首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatoprotective activity of 70% ethanolic extract of flowers of C. procera was studied against CCl4 induced hepatic injury in albino rats and mice. In addition, antioxidant activity was studied by in vitro models. Pre-treatment with 70% ethanolic extract (CPA) reduced the biochemical markers of hepatic injury like serum glutamate pyruvate transaminase, serum glutamate oxaloacetate transaminase, alkaline phosphatase, bilirubin, cholesterol, HDL and tissue glutathione (GSH) levels. Similarly pretreatment with CPA reduced the CCl4 induced elevation in the pentobarbitone sleeping time. Histopathological observations also revealed that pretreatment with CPA protected the animals from CCl4 induced liver damage. CPA demonstrated dose dependant reduction in the in vitro and in vivo lipid peroxidation induced by CCl4. In addition it showed dose dependant free radical scavenging activity. The results indicate that flowers of C. procera possess hepatoprotective property possibly because of its anti-oxidant activity. This property may be attributed to the quercetin related flavonoids present in the flowers of Calotropis procera.  相似文献   

2.
The effects of carbon tetrachloride (CCl4) and paraquat on the growth of Escherichia coli were investigated. Paraquat at 10 mM caused some inhibition of growth of E. coli in trypticase-soy-yeast extract medium. CCl4 enhanced growth inhibition by paraquat in a concentration-dependent manner. In the absence of paraquat, CCl4 had no effect on growth rate or on surviving cell numbers at stationary phase. CCl4 did not prevent the induction of manganese-superoxide dismutase by paraquat. Under anaerobic conditions, CCl4 and paraquat exhibited no effect on E. coli. In the presence of Mn(II) and paraquat, intracellular superoxide dismutase was markedly induced and protected E. coli against the toxicity of CCl4 and paraquat. The reactive free radical CCl3OO-, which can be formed from the reaction of O2- with CCl4, may cause cell damage. The growth-inhibiting effects of polyhalides in the presence of paraquat followed the order CBrCl3 greater than CCl4 greater than CHCl3 greater than CH2Cl2, which is in accord with that of the reaction rates of these compounds with O2- and with their hepatotoxicities. These results suggest that O2- plays a role in the hepatotoxicity of polyhalides.  相似文献   

3.
The effect of unbound palmitic acid (PA) at plasma physiological concentration range on reactive oxygen species (ROS) production by cultured rat skeletal muscle cells was investigated. The participation of the main sites of ROS production was also examined. Production of ROS was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. PA increased ROS production after 1 h incubation. A xanthine oxidase inhibitor did not change PA-induced ROS production. However, the treatment with a mitochondrial uncoupler and mitochondrial complex III inhibitor decreased superoxide production induced by PA. The importance of mitochondria was also evaluated in 1 h incubated rat soleus and extensor digitorum longus (EDL) muscles. Soleus muscle, which has a greater number of mitochondria than EDL, showed a higher superoxide production induced by PA. These results indicate that mitochondrial electron transport chain is an important contributor for superoxide formation induced by PA in skeletal muscle. Results obtained with etomoxir and bromopalmitate treatment indicate that PA has to be oxidized to raise ROS production. A partial inhibition of superoxide formation induced by PA was observed by treatment with diphenylene iodonium, an inhibitor of NADPH oxidase. The participation of this enzyme complex was confirmed through an increase of p47(phox) phosphorylation after treatment with PA.  相似文献   

4.
The ethyl ether extract of A. vulgaris inhibited in vitro microsomal lipid peroxidation (IC50 58.8 microg/ml) and showed moderate ability to scavenge superoxide radicals and to chelate iron ions. The extract (100 mg/kg body weight, po) decreased uninduced and enzymatic microsomal lipid peroxidation in the liver of male rats pretreated with CCl4 (1 ml/kg body weight) by 27 and 40%, respectively. Activity of antioxidant and related enzymes (catalase and glucose-6-phosphate dehydrogenase) inhibited by CCl4 was significantly restored after administration of the extract. The extract itself significantly enhanced superoxide dismutase activity. There was no effect of the extract on hepatic glutathione level and cytochrome P450 content, both were decreased by CCl4. Neither CCl4 nor the tested extract affected activities of NADPH-cytochrome P450 reductase and two monooxygenases, aniline hydroxylase and aminopyrine n-demethylase. It can be concluded that the protective effect of the A. vulgaris extract in CCl4-induced liver injury is mediated by inhibition of microsomal lipid peroxidation and restoring activity of some antioxidant and related enzymes.  相似文献   

