首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acidocalcisomes are acidic calcium and polyphosphate storage organelles found in a diverse range of organisms. Here we present evidence that the biogenesis of acidocalcisomes in Trypanosoma brucei is linked to the expression of adaptor protein-3 (AP-3) complex. Localization studies in cell lines expressing β3 and δ subunits of AP-3 fused to epitope tags revealed their partial co-localization with the vacuolar proton pyrophosphatase, a marker of acidocalcisomes, with the Golgi marker Golgi reassembly and stacking protein, and with antibodies against the small GTPase Rab11. Ablation of the β3 subunit by RNA interference (RNAi) resulted in disappearance of acidocalcisomes from both procyclic and bloodstream form trypanosomes, as revealed by immmunofluorescence and electron microscopy assays, with no alterations in trafficking of different markers to lysosomes. Knockdown of the β3 subunit resulted in lower acidic calcium, pyrophosphate, and polyphosphate content as well as defects in growth in culture, resistance to osmotic stress, and virulence in mice. Similar results were obtained by knocking down the expression of the δ subunit of AP-3. These results indicate that AP-3 is essential for the biogenesis of acidocalcisomes and for growth and virulence of T. brucei.  相似文献   

2.
The acidocalcisome is an acidic calcium store in trypanosomatids with a vacuolar-type proton-pumping pyrophosphatase (V-H(+)-PPase) located in its membrane. In this paper, we describe a new method using iodixanol density gradients for purification of the acidocalcisome from Trypanosoma cruzi epimastigotes. Pyrophosphatase assays indicated that the isolated organelle was at least 60-fold purified compared with the large organelle (10,000 x g) fraction. Assays for other organelles generally indicated no enrichment in the acidocalcisome fraction; glycosomes were concentrated 5-fold. Vanadate-sensitive ATP-driven Ca(2+) uptake (Ca(2+)-ATPase) activity was detectable in the isolated acidocalcisome, but ionophore experiments indicated that it was not acidic. However, when pyrophosphate was added, the organelle acidified, and the rate of Ca(2+) uptake increased. Use of the indicator Oxonol VI showed that V-H(+)-PPase activity generated a membrane potential. Use of sulfate or nitrate in place of chloride in the assay buffer did not affect V-H(+)-PPase activity, but there was less activity with gluconate. Organelle acidification was countered by the chloride/proton symport cycloprogidiosin. No vacuolar H(+)-ATPase activity was detectable in isolated acidocalcisomes. However, immunoblots showed the presence of at least a membrane-bound V-H(+)-ATPase subunit, while experiments employing permeabilized epimastigotes suggested that vacuolar H(+)-ATPase and V-H(+)-PPase activities are present in the same Ca(2+)-containing compartment.  相似文献   

3.
In this work, we show the kinetics of pyrophosphate-driven H+ uptake by acidocalcisomes in digitonin-permeabilized promastigotes of Leptomonas wallacei. The vacuolar proton pyrophosphatase activity was optimal in the pH range of 7.5-8.0, was inhibited by imidiodiphosphate, and was completely dependent on K+ and PPi. H+ was released with the addition of Ca2+, suggesting the presence of a Ca2+/H+ antiport. In addition, X-ray elemental mapping associated with energy-filtering transmission electron microscopy showed that most of the Ca, Na, Mg, P, K, Fe, and Zn were located in acidocalcisomes. L. wallacei immunolabeled with antibodies against Trypanosoma cruzi pyrophosphatase show intense fluorescence in cytoplasmatic organelles of size and distribution similar to the acidocalcisomes. Altogether, the results show that L. wallacei acidocalcisomes possess a H+-pyrophosphatase with characteristics of type I V-H+-PPase. However, we did not find any evidence, either for the presence of H+-ATPases or for Na+/H+ exchangers in these acidocalcisomes.  相似文献   

4.
Acidocalcisomes are acidic calcium stores found in diverse organisms, being conserved from bacteria to humans. They possess an acidic matrix that contains several cations bound to phosphates, which are mainly present in the form of short and long polyphosphate chains. Their matrix is acidified through the action of proton pumps such as a vacuolar proton ATPase and a vacuolar proton pyrophosphatase. Calcium uptake occurs through a Ca(2+)/H(+) countertransporting ATPase located in the membrane of the organelle. Acidocalcisomes have been identified in a variety of microorganisms, including Apicomplexan parasites such as Plasmodium and Eimeria species, and in Toxoplasma gondii. We report the purification and characterization of an acidocalcisome fraction from T. gondii tachyzoites after subcellular fractionation and further discontinuous iodixanol gradient purification. Proton and calcium transport activities in the fraction were characterized by fluorescence microscopy and spectrophotometric methods using acridine orange and arsenazo III, respectively. This work will facilitate the understanding of the function of acidocalcisomes in Apicomplexan parasites, as we can now isolate highly purified fractions that could be used for proteomic analysis to find proteins that may clarify the biogenesis of these organelles.  相似文献   

