首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The vestigial plastid genome of Epifagus virginiana (beechdrops), a nonphotosynthetic parasitic flowering plant, is functional but lacks six ribosomal protein and 13 tRNA genes found in the chloroplast DNAs of photosynthetic flowering plants. Import of nuclear gene products is hypothesized to compensate for many of these losses. Codon usage and amino acid usage patterns in Epifagus plastic genes have not been affected by the tRNA gene losses, though a small shift in the base composition of the whole genome (toward A + T -richness) is apparent. The ribosomal protein and tRNA genes that remain have had a high rate of molecular evolution, perhaps due to relaxation of constraints on the translational apparatus. Despite the compactness and extensive gene loss, one translational gene (infA, encoding initiation factor 1) that is a pseudogene in tobacco has been maintained intact in Epifagus.Offprint requests to: J.D. Palmer  相似文献   

2.
3.
Summary The in vivo fragmentation of the plastid rRNA from plants situated at different places in the evolutionary scale, with the exception ofAlgae, was analysed by electrophoresis using fully denaturing conditions. This fragmentation corresponds to an in vivo post-maturation. It exists only in some bacteria and is not random. Five main groups of fragments with the following real molecular weights (Mr) are found in 23 S:ca 0.9 × 106; 0.7 × 106; 0.45 × 106; 0.35 × 106 and 0.15 × 106. The existence of a large fragment (Mr = 0.9 × 106) corresponds to a primitive type of fragmentation found in some archaic plants. Dicotyledons and several other groups have the same pattern of 23 S fragmentation, often comprising all the fragments mentioned above, whilstGraminaceae (Monocotyledons) constitute a special group with a very predominant 0.35 × 106 dalton fragment and the absence of the 0.45 × 106 dalton fragment. The plastid 16 S rRNA in all plants studied here has aMr of 0.54 × 106 which is smaller than the 16 S ofEscbericbia coli taken as reference (0.56 × 106 dalton).  相似文献   

4.
5.
6.
7.
Pairwise comparison of whole plastid and draft nuclear genomic sequences of Arabidopsis thaliana and Oryza sativa L. ssp. indica shows that rice nuclear genomic sequences contain homologs of plastid DNA covering about 94 kb (83%) of plastid genome and including one or more full-length intact (without mutations resulting in premature stop codons) homologues of 26 known protein-coding (KPC) plastid genes. By contrast, only about 20 kb (16%) of chloroplast DNA, including a single intact plastid-derived KPC gene, is presented in the nucleus of A. thaliana. Sixteen rice plastid genes have at least one nuclear copy without any mutation or with only synonymous substitutions. Nuclear copies for other ten plastid genes contain both synonymous and non-synonymous substitutions. Multiple ESTs for 25 out of 26 KPC genes were also found, as well as putative promoters for some of them. The study of substitutions pattern shows that some of nuclear homologues of plastid genes may be functional and/or are under the pressure of the positive natural selection. The similar comparative analysis performed on rice chromosome 1 revealed 27 contigs containing plastid-derived sequences, totalling about 84 kb and covering two thirds of chloroplast DNA, with the intact nuclear copies of 26 different KPC genes. One of these contigs, AP003280, includes almost 57 kb (45%) of chloroplast genome with the intact copies of 22 KPC genes. At the same time, we observed that relative locations of homologues in plastid DNA and the nuclear genome are significantly different.  相似文献   

