首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 566 毫秒
1.
Angiotensin II is a major regulatory peptide for proximal tubule Na(+) reabsorption acting through two distinct receptor subtypes: AT(1) and AT(2). Physiological or pathological roles of AT(2) have been difficult to unravel because angiotensin II can affect Na(+) transport either directly via AT(2) on luminal or peritubular plasma membranes of proximal tubule cells or indirectly via the renal vasculature. Furthermore, separate systemic and intratubular renin-angiotensin systems impart considerable complexity to angiotensin's regulation. A transport-competent, proximal tubule cell model that lacks AT(2) is a potentially useful tool to assess cellular angiotensin II regulation. To this end, AT(2)-receptor-deficient mice were bred with an Immortomouse, which harbors the thermolabile immortalization gene SV40 large-T antigen (Tag), and AT(2)-receptor-deficient [AT(2) (-/-)], Tag heterozygous [Tag (+/-)] F(2) offspring were selected for cell line generation. S1 proximal tubule segments were microdissected, and epithelial cell outgrowth was expanded in culture. Cells that formed confluent, electrically resistive monolayers were selected for cryopreservation, and one isolate was extensively characterized for conductance (2 mS/cm(2)), short-circuit current (Isc; 0.2 microA/cm(2)), and proximal tubule-specific Na3(+) - succinate (DeltaIsc = 0.8 microA/cm(2) at 2 mM succinate) and Na3(+) - phosphate cotransport (DeltaIsc = 3 microA/cm(2) at 1 mM phosphate). Light microscopy showed a uniform, cobblestone-shaped monolayer with prominent cilia and brush borders. AT(2) receptor functionality, as demonstrated by angiotensin II inhibition of ANF-stimulated cGMP synthesis, was absent in AT(2)-deficient cells but prominent in wild-type cells. This transport competent cell line in conjunction with corresponding wild type and AT(1)-deficient lines should help explain angiotensin II signaling relevant to Na(+) transport.  相似文献   

2.
Growth factor receptors activate tyrosine kinases and undergo endocytosis. Recent data suggest that tyrosine kinase inhibition can affect growth factor receptor internalization. The type 1 angiotensin II receptor (AT1R) which is a G-protein-coupled receptor, also activates tyrosine kinases and undergoes endocytosis. Thus, we examined whether tyrosine kinase inhibition affected AT1R internalization. To verify protein tyrosine phosphorylation, both LLCPKCl4 cells expressing rabbit AT1R (LLCPKAT1R) and cultured rat mesangial cells (MSC) were treated with angiotensin II (Ang II) [1-100 nM] then solubilized and immunoprecipitated with antiphosphotyrosine antisera. Immunoblots of these samples demonstrated that Ang II stimulated protein tyrosine phosphorylation in both cell types. Losartan [1 microM], an AT1R antagonist, inhibited Ang II-stimulated protein tyrosine phosphorylation. LLCPKAT1R cells displayed specific 125I-Ang II binding at apical (AP) and basolateral (BL) membranes, and both AP and BL AT1R activated tyrosine phosphorylation. LLCPKAT1R cells, incubated with genistein (Gen) [200 microM] or tyrphostin B-48 (TB-48) [50 microM], were assayed for acid-resistant specific 125I-Ang II binding, a measure of Ang II internalization. Both Gen (n = 7) and TB-48 (n = 3) inhibited AP 125I-Ang II internalization (80+/-7% inhibition; p<0.025 vs. control). Neither compound affected BL internalization. TB-1, a non-tyrosine kinase-inhibiting tyrphostin, did not affect AP 125I-Ang II endocytosis (n = 3), suggesting that the TB-48 effect was specific for tyrosine kinase inhibition. Incubating MSC with Gen (n = 5) or herbimycin A [150 ng/ml] (n = 4) also inhibited MSC 125I-Ang II internalization (82+/-11% inhibition; p<0.005 vs. control). Thus, tyrosine kinase inhibition prevented Ang II internalization in MSC and selectively decreased AP Ang II internalization in LLCPKAT1R cells suggesting that AP AT1R in LLCPKAT1R cells and MSC AT1R have similar endocytic phenotypes, and tyrosine kinase activity may play a role in AT1R internalization.  相似文献   