5.
We studied effects of L-theanine, a unique amino acid in tea, on carbon tetrachloride (CCl(4))-induced liver injury in mice. The mice were pre-treated orally with L-theanine (50, 100 or 200 mg/kg) once daily for seven days before CCl(4) (10 ml/kg of 0.2% CCl(4) solution in olive oil) injection. L-theanine dose-dependently suppressed the increase of serum activity of ALT and AST and bilirubin level as well as liver histopathological changes induced by CCl(4) in mice. L-theanine significantly prevented CCl(4)-induced production of lipid peroxidation and decrease of hepatic GSH content and antioxidant enzymes activities. Our further studies demonstrated that L-theanine inhibited metabolic activation of CCl(4) through down-regulating cytochrome P450 2E1 (CYP2E1). As a consequence, L-theanine inhibited oxidative stress-mediated inflammatory response which included the increase of TNF-α and IL-1β in sera, and expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in livers. CCl(4)-induced activation of apoptotic related proteins including caspase-3 and PARP in mouse livers was also prevented by L-theanine treatment. In summary, L-theanine protects mice against CCl(4)-induced acute liver injury through inhibiting metabolic activation of CCl(4) and preventing CCl(4)-induced reduction of anti-oxidant capacity in mouse livers to relieve inflammatory response and hepatocyte apoptosis.  相似文献   

6.
The hepatotoxicity of CCl4 is mediated through its initial reduction by cytochrome P-450 to the CCl3.radical. This radical then damages important metabolic systems such as the ATP-dependent microsomal Ca2+ pump. Previous studies from our laboratory on isolated microsomes have shown that NADPH in the absence of toxic agents inhibits this pump. We have now found in in vitro incubations that CCl4 (0.5-2.5 mM) enhanced the NADPH-dependent inhibition of Ca2+ uptake from 28% without CCl4 to a maximum of 68%. These concentrations are in the range found in the livers and blood of lethally intoxicated animals (Dambrauskas, T., and Cornish, H. H. (1970) Toxicol. Appl. Pharmacol. 17, 83-97; Long, R.M., and Moore, L. (1988) Toxicol. Appl. Pharmacol. 92, 295-306) and are toxic to cultured hepatocytes (Long, R. M., and Moore, L. (1988) Toxicol. Appl. Pharmacol. 92, 295-306). The inhibition of Ca2+ uptake was due both to a decrease in the Ca2(+)-dependent ATPase and to an enhanced release of Ca2+ from the microsomes. The NADPH-dependent CCl4 inhibition was greater under N2 and was totally prevented by CO. GSH (1-10 mM) added during the incubation with CCl4 prevented the inhibition. This protection was also seen when the incubations were performed under nitrogen. When samples were preincubated with CCl4, the CCl4 metabolism was stopped, and then the Ca2+ uptake was determined; GSH reversed the CCl4 inhibition of Ca2+ uptake. This reversal showed saturation kinetics for GSH with two Km values of 0.315 and 93 microM when both the preincubation and the Ca2+ uptake were performed under air, and 0.512 and 31 microM when both were performed under nitrogen. Cysteine did not prevent the NADPH-dependent CCl4 inhibition of Ca2+ uptake. CCl4 increased lipid peroxidation in air, but no lipid peroxidation was seen under nitrogen. Lipid peroxidation was only modestly reversed by GSH. GSH did not remove 14C bound to samples preincubated with the 14CCl4. Although EDTA (100 microM) decreased the CCl4 inhibition, the metal-complexing agents deferoxamine (100 microM) and diethyldithiocarbamate (100 microM) had no effect on the inhibition of the pump. Similarly, the reactive oxygen scavengers catalase (65 micrograms/ml), superoxide dismutase (15 micrograms/ml), mannitol (10 mM), and dimethyl sulfoxide (50 mM) also had no effect. Our results suggest that the initial toxicity of CCl4 for the Ca2+ pump results from the metabolism of CCl4 to the CCl3. radical. This radical then directly oxidizes the Ca2+ pump, leading to decreased Ca2+ uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Extracts of Phellinus linteus (EPB), grown on germinated brown rice, protected rats from liver injury induced by carbon tetrachloride (CCl4). Peroxidation products in the liver were decreased to 10% by EPB. Catalase and superoxide dismutase activities were significantly decreased to 55% and 39% by CCl4 administration, but EPB blocked this effect, resulting in enzyme activities at control levels. Expression of cytochromeP450 2E1 (CYP2E1) protein was significantly decreased to 88% in CCl4-treated rats but remained at control levels when EPB was also administered. EPB did not affect the altered fatty acid composition induced by CCl4. The hepatoprotective effect of EPB may be mediated by EPB's prevention of CCl4-induced CYP2E1 degradation.  相似文献   

