首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antioxidant enzymes (CAT, catalase; GPx, selenium nondependent glutathione peroxidase; GST, glutathione-S-transferase; GR, glutathione reductase; DHAR, dehydroascorbate reductase) were determined in the mitochondria of diapausing and non-diapausing larvae and pupae of both diapausing and non-diapausing larvae of the European corn borer (Ostrinia nubilalis, Hubn., Lepidoptera: Pyralidae). CAT, GST, and DHAR activity in mitochondria of diapausing larvae were reduced compared to non-diapausing larvae. Pupae of diapaused-larvae possessed lower GST, but higher DHAR activities compared to pupae of non-diapaused individuals. Comparison between larvae and pupae revealed lower GPx activity in the mitochondria of pupae. CAT activity in the mitochondria of pupae was higher compared to diapausing larvae, but lower than in non-diapausing ones. Correlation and canonical discriminant analyses revealed different antioxidant enzyme compositions for a particular stage and developmental pattern. Our results show that antioxidant enzymes have a similar role in the regulation of energetics in mitochondria as that in diapause and metamorphosis.  相似文献   

2.
Antioxidant (AO) system and lipid peroxidation (LP) in tissues of two species of the Black Sea bivalve mollusks Mytilus galloprovincialis and Anadara inaequivalvis were investigated. The activity of superoxide dismutase (SOD, 1.15.1.1), catalase (1.11.1.6), glutathione peroxidase (GP, 1.11.1.9), glutathione reductase (GR, 1.6.4.2), concentrations of reduced glutathione (GSH) and TBA-reactive products were determined in the foot, hepatopancreas and gills of mature mollusks. The characteristics of AO complex and LP products connected with tissue and species specificity of mollusks were found. Hepatopancreas of mussels has been found to have higher values of all characteristics investigated, except GP. The gills and the foot of anadara have been found to be involved in AO defense along with hepatopancreas: maximum activity of GR, catalase and SOD was found in the gills and the highest activity of GP and maximum level of GSH was observed in the foot. Anadara has been shown to have higher antioxidant potential and lower level of oxidative stress because the LP intensity in all tissues examined of the hemoglobin-containing mollusk was twice lower in comparison with the mussel.  相似文献   

3.
The changes in isozyme profiles of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR) during severe deactivation of total CAT activity by aminotriazole (AT) treatment were investigated in the leaves ofArabidopsis thaliana (Columbia ecotype) in relation to H2O2-mediated oxidative stress. In spite of striking deactivation of total CAT activity by 0.1 mM AT, there were no significant differences in H2O2 levels or total leaf soluble protein contents including a Rubisco in both the control and AT-treated leaves. On the other hand, one specific protein band (molecular mass, 66 kD) was observed on the SDS-gel from leaf soluble proteins whose staining intensity was strikingly enhanced by AT treatment for 6 h. However, this band disappeared at 12 h. In the native-gel assays of CAT, POD, APX and GR isozymes, AT remarkably inhibited the expression of the CAT1 isozyme with no effects on CAT2 and CAT3, and generally had no effect on POD isozyme profiles. However, AT stimulated the intensity of activities of pre-existing APX1 and GR1 isozymes. In particular, it induced a new synthesis of one GR isozyme. Therefore, these results collectively suggest that a striking deactivation of total CAT activity by AT inA. thaliana leaves largely results from the suppression of CAT1 isozyme, and that APX1, GR1, and a newly synthesized GR isozyme could complement the role of CAT1 to metabolize H2O2 into non-toxic water.  相似文献   

