling sites, a set of three additional peptide ligases were engineered by introducing mutations into the parent ligase (S221C/P225A) that were previously shown to change the specificity of subtilisin for the residue nearest the acyl bond (the P1 residue). The specificity properties of the parent ligase and derivatives of it paralleled those of wild type and corresponding specificity variants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号