8.
Gene transfer from the mitochondrion into the nucleus is a corollary of the endosymbiont hypothesis. The frequent and independent transfer of genes for mitochondrial ribosomal proteins is well documented with many examples in angiosperms, whereas transfer of genes for components of the respiratory chain is a rarity. A notable exception is the nad7 gene, encoding subunit 7 of complex I, in the liverwort Marchantia polymorpha, which resides as a full-length, intron-carrying and transcribed, but nonspliced pseudogene in the chondriome, whereas its functional counterpart is nuclear encoded. To elucidate the patterns of pseudogene degeneration, we have investigated the mitochondrial nad7 locus in 12 other liverworts of broad phylogenetic distribution. We find that the mitochondrial nad7 gene is nonfunctional in 11 of them. However, the modes of pseudogene degeneration vary: whereas point mutations, accompanied by single-nucleotide indels, predominantly introduce stop codons into the reading frame in marchantiid liverworts, larger indels introduce frameshifts in the simple thalloid and leafy jungermanniid taxa. Most notably, however, the mitochondrial nad7 reading frame appears to be intact in the isolated liverwort genus Haplomitrium. Its functional expression is shown by cDNA analysis identifying typical RNA-editing events to reconstitute conserved codon identities and also confirming functional splicing of the 2 liverwort-specific group II introns. We interpret our results 1) to indicate the presence of a functional mitochondrial nad7 gene in the earliest land plants and strongly supporting a basal placement of Haplomitrium among the liverworts, 2) to indicate different modes of pseudogene degeneration and chondriome evolution in the later branching liverwort clades, 3) to suggest a surprisingly long maintenance of a nonfunctional gene in the presumed oldest group of land plants, and 4) to support the model of a secondary loss of RNA-editing activity in marchantiid liverworts.  相似文献   

9.
The origin and maintenance of a plastidic tandem repeat next to the TRNF (UUC) gene were analyzed in the genus BOECHERA in a phylogenetic context and were compared to published analogous examples that emerged in parallel in the Asteraceae and Juncaceae, respectively. Although we identified some features common to these taxonomic groups with respect to structure and origin of the region, obvious differences were encountered, which argue against a specific mechanism or evolutionary principle underlying the parallel origin and maintenance of the TRNF-tandem repeats in those families. In contrast to the situation in the Asteraceae, no reciprocal recombinant repeat types have been observed in the Brassicaceae. Forty copy types, classified into three groups, were isolated from 103 chloroplast haplotypes of BOECHERA and it was demonstrated that they are composed of four subregions of various origins. We discuss various mutation mechanisms such as DNA replication slippage, and inter- and intrachromosomal recombination which were reported to mediate variation in copy numbers and other types of observed sequence length polymorphism. It is shown that the observed molecular structure of the tandem repeat region did not fully fit the particular patterns expected under a scenario of evolution including any of the known mechanisms. Nevertheless, it appeared that intermolecular unequal crossing-over is most likely the driving force in the evolution of this tandem repeat. However, it remains to be explained, why no reciprocal recombinant copy types have been observed. The reconstructed phylogenetic relationships among copies reflected different evolutionary scenarios as follows: (1) A single and ancient origin of copies pre-dates the radiation of BOECHERA. (2) Parallel expansion and shortening of the tandem repeat within different BOECHERA lineages. (3) Conservation of the first copy, as it was the only one present in all chloroplast haplotypes.  相似文献   

10.
Hyla chrysoscelis (2n=24) and H. versicolor (2n=48) are a diploid-tetraploid species pair of treefrogs. Restriction endonuclease mapping of ribosomal RNA (rRNA) gene repeat units of diploids collected from eastern and western populations reveals no differences within rRNA gene coding regions but distinctive differences within the nontranscribed spacers. A minimum of two physical maps is required to construct an rRNA gene map for the tetraploid, whose repeat units appear to be a composite, with about 50% of the elements resembling the western diploid population and about 50% resembling the eastern population. These results imply that this population of the tetraploid species may have arisen from a genetically hybrid diploid. Alternatively, the dual level of sequence heterogeneity in H. versicolor may reflect some type of gene flow between the two species. The coding region of the rRNA genes in the tetraploid differs from that in either diploid in about 20% of all repeat units, as exemplified by a BamHI site located near the 5 terminus of the 28 S rRNA gene. If the 20% variant class of 28 S rRNA gene coding sequences is expressed, then there must be two structural classes of ribosomes; if only the 80% sequence class is expressed, then a genetic control mechanism must be capable of distinguishing between the two different sequence variants. It is postulated that the 20% variant sequence class may be correlated with a partial functional diploidization of rRNA genes in the tetraploid species.This research was supported, in part, by NSF Grants CDP-8002341 and PRM-8106947 and by faculty research grants from Miami University to J.C.V.  相似文献   