4.
The system of antioxidant (AO) defense and processes of lipid peroxidation (LP) of the Black Sea turbot Psetta (Scophtalmus) maxima maeotica (L., 1758) have been investigated during the spawning season. The activity of glutathione peroxidase (GP), glutathione reductase (GR), catalase and content of reduced glutathione (GSH) and TBA-reactive products have been determined in gonads, gills, liver, red and white muscles of males and females at different stages of gonad's maturity (V and VI stages). The peculiarities of AO complex and LP depended on tissue specificity and sexual distinctions of the turbot have been found. The turbot females at VI stage were found to have the most significant changes. In gonads and liver the level of TBA-reactive products decreased. In gonads the activities of GP and GR decreased, but the level of GSH increased. In gills of these females the activity of GP and the level of GSH increased, while in the red muscles the activity of catalase raised. In white muscles the activity of GR dropped. In the males' tissues of the turbot at VI stage the growth of the activity of GP in gills and GSH content in white muscles have been found. In all tissues of males the decrease of the TBA-reactive products content has been observed.  相似文献   

5.
There is a possible role of reactive oxygen species (SROS) in the complication of implants although there is presently little information. The aim of this study was to investigate the alterations in lipid peroxidation (LP) and antioxidant enzyme activities in tissues surrounding implants in rabbits. Thirty New Zealand albino male rabbits were used. They were randomly divided into five groups. The first group (I) was used as control. Groups II, III, IV and V were implanted with stainless steel, ceramic, titanium and polyethylene, respectively. One month after the administration of implant, the tissues surrounding the implant were carefully removed for antioxidant enzyme analysis. Glucose-6-phosphate dehydrogenase (G6PD), glutathione reductase (GR), superoxide dismutases (SOD), glutathione peroxidase (GPx), catalase (CAT) in tissues surrounding the implants in the groups II, III and IV were significantly (p<0.05-p<0.001) lower than in the control group although glutathione S-transferase (GST) activities and LP values were increased. CAT activity and LP level did not decrease in group V. In conclusion, these data demonstrate that there is an increase in lipid peroxidation in the tissues surrounding ceramic and titanium implants of animals whereas there is a decrease in antioxidant enzymes. Oxidative stress plays a very important role in the complications of ceramic and titanium implants. The polyethylene implant seems to be the best of the four implant materials tested.  相似文献   

6.
Experiments were carried out on three bread wheat varieties, one barley and one durum wheat variety grown in pots in the phytotron and subjected to water withdrawal for 7 days during grain-filling. Leaf water loss, net assimilation rate and transpiration showed marked differences, allowing the genotypes to be ranked. Although the most resistant variety had the highest activity for ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and glutathione-S-transferase (GST), which did not rise further in response to drought and the most susceptible variety had the lowest values, which increased to the greatest extent under drought, the level of sensitivity could not be predicted for all the genotypes from the enzyme activity values alone. The largest increases were recorded for the APX, CAT and GR activities. In most genotypes the GR activity was correlated with that of GST, CAT and APX. Changes in the enzyme activities were observed after a decline in transpiration and photosynthesis. The range of soil moisture values over which the antioxidant enzyme activity levels remained relatively unchanged was a better indication of tolerance to drought than either basic or stress-induced activity levels.  相似文献   

7.
Rice ( Oryza sativa L.) cv. Tulsi is recommended for Eastern India, for upland ecological cultivation systems where a crop experiences natural cycles of water deficit and water sufficiency, depending upon the monsoon rains. In this experiment, this cultivar was subjected to three cycles of water stress of increasing stress intensity. Each stress cycle was terminated by rewatering the plants for a 48-h period. The level of stress was measured by quantification of H2O2. The response of antioxidant metabolites such as ascorbate and glutathione, and enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2) and guaiacol peroxidase (POX, EC 1.11.1.7) was analysed in terms of activity and isozyme pattern for each cycle of stress and recovery. The differential response of the antioxidant enzymes with increasing stress intensity followed by recovery, highlight the different role of each in the drought acclimation process of upland rice. SOD and POX activity in stressed plants was higher than the controls in all the three cycles. The second level of stress saw an increase in all the enzymes with APX and GR showing its maximum activity and there was a better management of H2O2 levels. There was an induction of a new CAT isoform in stressed plants in the third cycle of water stress. The co-ordinated defense helped the plants to recover in terms of growth on rewatering after stress cycles.  相似文献   