3.
The renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS) each encompasses a large number of molecules, with several participating in both systems. The RAS generates a family of bioactive angiotensin peptides with varying biological activities. These include angiotensin-(1-8) (Ang II), angiotensin-(2-8) (Ang III), angiotensin-(3-8) (Ang IV), and angiotensin-(1-7) [Ang-(1-7)]. Ang II and Ang III act on type 1 (AT(1)) and type 2 (AT(2)) angiotensin receptors, whereas, Ang IV and Ang-(1-7) act on their own receptors. The KKS also generates a family of bioactive peptides with varying biological activities. These include hydroxylated and non-hydroxylated bradykinin and kallidin peptides and their carboxypeptidase metabolites des-Arg(9)-bradykinin and des-Arg(10)-kallidin. Whereas bradykinin and kallidin act mainly via the type 2 bradykinin (B(2)) receptor, des-Arg(9)-bradykinin and des-Arg(10)-kallidin act mainly via the type 1 bradykinin (B(1)) receptor. The AT(1) receptor forms heterodimers with the AT(2) and B(2) receptors and there is cross talk between the AT(1) and epidermal growth factor receptors. The B(2) receptor also interacts with angiotensin converting enzyme and nitric oxide synthase. Both angiotensin and kinin peptides are metabolised by many different peptidases that are important determinants of the activities of the RAS and KKS, and several of which participate in both systems.  相似文献   

4.
5.
The present study investigates the importance of the amino acid side chains in the octapeptide angiotensin II (Ang II) for binding to the AT2 receptor. A Gly scan was performed where each amino acid in Ang II was substituted one-by-one with glycine. The resulting set of peptides was tested for affinity to the AT2 receptor (porcine myometrial membranes). For a comparison, the peptides were also tested for affinity to the AT1 receptor (rat liver membranes). Only the substitution of Arg2 reduced affinity to the AT2 receptor considerably (92-fold when compared with Ang II). For the other Gly-substituted analogues the affinity to the AT2 receptor was only moderately affected. To further investigate the role of the Arg2 side chain for receptor binding, we synthesized some N-terminally modified Ang II analogues. According to these studies a positive charge in the N-terminal end of angiotensin III [Ang II (2-8)] is not required for high AT2 receptor affinity but seems to be more important in Ang II. With respect to the AT1 receptor, [Gly2]Ang II and [Gly8]Ang II lacked binding affinity (Ki > 10 microM). Replacement of the Val3 or Ile5 residues with Gly produced only a slight decrease in affinity. Interestingly, substitution of Tyr4 or His6, which are known to be very important for AT1 receptor binding, resulted in only 48 and 14 times reduction in affinity, respectively.  相似文献   

6.
Ang-(1-7) is an effector peptide of the renin-angiotensin system with several distinct actions that are likely mediated by a specific receptor. Regulatory effects of angiotensin (Ang) peptides, Ang-(1-7) and Ang II, on Ang receptor subtype 1 (AT1) mRNA expression were investigated in vascular smooth muscle cells (VSMC) from four University of Akron (Akr) rat strains (WKY, SHR and two backcross consomic lines SHR/y and SHR/a), and in SHR and WKY cells from Charles River Laboratories (Crl). In WKY/Akr and SHR/Akr, Ang-(1-7) treatment increased the levels of AT1 mRNA. This effect was inhibited by the specific Ang-(1-7) antagonist, A-779, in WKY/Akr but not SHR/Akr. Ang II had no effect in Akr cells, but it down-regulated AT1 mRNA in WKY/Crl and SHR/Crl VSMC. Ang-(1-7) did not affect AT1 mRNA levels in Crl lines. In conclusion, Ang-(1-7) regulates the AT1 receptor either directly or indirectly in a strain-specific fashion. The Ang-(1-7) antagonist, A-779, blocks the actions of Ang-(1-7) only in VSMC from WKY/Akr rats, suggesting either that the binding sites for Ang-(1-7) have different properties in SHR/Akr and WKY/Akr cell lines, or that some of the effects of Ang-(1-7) are not receptor mediated. Further, we found differences between Akr cells and Crl cells that are consistent with their genetic heterogeneity.  相似文献   