8.
G-6-Pase activity was investigated in the microsomal fraction from rat liver in the presence of carbon tetrachloride and/or propyl gallate (PG), reduced glutathione (GSH) and superoxide dismutase. Results obtained "in vitro" demonstrated that CCl4 induced a 60% inhibition of the microsomal enzyme activity. Moreover, a marked inhibition of G-6-Pase activity was found also when propyl gallate and reduced glutathione were added, at different concentrations, to incubation mixture. In addition, these drugs were unable to interfere with the dangerous effect exerted on the enzymatic activity by the haloalkane. Additional experiments carried out "in vivo" with propyl gallate produced evidence that intraperitoneal administration of the antioxidant was followed by a significant inhibition of G-6-Pase activity, while the damaging action of CCl4 was unaffected. Some possible explanations of these results are reported.  相似文献   

9.
CCl4-induced liver damage was modeled in monolayer cultures of rat primary hepatocytes with a focus on involvement of covalent binding of CCl4 metabolites to cell components and/or peroxidative damage as the cause of injury. (1) Covalent binding of 14C-labeled metabolites was detected in hepatocytes immediately after exposure to CCl4. (2) Low oxygen partial pressure increased the reductive metabolism of CCl4 and thus covalent binding. (3) [14C]-CCl4 was bound to lipids and to proteins throughout subcellular fractions. Binding occurred preferentially to triacylglycerols and phospholipids, with phosphatidylcholine containing the highest amount of label. (4) The lipid peroxidation potency of CCl4 revealed subtle differences compared to other peroxidative substances, viz., ADP-Fe3+ and cumol hydroperoxide, respectively. (5) CCl4, but not the other peroxidative substances, decreased the rate of triacylglycerol secretion as very low density lipoproteins. (6) The anti-oxidant vitamin E (alpha-tocopherol) blocked lipid peroxidation, but not covalent binding, and secretion of lipoproteins remained inhibited. (7) The radical scavenger piperonyl butoxide prevented CCl4-induced lipid peroxidation as well as covalent binding of CCl4 metabolites to cell components, and also restored lipoprotein metabolism. The results confirm that covalent binding of the CCl3* radical to cell components initiates the inhibition of lipoprotein secretion and thus steatosis, whereas reaction with oxygen, to form CCl3-OO*, initiates lipid peroxidation. The two processes are independent of each other, and the extent to which either process occurs depends on partial oxygen pressure. The former process may result in adduct formation and, ultimately, cancer initiation, whereas the latter results in loss of calcium homeostasis and, ultimately, apoptosis and cell death.  相似文献   

10.
The role of retinoic acid (RA) in liver fibrogenesis was previously studied in cultured hepatic stellate cells (HSCs). RA suppresses the expression of alpha2(I) collagen by means of the activities of specific nuclear receptors RARalpha, RXRbeta and their coregulators. In this study, the effects of RA in fibrogenesis were examined in carbon tetrachloride (CCl4) induced liver fibrosis in mice. Mice were treated with CCl4 or RA and CCl4, along side control groups, for 12weeks. RA reduced the amount of histologically detectable fibrosis produced by CCl4. This was accompanied by a attenuation of the CCl4 induced increase in alpha2(I) collagen mRNA and a lower (2-fold versus 3-fold) increase in liver hydroxyproline. Furthermore, RA reduced the levels of 3-nitrotyrosine (3-NT) protein adducts and thiobarbituric acid (TBA) reactive substance (TBARS) in the liver, which are formed as results of oxidative stress induced by CCl4 treatment. These in vivo findings support our previous in vitro studies in cultured HSC of the inhibitory effect of RA on type I collagen expression. The data also provide evidence that RA reduces CCl4 induced oxidative stress in liver, suggesting that the anti-fibrotic role of RA is not limited to the inhibition of type I collagen expression.  相似文献   