11.
Abstract

The genetic code is based on the aminoacylation of tRNA with amino acids catalyzed by the aminoacyl-tRNA synthetases. The synthetases are constructed from discrete domains and all synthetases possess a core catalytic domain that catalyzes amino acid activation, binds the acceptor stem of tRNA, and transfers the amino acid to tRNA. Fused to the core domain are additional domains that mediate RNA interactions distal to the acceptor stem. Several synthetases catalyze the aminoacylation of RNA oligonucleotide substrates that recreate only the tRNA acceptor stems. In one case, a relatively small catalytic domain catalyzes the aminoacylation of these substrates independent of the rest of the protein. Thus, the active site domain may represent a primordial synthetase in which polypeptide insertions that mediate RNA acceptor stem interactions are tightly integrated with determinants for aminoacyl adenylate synthesis. The relationship between nucleotide sequences in small RNA oligonucleotides and the specific amino acids that are attached to these oligonucleotides could constitute a second genetic code.  相似文献   

12.
It has been suggested that lack of specialized molecular chaperone function(s) in Escherichia coli may account for the fact that although E. coli cells transformed with plant Rubisco genes synthesize the Rubisco subunit polypeptides, the active enzyme fails to assemble. If so, co-expression of plant chaperone and Rubisco genes might permit plant Rubisco assembly in E. coli. Introduction of genes encoding plant chaperonin polypeptides has been shown to enhance the capacity of E. coli to assemble active cyanobacterial Rubisco. We now report that co-expression of plant Rubisco and chaperonin genes affected the solubility and stability of Rubisco large subunit polypeptides, however, neither the assembled oligomeric protein nor Rubisco enzyme activity was detected.  相似文献   

13.
Summary The components of soluble protein and ribosomal RNA in green and albino pollen plantlets of rice were studied by means of polyacrylamide gel electrophoresis. The results were as follows: (1) Soluble protein: the soluble proteins in green pollen plantlets may be fractionated into 15 bands of varying intensities in which the highest content and the most prominent one is band 3 (fraction I protein). Band 3, however, is nearly absent in albino pollen plantlets. (2) Ribosomal RNA (rRNA): rRNA of high molecular weight in green pollen plantlets may be fractionated into 4 bands, i.e. 25S RNA and 18S RNA in cytoplasmic ribosomes, and 23S RNA and 16S RNA in plastid ribosomes. Little or no 23S RNA and 16S RNA, however, is found in albino pollen plantlets. Together with the evidence obtained by other workers, it is suggested that albino forms of pollen plantlets is caused by the impairment of DNA.  相似文献   

14.
The first series of studies on the rDNA satellite of the sea urchin, Lytechinus variegatus, based on saturation hybridization of rRNA-rDNA and renaturation kinetics, showed that repeat length of rRNA gene was of about 8 kb in which there was no provision for NTS. The EM denaturation mapping, however, revealed (1) that the gene was 75% larger (longer) than 8 kb, within which there was a NTS whose length varied in repeating units, (3) and there was a region of high GC almost in the middle of the transcribed part. The suggestion of length and sequential heterogeneity in the gene copies coming from the first denaturation mapping prompted further studies with techniques so that the conclusions of the previous results could be stated with finality. The results that emanated from further studies established that the rDNA repeat length of L. variegatuswas of about 12 kb and that the NTS ranged from 3.8 to 6.4 kb. Earlier demonstration of a moderately high-GC segment within the transcribed part was also confirmed by sequence analysis. However, the stipulations on the NTS regarding sequential and length heterogeneity, still awaits elucidation by sequence analysis.  相似文献   