8.
Physarum polycephalum has a life cycle with several distinct phases that have different oxidation-reduction requirements. To investigate the relationship between the life cycle and the oxidation-reduction state, we isolated glutathione reductase (GR; EC 1.6.4.2) from Physarum microplasmodia. The enzyme was found to be a homodimer with a subunit M(r) of 49,000, and K(m) values for oxidized glutathione and NADPH of 40 and 28.6 microM, respectively. We then constructed a cDNA library from microplasmodium mRNA and cloned GR cDNA from the library. The isolated cDNA consisted of 1,475 bp encoding a polypeptide of 452 amino acids. The amino acid sequence similarity was about 50% with GRs of other organisms, and several conserved sequence motifs thought to be necessary for activity are evident in the Physarum enzyme. Escherichia coli transformed with an expression vector containing the cDNA synthesized the active GR. Genomic Southern blot analysis indicated that the GR gene is present as a single copy in the Physarum genome. Immunoblot analysis and RT-PCR analysis detected GR mRNA expression in the microplasmodium, plasmodium, and sclerotium, but not in the spore or flagellate. GR activity was low in the spore and flagellate. These results suggest that the glutathione oxidation-reduction system relates to the Physarum life cycle.  相似文献   

9.
The activity of large dorsomedial protocerebral A2' neurosecretory neurons were investigated in late pupae of Tenebrio molitor L, which were exposed to a static magnetic field of 320 mT. Experimental groups were C: the control group which was kept at 5 meters from the magnet; CMF: pupae which were reared in control conditions and sacrificed on the eighth day of pupal stage (parents were kept in a magnetic field); and MF: pupae kept in a permanent magnetic field for eight days. Our results indicate the effects of a static magnetic field on the cytological characteristics and activity of large A2' neurosecretory neurons of Tenebrio molitor pupae.  相似文献   

10.
Benznidazole (BZN) is a nitroimidazole derivative which has a notable trypanocide activity, and it is the only drug used in Brazil and Argentina for the treatment of Chagas' disease. The drug in current use is thought to act, at least in part, by inducing oxidative stress within the parasite. Imidazolic compounds are involved in the production of reactive oxygen species (ROS). In order to evaluate the effect of BZN on ROS production and on the antioxidant status of the host, male rats were treated for different periods of time (2, 4, 6, 10 and 30 days) with 40 mg BZN/kg body weight. After treatment, biomarkers of oxidative stress such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), and also thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), total glutathione (TG) and oxidized glutathione (GSSG) concentrations, were measured in crude hepatic homogenates. Our results revealed that BZN is able to cause tissue damage as shown by increased TBARS content, inhibition of some antioxidants and induction of other antioxidants in a concentration- and time-dependent manner. The tissue damage measured as TBARS increased up to the 10th day of treatment. GST activity was inhibited during the BZN treatment. On the other hand, CAT and GR showed similar increased activities at the beginning, followed by decreased activities at the end of the treatment. After 30 days of treatment, GR activity remained low while CAT activity was high, compared to controls. The SOD activities remained unchanged throughout the experimental period. GSH showed lower values at the beginning of BZN treatment but the hepatic concentrations were enhanced at the end of the experimental period. Total glutathione showed a similar profile, and oxidized glutathione showed higher values in rats treated with BZN. In conclusion, these results indicate that, at therapeutic doses, BZN treatment elicits an oxidative stress in rat hepatocytes.  相似文献   