7.
The CNS renin-angiotensin system   总被引:4,自引:0,他引:4  
The renin-angiotensin system (RAS) is one of the best-studied enzyme-neuropeptide systems in the brain and can serve as a model for the action of peptides on neuronal function in general. It is now well established that the brain has its own intrinsic RAS with all its components present in the central nervous system. The RAS generates a family of bioactive angiotensin peptides with variable biological and neurobiological activities. These include angiotensin-(1–8) [Ang II], angiotensin-(3–8) [Ang IV], and angiotensin-(1–7) [Ang-(1–7)]. These neuroactive forms of angiotensin act through specific receptors. Only Ang II acts through two different high-specific receptors, termed AT1 and AT2. Neuronal AT1 receptors mediate the stimulatory actions of Ang II on blood pressure, water and salt intake, and the secretion of vasopressin. In contrast, neuronal AT2 receptors have been implicated in the stimulation of apoptosis and as being antagonistic to AT1 receptors. Among the many potential effects mediated by stimulation of AT2 are neuronal regeneration after injury and the inhibition of pathological growth. Ang-(1–7) mediates its antihypertensive effects by stimulating the synthesis and release of vasodilator prostaglandins and nitric oxide and by potentiating the hypotensive effects of bradykinin. New data concerning the roles of Ang IV and Ang-(1–7) in cognition also support the existence of complex site-specific interactions between multiple angiotensins and multiple receptors in the mediation of important central functions of the RAS. Thus, the RAS of the brain is involved not only in the regulation of blood pressure, but also in the modulation of multiple additional functions in the brain, including processes of sensory information, learning, and memory, and the regulation of emotional responses.  相似文献   

8.
The aim of the present work was to study the effect of angiotensin II (Ang II) on catecholamines and neuropeptide Y (NPY) release in primary cultures of human adrenal chromaffin cells. Ang II stimulates norepinephrine (NE), epinephrine (EP) and NPY release from perifused chromaffin cells by 3-, 2- and 12-fold, respectively. The NPY release is more sustained than that of catecholamines. We found that the receptor-AT(2) agonist, T(2)-(Ang II 4-8)(2) has no effect on NE, EP and NPY release from chromaffin cells. We further showed that Ang II increases intracellular Ca(2+) concentration ([Ca(2+)](i)). The selective AT(1)-receptor antagonist Candesartan blocked [Ca(2+)](i) increase by Ang II, while T(2)-(Ang II 4-8)(2) was ineffective. These findings demonstrate that AT(1) stimulation induces catecholamine secretion from human adrenal chromaffin cells probably by raising cytosolic calcium.  相似文献   

9.
Previously, we showed that uterine arteries from late gestation pregnant ewes infused intravenously with angiotensin II (Ang II) for 24 h, displayed heightened responsiveness to Ang II in vitro. Furthermore, we found that a small population of ewes with a "preeclampsia-like" disorder also displayed this. Therefore, we have investigated the density and affinity of Ang II receptor subtypes in the uterine arteries from these groups. Ang II receptor binding was measured using 125I [Sar1Ile8] Ang II. Proportions of AT1 and AT2 receptors were determined by inhibiting 125I [Sar1Ile8] Ang II with losartan (AT1 antagonist) or PD 123319 (AT2 antagonist). Uterine arteries from 24-h Ang II-infused ewes had a lower proportion of AT2 receptors (56.2+/-2.3%) than control (saline-infused) ewes (84.1+/-1.0%; P<0.05). The density of AT2 receptors was reduced (P<0.05) while the density of AT1 receptors was not different. Thus, 24-h infusions of Ang II selectively down-regulated AT2 receptors in the uterine artery, resulting in heightened Ang II reactivity. By contrast, the binding properties of Ang II receptor subtypes in uterine arteries from ewes with the "preeclampsia-like" disorder were not different from control ewes.  相似文献   

10.
N-(2-Mercaptoethyl)glycine [NMGly] was incorporated into the 3 and 5 positions of angiotensin II and oxidized to give the corresponding cyclized disulfide c[NMGly(3,5)]Ang II. The binding affinity to the angiotensin II receptor (AT(1)) of this conformationally constrained analogue, which is related to the potent Ang II agonist c[Hcy(3,5)]Ang II, was examined. The analogue had no affinity to the AT(1) receptor. Theoretical conformational analysis was performed to compare the conformational characteristics of model compounds of c[Hcy(3,5)]Ang II and the frame shifted analogue c[NMGly(3,5)]Ang II in an attempt to explain the lack of affinity.  相似文献   

11.
We aimed to clarify responsiveness to angiotensin (Ang) II in the porcine basilar artery and the role of Ang II receptor subtypes by functional, radioligand binding, and cell culture studies. Ang II induced more potent contractions in the proximal part than in the distal part of isolated porcine basilar arteries. The contraction induced by Ang II was inhibited by the Ang II type 1 (AT1) receptor antagonist losartan, but the Ang II type 2 (AT2) receptor antagonist PD123319 enhanced it. After removal of the endothelium, the effect of losartan remained but the effect of PD123319 was abolished. The specific binding site of [3H]Ang II on the smooth muscle membrane was inhibited by losartan, but not by PD123319. Stimulation of angiotensin II increased nitric oxide (NO) production in cultured basilar arterial endothelial cells. This production was inhibited by PD123319 and the NO synthase inhibitor L-NG-nitroarginine. These results suggest that the contraction induced by Ang II might be mediated via the activation of AT1 receptors on the basilar arterial smooth muscle cells and be modulated via the activation of AT2 receptors on the endothelial cells, followed by NO production.  相似文献   