11.
The antioxidant potential of crude extracts and fractions from leaves of Ouratea parviflora, a Brazilian medicinal plant used for the treatment of inflammatory diseases, was investigated in vitro through the scavenging of radicals 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), hydroxyl radical (HO*), superoxide anion (O2*-), and lipid peroxidation in rat liver homogenate. The crude extract (CEOP) and hydro-alcoholic fraction (OP4) showed strong inhibitory activity toward lipid peroxidation induced by tert-butyl peroxide (IC50 = 2.3 +/- 0.2 and 1.9 +/- 0.1 microg/ml, respectively). The same products exhibited a strong concentration-dependent inhibition of deoxyribose oxidation (14.9 +/- 0.2 and 0.2 +/- 0.1 microg/ml, respectively), and also showed a considerable antioxidant activity against O2*- (87.3 +/- 0.1 and 73.1 +/- 0.4 microg/ml, respectively) and DPPH radicals (55.4 +/- 0.3 and 38.3 +/- 0.4 microg/ml, respectively). The protective effects of CEOP and OP4 were also studied in mouse liver. CCl4 significantly increased (by 90%) levels of lipid hydroperoxides, carbonyl protein content (64%), DNA damage index (133%), aspartate aminotransferase (261%), alanine aminotransferase (212%), catalase activity (23%), and also caused a decrease of 60% in GSH content. The results showed that CEOP and OP4 exerted cytoprotective effects against oxidative injury caused by CCl4 in rat liver, probably related to the antioxidant activity showed by the in vitro free radical scavenging property.  相似文献   

12.
Carbon tetrachloride (CCl4) is a known environmental biohazard, which induces lipid peroxidation (LPO) and oxidative damage in rat liver. In this study, the hepatoprotective effect of Gossypitrin, a flavonoid extracted from Hibiscus elatus S.W, was investigated against the CCl4-induced in vivo hepatotoxicity. The levels of malondialdehyde (MDA) were assayed as an index of LPO and the levels of catalase (CAT) activity as a biomarker of oxidative damage. Leakage of aspartate aminotransferase (ALT) and lactate dehydrogenase (LDH), liver weight/body weight ratio as well as morphological parameters were used as signs of hepatotoxicity. CCl4 (1 ml/kg), intraperitoneally injected into rats, caused increased MDA production and CAT activity, and also a significant ALT and LDH leakage as compared to levels of these constituents in the control group. Changes in morphology, including steatosis, cells forming balloon cells and necrosis were evaluated in the hepatotoxin-induced damage. Treatment of rats with Gossypitrin (3.98, 5.97 and 8.95 mg/kg) 2 h before and 2 h after CCl4 injection, protected hepatocytes against cell injury induced by CCl4 and its efficacy as an antioxidant was similar to vitamin E (used as a reference antioxidant). These results are consistent with the conclusion that the toxicity of CCl4 is due to LPO and the generation of reactive oxygen species (ROS), and that Gossypitrin's protective effects relate to its direct radical scavenging ability and other antioxidative processes induced by its structure.  相似文献   

13.
Haridradi ghrita, a ghee based polyherbal formulation, (50, 100, 200 and 300 mg/kg) significantly lowered marker enzymes (SGPT, SGOT, ALP) and bilirubin in serum and liver peroxide, superoxide dismutase and catalase in liver homogenate following CCl4 (0.7 ml/kg, ip) toxicity. The protective effect was further supported by reversal of CCl4 induced histological changes. The results demonstrate significant hepatoprotective action of H. ghrita in CCl4 damaged rats.  相似文献   

14.
NADPH oxidase is a major source of superoxide anions in the pulmonary arteries (PA). We previously reported that intratracheal SOD improves oxygenation and restores endothelial nitric oxide (NO) synthase (eNOS) function in lambs with persistent pulmonary hypertension of the newborn (PPHN). In this study, we determined the effects of the NADPH oxidase inhibitor apocynin on oxygenation, reactive oxygen species (ROS) levels, and NO signaling in PPHN lambs. PPHN was induced in lambs by antenatal ligation of the ductus arteriosus 9 days prior to delivery. Lambs were treated with vehicle or apocynin (3 mg/kg intratracheally) at birth and then ventilated with 100% O(2) for 24 h. A significant improvement in oxygenation was observed in apocynin-treated lambs after 24 h of ventilation. Contractility of isolated fifth-generation PA to norepinephrine was attenuated in apocynin-treated lambs. PA constrictions to NO synthase (NOS) inhibition with N-nitro-l-arginine were blunted in PPHN lambs; apocynin restored contractility to N-nitro-l-arginine, suggesting increased NOS activity. Intratracheal apocynin also enhanced PA relaxations to the eNOS activator A-23187 and to the NO donor S-nitrosyl-N-acetyl-penicillamine. Apocynin decreased the interaction between NADPH oxidase subunits p22(phox) and p47(phox) and decreased the expression of Nox2 and p22(phox) in ventilated PPHN lungs. These findings were associated with decreased superoxide and 3-nitrotyrosine levels in the PA of apocynin-treated PPHN lambs. eNOS protein expression, endothelial NO levels, and tetrahydrobiopterin-to-dihydrobiopterin ratios were significantly increased in PA from apocynin-treated lambs, although cGMP levels did not significantly increase and phosphodiesterase-5 activity did not significantly decrease. NADPH oxidase inhibition with apocynin may improve oxygenation, in part, by attenuating ROS-mediated vasoconstriction and by increasing NOS activity.  相似文献   