11.
El-Shahat KH  Kandil M 《Theriogenology》2012,77(8):1513-1518
The present study was designed to evaluate the changes in the concentrations of different antioxidants, such as glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT), in the follicular fluid collected from different follicular size categories in relation to stage of estrous cycle in buffaloes. In addition, malondialdehyde (MDA) as an indicator for lipid peroxidation was also estimated. Fifty pairs of buffalo ovaries were collected from a local slaughterhouse. Based on ovarian structures, the cycle was divided into follicular and luteal phase. The follicles on each pair were classified into three groups; small (≤3 mm), medium (4-9 mm) and large (≥10 mm). The concentrations of SOD, CAT, GSH, and GR in the follicular fluid of each group as well as MDA were estimated. Results indicated that there was a significant decrease (P < 0.05) in the average numbers of small follicles obtained at the follicular phase than those obtained at the luteal phase of the cycle. However, the mean numbers of the large sized follicles was significantly increased (P < 0.05) in the follicular phase than in the luteal phase. Large follicles obtained at the luteal phase had a significantly higher (P < 0.05) concentration of GSH than that obtained from small ones. A significant (P < 0.05) effect of follicular size on GR concentrations was observed. The concentration of SOD tended to be higher in large follicles obtained at the follicular phase than that collected at the luteal phase (56.7 ± 3.7 vs. 28.1 ± 6.7 U/mL, respectively). On the contrary, a significantly higher concentration (P < 0.05) of SOD was recorded in small follicles as compared with medium and large follicles collected at the luteal phase. CAT concentrations did not significantly differ among different follicular sizes between follicular and luteal phases as well as within each phase. Malondialdehyde concentration was significantly decreased (P < 0.05) in the follicular fluid obtained from small follicles collected at the follicular phase compared with those obtained at the luteal phase. In conclusion, the present study showed that the concentrations of enzymatic antioxidants except for CAT vary according to the follicle size and the stage of the estrous cycle suggesting their possible role in the process of follicular development during estrous cycle in buffaloes.  相似文献   

12.
AimsThe effect of telluroacetylenes a–d on pharmacological assays was investigated in vitro. A second objective of this study was to investigate the antioxidant action of compound b against the oxidative damage induced by sodium nitroprusside (SNP) in mouse brain.Main methodsIn in vitro experiments, lipid peroxidation (LP) and protein carbonyl (PC) levels and δ-aminolevulinate dehydratase (δ-ALA-D) activity were carried out in rat brain homogenate. The thiol peroxidase-like activity and DPPH radical scavenging of telluroacetylenes a–d were investigated. In in vivo experiments, mice received SNP (0.335 µmol per site) intra cerebroventricular (i.c.v.) thirty minutes after oral administration of telluroacetylene b (10 mg/kg). After 1 h, animals were euthanized. The levels of LP and δ-ALA-D, catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST) activities were carried out in mouse brain homogenate.Key findingsTelluroacetylenes a–d, at low μM range, reduced LP and PC levels in rat brain homogenate. Telluroacetylenes a–d showed effect of scavenging DPPH radicals. δ-ALA-D activity was inhibited by telloruacetylenes a–d, at high μM range, in rat brain homogenate. Brains of mice treated with SNP showed an increase in LP and the reduction in δ-ALA-D, GR and GST activities. Telluroacetylene b protected against the oxidative stress caused by SNP in brain of rats.SignificanceThe results support an antioxidant effect of telluroacetylenes a–d in vitro. Telluroacetylene b protected against oxidative damage caused by SNP in mouse brain, suggesting an antioxidant effect of this compound.  相似文献   

13.
The activity of glucose-6-phosphate dehydrogenase (G6PD) was studied in five brain areas of rats aged 5 to 90 days. The areas studied were: the olfactory bulb (OB), cortex, hippocampus, striatum and septum. The G6PD activity increased more than 2-fold from 5 to 90 days in the OB, while it was almost constant in the other areas. At every stage of development, the G6PD activity was significantly higher in the OB than in the other areas. The G6PD pattern was compared with 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR); glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) in order to find synergistic interactions among activities of these enzymes during development. Over the considered period, the activity of 6PGD increased significantly in the OB, while no significant difference in activity was detected in the other areas. GR increased significantly and progressively at each developmental stage in all areas. GPX showed a progressive increase in the OB, while in other areas a significant increase was detected at 90 days only. CAT and SOD showed a different and independent pattern which differred from the G6PD pattern. CAT showed the highest level of activity at 5 days then progressively decreased or was constant until 90 days; SOD had the highest value at 5 days, than it decreased at 10 days and increased from 10 to 90 days. In all areas, G6PD activity showed three electrophoretic bands, whose relative activity changed with development. At histochemical level, we found a marked G6PD activity in the periglomerular zone of the OB, which increased with age, while other areas showed a homogeneous staining. The present results demonstrate that G6PD activity increases in the OB during the developmental stages and there is a coordinated simultaneous activation of 6PGD, GPX and GR. It is likely that this enzyme induction increases the antioxidant defense of periglomerular cells that are subject to a rapid renewal and thus much more exposed to oxidant stress.  相似文献   