12.
13.
Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stem (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT(1)R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression. Treatment with Ang II enhanced the phosphorylation of p38 MAPK in Col IV- exposed iPS cells. These results suggest that the stimulation of mouse iPS cells with AT(1)R may enhance LIF-induced DNA synthesis, by augmenting the generation of superoxide and activating JAK/STAT3, and that AT(1)R stimulation may enhance Col IV-induced differentiation into mesodermal progenitor cells via p38 MAPK activation.  相似文献   

14.
The aims of the present study are to investigate the presence and distribution of angiotensin II (Ang II), as well as AT1 and AT2 receptors, in endocardial endothelial cells (EECs) and to determine if the effect of Ang II on intracellular calcium in these cells is mediated via the AT1 or the AT2 receptor. Immunofluorescence and 3D confocal microscopy techniques were used on 20-week-old fetal human EECs. Our results showed that Ang II and its receptors, the AT1 and the AT2 types, are present and exhibit a different distribution in human EECs. Ang II labelling is found throughout the cell with a fluorescence signal higher in the cytosol when compared with the nucleus. Like Ang II, the AT1 receptor fluorescence signal is also homogeneously distributed in human EECs but with a preferential labelling at the level of the nucleus, while the AT2 receptor labelling is solely present in the nucleus. Using fluo-3 and 3D confocal microscopy technique, superfusion of human EECs with increasing concentration of Ang II induced a dose-dependent sustained increase in free cytosolic and nuclear Ca2+ levels. This effect of Ang II on human EEC's intracellular Ca2+ ([Ca2+]) was completely prevented by losartan, an AT1 receptor antagonist. Our results suggest that Ang II, as well as AT1 and AT2 receptors, is present but differentially distributed in EECs of 20-week-old fetal human hearts, and that the AT1 receptor mediates the effects of Ang II on [Ca2+]i in these cells.  相似文献   

15.
16.
We investigated the effects of the vasoconstrictor angiotensin (Ang) II on the whole cell inward rectifier K(+) (Kir) current enzymatically isolated from small-diameter (<100 microm) coronary arterial smooth muscle cells (CASMCs). Ang II inhibited the Kir current in a dose-dependent manner (half inhibition value: 154 nM). Pretreatment with phospholipase C inhibitor and protein kinase C (PKC) inhibitors prevented the Ang II-induced inhibition of the Kir current. The PKC activator reduced the Kir currents. The inhibitory effect of Ang II was reduced by intracellular and extracellular Ca(2+) free condition and by G?6976, which inhibits Ca(2+)-dependent PKC isoforms alpha and beta. However, the inhibitory effect of Ang II was unaffected by a peptide that selectively inhibits the translocation of the epsilon isoform of PKC. Western blot analysis confirmed that PKCalpha, and not PKCbeta, was expressed in small-diameter CASMCs. The Ang II type 1 (AT(1))-receptor antagonist CV-11974 prevented the Ang II-induced inhibition of the Kir current. From these results, we conclude that Ang II inhibits Kir channels through AT(1) receptors by the activation of PKCalpha.  相似文献   

17.
Oxidative stress and hyper-functioning of angiotensin II receptor type I (AT(1)R) are commonly observed in hypertensive patients but the relationship between oxidative stress and AT(1)R function is still unclear. We investigated the effects of H(2)O(2) treatment on AT(1)R-mediated intracellular calcium [Ca(2+)](i) signaling and its cell surface distribution pattern in HEK cells stably expressing EGFP-tagged rat AT(1)R using image correlation spectroscopy (ICS). Following H(2)O(2) treatment (50-800μM), [Ca(2+)](i) was significantly increased upon angiotensin II stimulation. Similarly ICS revealed a significant increase in degree of AT(1)R aggregation in H(2)O(2) treated group during Ang II activation but no difference in cluster density compared with untreated control cells or those with N-acetyl cysteine pretreatment. Thus, oxidative stress-induced AT(1)R hyper-responsiveness can be attributed by an increase in cell surface receptor aggregation state, possibly stemming in part from oxidant-related increase receptor-receptor interactions.  相似文献   