15.
Physical maps of the 18S–5.8S–26S ribosomal RNA genes (rDNA) were generated by fluorescent in situ hybridization for five diploid Paeonia species, P. delavayi and P. rockii of section Moutan, and P. emodi, P. tenuifolia, and P. veitchii of section Paeonia. Of five pairs of mitotic chromosomes, rDNA loci were mapped near the telomeres of chromosomes 3, 4, and 5 of P. rockii and P. tenuifolia, chromosomes 2, 3, 4, and 5 of P. delavayi, and all five pairs of chromosomes of P. emodi and P. veitchii. Combining this information with the previously obtained rDNA maps of P. brownii and P. californica of section Oneapia, we hypothesized that the most recent common ancestor of extant peony species had three rDNA loci located on chromosomes 3, 4, and 5. Increase in number of rDNA loci occurred later in each of the three sections, and the increase from three to four loci represents a parallel gain of an rDNA locus on chromosome 2 in P. delavayi of section Moutan and P. brownii of section Oneapia. The increase in number of rDNA loci likely resulted from the translocation of rDNA repeats from chromosomes bearing rDNA loci to chromosomes without them; such translocation is probably facilitated by the telomeric location of rDNA loci. For allotetraploid peony species lacking polymorphism in sequences of the internal transcribed spacers (ITS) of rDNA, the rDNAs derived from divergent diploid parents may have been homogenized through concerted evolution among at least six rDNA loci in the allotetraploids. Chromosomal location of rDNA loci has a more substantial impact on the tempo of concerted evolution than the number of loci.  相似文献   

16.
Summary The nucleotide sequence of the 18S rRNA gene from soybean mitochondria was determined and is presented here in comparison to the 18S rRNA genes from wheat and maize mitochondria. All three genes exhibit remarkable sequence similarity supporting the proposal that there is a slower rate of nucleotide divergence in plant mitochondrial DNA (mtDNA) as compared to the mtDNA of animals. A lower degree of sequence similarity is observed between the dicotyledenous plant soybean and either wheat (84%) or maize (85%) than between the two monocots (96%). A possible secondary structure for the soybean 18S rRNA is presented that is analogous to the proposed structure for the E. coli 16S rRNA.  相似文献   

17.
近年来, 随着测序技术的发展, 石松类和蕨类植物的核基因组、质体基因组以及线粒体基因组研究发展迅速, 质体基因组研究工作更是呈爆发式增长。截至2019年3月1日, GenBank公布的石松类和蕨类植物的175个质体基因组中, 约3/4为最近两年新增。研究内容从早期对个别质体基因组结构和序列特征的简单报道, 逐渐发展到综合性的比较基因组学和系统发育基因组学研究。目前已发表的质体基因组覆盖了石松类和蕨类植物的所有目和大部分科, 这两大类群的质体基因组结构变异和系统发育的基本框架已逐渐清晰。这些研究为我们理解维管植物的早期演化提供了重要参考。本文对石松类和蕨类植物的质体基因组结构特征进行了系统梳理, 发现其结构变异主要包括大片段倒位、IR区边界变动、基因或内含子丢失等, 其中一些结构变异可作为较高分类阶元的共衍征。RNA编辑和长片段非编码序列插入普遍存在于石松类和蕨类植物的质体基因组中, 但其起源、演化机制和功能等仍不清楚。我们对质体基因组的应用、系统发育研究中质体和核基因组的优劣性, 以及系统发育基因组学的前景进行了评述。  相似文献   

18.
19.
20.
Hyla chrysoscelis (2n = 24) and H. versicolor (2n = 48) are a diploid-tetraploid species pair of tree frogs. Hybridization saturation of isolated 125I-labeled ribosomal RNAs (rRNAs) with filter-immobilized DNA shows that there are twice as many rRNA genes in the tetraploid as in the diploid. For the diploid, saturation occurs at 0.037%, from which it is calculated that there are about 618 copies of the (18 S + 28 S) rRNA genes per haploid genome. Analysis of the extent of hybridization and also the thermal stability of homologous and heterologous hybrids shows that considerably more base substitutions have occurred in the tetraploid rDNA genes than in the diploid since their divergence. This is interpreted to reflect either a relaxation of the gene regulatory correction mechanism hypothesized to be responsible for the maintenance of identical tandem rRNA genes in the tetraploid or a release of one gene set from the normal selective constraints.This research supported by NSF Grants CDP-8002341 and PRM-8106947 to J.C.V. and by research grants from Miami University to L.A.T., D.T.C., R.J.D., and S.W.K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号