14.
以鲁中山地区的淡水三角涡虫卵囊、幼虫、成虫为材料,研究了涡虫在不同发育过程中3种抗氧化酶SOD、CAT、GSH-Px的活性变化.结果 表明,SOD在发育初期活性增长迅速,在幼虫孵出后活性略减,最后趋于稳定;CAT活性在卵囊阶段活性较低,从幼虫孵出后活性增长很快,并在成体中保持较高的活性;GSH-Px活性在卵囊时期活性较高,从幼虫孵出后活性降低,在成体中活性较低.  相似文献   

15.
16.
Wen B  Cai C  Wang R  Song S  Song J 《Protoplasma》2012,249(2):323-335
Cytological and physiological changes during cryopreservation were investigated in Livistona chinensis embryos excised 42 weeks after flowering. Both dehydration and freezing caused numerous cellular ultrastructural alterations. Dehydration seriously impaired plasma membrane integrity, while freezing caused a further increase in electrolyte leakage. Damage to cellular ultrastructure and plasmalemma integrity had an inverse relationship with water content in unfrozen embryos and a positive relationship in frozen embryos. Changes in activity of antioxidant enzymes differed during cryopreservation. Dehydration and freezing had little effect on superoxide dismutase activity, although these treatments greatly reduced embryo viability. Activity of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) changed only slightly during dehydration, but dehydration markedly decreased activity of ascorbate peroxidase (APX) and catalase (CAT). Freezing further decreased APX and GR activity but increased CAT activity in dehydrated samples. A novel DHAR isozyme was induced during the freeze–thaw cycle. Membrane lipid peroxidation was detected in the control embryos, and was promoted by both dehydration and freezing. The malondialdehyde (MDA) content in post-thaw embryos increased by a maximum of 30%. Thus, changes in viability of embryos were closely related to damage to cellular ultrastructure and plasmalemma integrity, but were not directly related to antioxidant activity nor MDA accumulation.  相似文献   

17.
Abstract

Benznidazole (BZN) is a nitroimidazole derivative which has a notable trypanocide activity, and it is the only drug used in Brazil and Argentina for the treatment of Chagas' disease. The drug in current use is thought to act, at least in part, by inducing oxidative stress within the parasite. Imidazolic compounds are involved in the production of reactive oxygen species (ROS). In order to evaluate the effect of BZN on ROS production and on the antioxidant status of the host, male rats were treated for different periods of time (2, 4, 6, 10 and 30 days) with 40 mg BZN/kg body weight. After treatment, biomarkers of oxidative stress such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), and also thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), total glutathione (TG) and oxidized glutathione (GSSG) concentrations, were measured in crude hepatic homogenates. Our results revealed that BZN is able to cause tissue damage as shown by increased TBARS content, inhibition of some antioxidants and induction of other antioxidants in a concentration- and time-dependent manner. The tissue damage measured as TBARS increased up to the 10th day of treatment. GST activity was inhibited during the BZN treatment. On the other hand, CAT and GR showed similar increased activities at the beginning, followed by decreased activities at the end of the treatment. After 30 days of treatment, GR activity remained low while CAT activity was high, compared to controls. The SOD activities remained unchanged throughout the experimental period. GSH showed lower values at the beginning of BZN treatment but the hepatic concentrations were enhanced at the end of the experimental period. Total glutathione showed a similar profile, and oxidized glutathione showed higher values in rats treated with BZN. In conclusion, these results indicate that, at therapeutic doses, BZN treatment elicits an oxidative stress in rat hepatocytes.  相似文献   