18.
Central administration of losartan effectively blocked the increase of blood pressure and drinking response induced by angiotensin II (Ang II) or carbachol. However, the relationship between angiotensin AT(1) receptors and the natriuresis induced by brain cholinergic stimuli is still not clear. The purpose of the study is to reveal the role of brain angiotensin AT(1) receptor in the carbachol-induced natriuresis and expression of neuronal nitric oxide synthase (nNOS) in the locus coeruleus (LC) and proximal convoluted tubule (PCT). Our results indicated that 40 min after intracerebroventricular (ICV) injection of carbachol (0.5 microg), urinary sodium excretion was significantly increased to 0.548+/-0.049 micromol x min(-1) x 100 g(-1). Immunohistochemistry showed that carbachol induced an increase of neuronal nitric oxide synthase immunoreactivity (nNOS-IR) in the LC and renal proximal tubular cells. After pretreatment with losartan (20 microg), carbachol-induced urinary sodium excretion was reduced to 0.249+/-0.067 micromol x min(-1) x 100 g(-1). The same was true for carbachol-induced increase of nNOS-IR in the LC and PCT. The present data suggest that ICV cholinergic stimulation could induce a natriuresis and upregulate the activity of nNOS in the LC and PCT. The blockade of AT(1) receptors might downregulate the effects induced by carbachol in the LC and PCT. Consequently, we provide a new evidence that brain angiotensinergic pathway and NO-dependent neural pathway contribute to the natriuresis following brain cholinergic stimulation and thus play an important role in the regulation of fluid homeostasis. Furthermore, the final effect of nitric oxide on proximal tubular sodium reabsorption participated in the natriuresis induced by brain cholinergic stimulation.  相似文献   

19.
Proliferation plays a critical role in tumor growth when cell migration is essential to invasion. The effect of Ang III and Ang II was evaluated on these important processes. Changes in the migration potential of prostate cancer cells were investigated using Wound Healing Test and a Transwell Migration Chamber with a 3μm pore size. Cell proliferation was measured with a BrdU Assay and Countess Automated Cell Counter, thus determining the influence of angiotensins on hormone-dependent (LNCaP) and hormone-independent (DU-145) human prostate cancer lines. The influence of Ang III and Ang II on classic receptors may be inhibited by Losartan or PD123319. Test peptide modulation of the AT1 and AT2 receptors was examined by Western Blot and fluorescent immunocytochemistry. The results indicate that Ang III promotes the migration of both LNCaP and DU-145 lines, whereas Ang II stimulates this process only in androgen-independent cells. Both angiotensin peptides can induce prostate cancer cell proliferation in a time- and dose-dependent manner. The obtained results show that Ang III and Ang II can modify the expression of classic receptors, particularly AT2. These results suggest that the investigated peptide can modulate cell migration and proliferation in prostate cancer cells. Angiotensins probably have a greater influence on proliferation in the early-stage prostate cancer model than hormone-independent cell lines. Assume also that Ang II can enhance the migration tendency aggressive prostate cancer cells, while Ang III does so more effective in non-metastatic cells.  相似文献   

20.
Kumar V  Knowle D  Gavini N  Pulakat L 《FEBS letters》2002,532(3):379-386
Increase in the intracellular inositol triphosphate (IP3) levels in Xenopus oocytes in response to expression and activation of rat angiotensin II (Ang II) receptor AT1 was inhibited by co-expression of rat AT2 receptor. To identify which region of the AT2 was involved in this inhibition, ability of three AT2 mutants to abolish this inhibition was analyzed. Deletion of the C-terminus of the AT2 did not abolish this inhibition. Replacing Ile249 in the third intracellular loop (3rd ICL) of the AT2 with proline, corresponding amino acid in the AT1, in the mutant M6, resulted in slightly reduced affinity to [125I]Ang II (K(d)=0.259 nM), however, did not abolish the inhibition. In contrast, replacing eight more amino acids in the 3rd ICL of the AT2 (at positions 241-244, 250-251 and 255-256) with that of the AT1 in the mutant M8, not only increased the affinity of the AT2 receptor to [125I]Ang II (K(d)=0.038 nM) but also abolished AT2-mediated inhibition. Interestingly, activation of the M8 by Ang II binding also resulted in increase in the intracellular IP(3) levels in oocytes. These results imply that the region of the 3rd ICL of AT2 spanning amino acids 241-256 is sufficient for the AT2-mediated inhibition of AT1-stimulated IP3 generation. Moreover, these nine mutations are also sufficient to render the AT2 with the ability to activate phospholipase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号