15.
Oxidative stress results in deleterious cell function in pathologies associated with inflammation. Here, we investigated the generation of superoxide anion as well as the anti-oxidant defense systems related to the isoforms of superoxide dismutases (SOD) in cystic fibrosis (CF) cells. Pro-apoptotic agents induced apoptosis in CF but not in control cells that was reduced by treatment with SOD mimetic. These effects were associated with increased superoxide anion production, sensitive to the inhibition of IκB-α phosphorylation, in pancreatic but not tracheal CF cells, and reduced upon inhibition of either mitochondrial complex I or NADPH oxidase. CF cells exhibited reduced expression, but not activity, of both Mn-SOD and Cu/Zn-SOD when compared to control cells. Although, expression of EC-SOD was similar in normal and CF cells, its activity was reduced in CF cells. We provide evidence that high levels of oxidative stress are associated with increased apoptosis in CFTR-mutated cells, the sources being different depending on the cell type. These observations underscore a reduced anti-oxidant defense mechanism, at least in part, via diminished EC-SOD activity and regulation of Cu/Zn-SOD and Mn-SOD expressions. These data point to new therapeutic possibilities in targeting anti-oxidant pathways to reduce oxidative stress and apoptosis in CF cells.  相似文献   

16.
Congenital cardiac defects associated with increased pulmonary blood flow (Q(p)) produce pulmonary hypertension. We have previously reported attenuated endothelium-dependent relaxations in pulmonary arteries (PA) isolated from lambs with increased Q(p) and pulmonary hypertension. To better characterize the vascular alterations in the nitric oxide-superoxide system, 12 fetal lambs underwent in utero placement of an aortopulmonary vascular graft (shunt). Twin lambs served as controls. PA were isolated from these lambs at 4-6 wk of age. Electron paramagnetic resonance spectroscopy on fourth-generation PA showed significantly increased superoxide anion generation in shunt PA that were decreased to control levels following inhibition of nitric oxide synthase (NOS) with 2-ethyl-2-thiopseudourea. Preconstricted fifth-generation PA rings were relaxed with a NOS agonist (A-23187), a nitric oxide donor [S-nitrosyl amino penicillamine (SNAP)], polyethylene glycol-conjugated superoxide dismutase (PEG-SOD), or H(2)O(2). A-23187-, PEG-SOD-, and H(2)O(2)-mediated relaxations were impaired in shunt PA compared with controls. Pretreatment with PEG-SOD significantly enhanced the relaxation response to A-23187 and SNAP in shunt but not control PA. Inhibition of NOS with nitro-L-arginine or scavenging superoxide anions with tiron enhanced relaxation to SNAP and inhibited relaxation to PEG-SOD in shunt PA. Pretreatment with catalase inhibited relaxation of shunt PA to A-23187, SOD, and H(2)O(2). We conclude that NOS catalyzes the production of superoxide anions in shunt PA. PEG-SOD relaxes shunt PA by converting these anions to H(2)O(2), a pulmonary vasodilator. The redox environment, influenced by the balance between production and scavenging of ROS, may have important consequences on pulmonary vascular reactivity in the setting of increased Q(p).  相似文献   

17.
The ability of two novel antioxidants, U-74,006F and U-78,517G, as well as the known antioxidant N,N'-diphenyl-p-phenylenediamine to inhibit lipid peroxidation induced by carbon tetrachloride (CCl4) was investigated in Aroclor 1254-induced rat hepatic microsomes. All three compounds completely inhibited lipid peroxidation in microsomes as measured by the formation of thiobarbituric acid reactive substances (TBARS). Inhibition of lipid peroxidation was not a function of decreased bioactivation of CCl4, as the compounds did not substantially inhibit benzphetamine N-demethylase activity or covalent binding of [14-C]CCl4 to lipid or protein. Parallel studies examined the hepatoprotective effects of the compounds in vivo. Rats were pretreated with antioxidant or vehicle prior to administration of CCl4 (300 or 600 microL/kg i.p.). Sera were collected 24 h postadministration of CCl4 and analyzed for alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities and total bilirubin. Administration of CCl4 produced elevations in ALT, moderate changes in bilirubin, and no change in ALP activities. Histological examination of CCl4-treated livers revealed lipidosis and centrilobular necrosis. The antioxidants partially improved the clinical chemistry parameters, but had minimal effects on the histological lesion. In contrast to the complete inhibition of lipid peroxidation observed in the in vitro studies, none of the antioxidants markedly protected against CCl4-induced toxicity in vivo.  相似文献   