18.
Oxidative stress is considered to be implicated in the pathophysiology of breast cancers. In this study we investigated the level of oxidative stress and antioxidant (AO) status in the blood of breast cancer patients of different ages. The level of lipid hydroperoxides (LP) was measured in blood plasma and the activities of copper, zinc superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) enzymes, as well as the level of total glutathione (GSH) and CuZnSOD protein were measured in blood cells of breast cancer patients and age-matched healthy subjects. Our results showed that breast carcinoma is related to increase of lipid peroxidation in plasma with concomitant decrease of AO defense capacity in blood cells, which becomes more pronounced during aging of the patients. Suppression of CuZnSOD activity related to breast cancer is most likely caused by decreased de novo synthesis of this enzyme. Similar patterns of suppression in CuZnSOD and CAT activities related to aging were recorded both in controls and patients. Age-related decrease in CuZnSOD activity seems not to be caused by altered protein levels of this enzyme. Suppression of AO enzymes associated with breast cancer and aging is most likely the cause of increased levels of reactive oxygen species (ROS). Our results indicate significant role of oxidative-induced injury in the breast carcinogenesis, particularly during the later stages of aging. Overall, our data support the importance of endogenous AOs in the etiology of breast cancer across all levels of predicted risk.  相似文献   

19.
Changes in H2O2 and the main antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR), in endospermic and embryonic tissues were studied in developing and artificially dried Jatropha curcas seeds. Immature seeds were desiccation-tolerant at 80 days after flowering, as they were able to germinate fully after artificial drying on silica gel had reduced their water content to 10–12% of fresh weight. In both endospermic and embryonic tissues, H2O2 level and, consequently, lipid peroxide content, decreased during seed development as well as after artificial dehydration of developing seeds. All examined antioxidant enzymes except DHAR showed a decrease in total activity in mature stages as compared with early stages. Expression analysis of SOD genes revealed that the decrease in total SOD activities was related to the decrease in Cu/Zn-SOD expression, while the continuous activity of SOD during maturation was related to an increase in Mn-SOD expression. Artificial drying resulted in increased SOD and DHAR activity, irrespective of the developmental stage. Our results revealed weak participation of CAT and APX in H2O2 scavenging, as well as no significant alterations in GR activities either during maturation or after artificial drying. Changes in SOD and GR isoenzyme patterns occurred during maturation-related drying, but not after artificial drying. These results highlight the role of ascorbate-glutathione cycle enzymes (DHAR and GR) in H2O2 scavenging during maturation or after artificial drying of developing J. curcas seeds.  相似文献   

20.
ABSTRACT

Diel rhythm in activity of antioxidant enzymes, as well as contents of glutathione and lipid peroxides, has been intensively investigated in Mammalia and Aves, however, the relevant studies about fish are few. In the present study, we examined variation in contents of cortisol, glucose and lactic acid in plasma of black sea bass Centropristis striata under natural photoperiod during a 24-h period. In addition, variation in activity of antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) and glutathione reductase (GR) as well as contents of total glutathione (T-GSH), reduced glutathione (GSH), oxidized glutathione (GSSG) and malondialdehyde (MDA) in liver and plasma of the fish were also determined. The plasma and liver samples were collected from the test fish at 3 h intervals during a 24-h cycle, with the first sampling time set at 03:00 h. No significant differences were found in glucose content and activities of GSH-PX and GR in plasma, as well as activities of SOD and GR in liver among different sampling times. In contrast, apparent variation was observed in contents of cortisol, lactic acid and MDA in plasma, activities of SOD and CAT in plasma, contents of MDA, T-GSH, GSH and GSSG in liver and activities of GSH-PX and CAT in liver between different sampling times. Moreover, contents of cortisol and MDA in plasma, SOD activity in plasma, and contents of MDA, GSH and GSSG in liver exhibited circadian rhythm, and their acrophases occurred at 06:08 h, 18:38 h, 15:09 h, 09:57 h, 23:36 h and 07:30 h, respectively. The present study indicates that some physiological parameters relating to stress response, such as cortisol and MDA contents in plasma, MDA, GSH and GSSG contents in liver and SOD activity in plasma changed at different time throughout a day in black sea bass. Therefore, caution should be taken when evaluating stress response in fish with these physiological parameters measured at different times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号