18.
Phyllanthus niruri extract is extensively used in treating liver ailments. Effects of aqueous extract of P. niruri on liver, kidney and testes of CCl4 induced hepatotoxic rats were studied. High levels of malondialdehyde (MDA) were observed in the CCl4 test group with significant reduction of MDA levels in all groups on P. niruri extract administration. Highest levels of glutathione (GSH) were found in P. niruri group. Activities of alanine transaminase, aspartate transaminase and alkaline phosphatase enzymes were significantly reduced in the curative group (P. niruri treatment after CCl4 injection). Histopathology of liver showed lesser degree of inflammation in all P. niruri treated groups while the renal and seminiferous tubules showed eosinophilic protein casts with signs of tubular damage and degeneration. Testes also showed decreased amount of mature spermatozoa. The results suggest that P. niruri has anti-oxidant and hepato-protective activity with associated deleterious effects on kidney and testes.  相似文献   

19.
Hepatoprotective activity of hydroalcoholic extract of Luffa acutangula (HAELA) against carbon tetrachloride (CCl4) and rifampicin-induced hepatotoxicity in rats was evaluated and probable mechanism(s) of action has been suggested. Administration of standard drug- silymarin and HAELA showed significant hepatoprotection against CCl4 and rifampicin induced hepatotoxicity in rats. Hepatoprotective activity of HAELA was due to the decreased levels of serum marker enzymes viz., (AST, ALT, ALP and LDH) and increased total protein including the improvement in histoarchitecture of liver cells of the treated groups as compared to the control group. HAELA also showed significant decrease in malondialdehyde (MDA) formation, increased activity of non-enzymatic intracellular antioxidant, glutathione and enzymatic antioxidants, catalase and superoxide dismutase. Results of this study demonstrated that endogenous antioxidants and inhibition of lipid peroxidation of membrane contribute to hepatoprotective activity of HAELA.  相似文献   

20.
We tested a working hypothesis that stress genes and anti-oxidant enzyme machinery are induced by the organophosphate compound dichlorvos in a non-target organism. Third instar larvae of Drosophila melanogaster transgenic for hsp70 were exposed to 0.1 to 100.0 ppb dichlorvos and 5.0 mM CuSO(4) (an inducer of oxidative stress and stress genes) and hsp70, and activities of acetylcholinesterase (AchE), superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPO) product were measured. The study was further extended to examine tissue damage, if any, under such conditions. A concentration- and time-dependent increase in hsp70 and anti-oxidant enzymes was observed in the exposed organism as compared to control. A comparison of stress gene expression with SOD, CAT activities and LPO product under similar experimental conditions revealed that induction of hsp70 precedes the anti-oxidant enzyme activities in the exposed organism. Further, concomitant with a significant inhibition of AChE activity, significant induction of hsp70 was observed following chemical exposure. Mild tissue damage was observed in the larvae exposed to 10.0 ppb dichlorvos for 48 h when hsp70 expression reaches plateau. Dichlorvos at 0.1 ppb dietary concentration did not evoke significant hsp70 expression, anti-oxidant enzymes and LPO and AchE inhibition in the exposed organism, and thereby, was found to be non-hazardous to D. melanogaster. Conversely, 1.0 ppb of the test chemical stimulated a significant induction of hsp70 and anti-oxidant enzymes and significant inhibition of AchE; hence this concentration of test chemical was hazardous to the organism. The present study suggests that (a) both stress genes and anti-oxidant enzymes are stimulated as indices of cellular defense against xenobiotic hazard in D. melanogaster with hsp70 being proposed as first-tier bio-indicator of cellular hazard, (b) 0.1 ppb of the test chemical may be regarded as No Observed Adverse Effect Level (NOAEL), and 1.0 ppb dichlorvos as Low Observed Adverse Effect Level (LOAEL).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号