5.
Trypanosoma brucei adaptation and survival in its host involve integrated regulation of Ca(2+) pumps (Ca(2+)-ATPases), which are essential in calcium ion homeostasis. Here we report the cloning and sequencing of two genes (TbPMC1 and TbPMC2) encoding plasma membrane-type Ca(2+)-ATPases (PMCAs) of T. brucei, an agent of African trypanosomiasis. Indirect immunofluorescence analysis using antibodies against the proteins and against epitope tags introduced into each protein showed that TbPMC1 co-localized with the vacuolar H(+)-pyrophosphatase to the acidocalcisomes while TbPMC2 localized to the plasma membrane. Northern and Western blot analyses revealed that TbPMC1 and TbPMC2 are up-regulated during blood stages. TbPMC1 and TbPMC2 suppressed the Ca(2+) hypersensitivity of a mutant of S. cerevisiae that has a defect in vacuolar Ca(2+) accumulation. T. brucei Ca(2+)-ATPase genes were functionally characterized by using double-stranded RNA interference (RNAi) methodology to produce inducible Ca(2+)-ATPase-deficient procyclic forms. Similar results were obtained with bloodstream form trypomastigotes, except that the RNAi system was leaky and mRNA and protein levels recovered with time. The induction of dsRNA (RNAi) caused gross morphological alterations, and growth inhibition of procyclic forms. Induction of RNAi against TbPMC1 but not against TbPMC2 caused elevated levels of cytosolic Ca(2+) and decreased mobilization of Ca(2+) from intracellular stores following ionophore addition. These results establish that T. brucei PMCA-Ca(2+)-ATPases are essential for parasite viability and validate them as targets for drug development.  相似文献   

6.
A large proportion of intracellular Ca2+ in Toxoplasma gondii tachyzoites is stored within acidocalcisomes. These organelles are characterized by their acidic nature and high calcium and polyphosphate (polyP) content. The activity of a Ca2+/H+-ATPase named TgA1 may be important for the accumulation of Ca2+ in these organelles. This enzyme belongs to a group of plasma membrane Ca2+-ATPase (PMCA) that lack a calmodulin-binding domain and have vacuolar localization. To investigate the role of this enzyme, we have generated T. gondii mutants deficient in TgA1 through gene disruption. Proliferation of these mutants decreased dramatically because of deficient cell invasion. In addition, these cells had reduced virulence in a mouse model. Biochemical analysis revealed that the cell polyP content was drastically reduced, and the basal calcium levels were increased and unstable. Microneme secretion under the conditions of stimulation by ionophores was altered. Complementation of null mutants with TgA1 restored most functions. In summary, these results establish a link between TgA1, calcium homeostasis, polyP storage and virulence.  相似文献   

7.
《Autophagy》2013,9(11):1978-1988
Lysosomes play important roles in autophagy, not only in autophagosome degradation, but also in autophagy initiation. In Trypanosoma brucei, an early divergent protozoan parasite, we discovered a previously unappreciated function of the acidocalcisome, a lysosome-related organelle characterized by acidic pH and large content of Ca2+ and polyphosphates, in autophagy regulation. Starvation- and chemical-induced autophagy is accompanied with acidocalcisome acidification, and blocking the acidification completely inhibits autophagosome formation. Blocking acidocalcisome biogenesis by depleting the adaptor protein-3 complex, which does not affect lysosome biogenesis or function, also inhibits autophagy. Overall, our results support the role of the acidocalcisome, a conserved organelle from bacteria to human, as a relevant regulator in autophagy.  相似文献   

8.
Acidocalcisomes are acidic organelles present in a diverse range of organisms from bacteria to human cells. In this study acidocalcisomes were purified from the model organism Trypanosoma brucei, and their protein composition was determined by mass spectrometry. The results, along with those that we previously reported, show that acidocalcisomes are rich in pumps and transporters, involved in phosphate and cation homeostasis, and calcium signaling. We validated the acidocalcisome localization of seven new, putative, acidocalcisome proteins (phosphate transporter, vacuolar H+-ATPase subunits a and d, vacuolar iron transporter, zinc transporter, polyamine transporter, and acid phosphatase), confirmed the presence of six previously characterized acidocalcisome proteins, and validated the localization of five novel proteins to different subcellular compartments by expressing them fused to epitope tags in their endogenous loci or by immunofluorescence microscopy with specific antibodies. Knockdown of several newly identified acidocalcisome proteins by RNA interference (RNAi) revealed that they are essential for the survival of the parasites. These results provide a comprehensive insight into the unique composition of acidocalcisomes of T. brucei, an important eukaryotic pathogen, and direct evidence that acidocalcisomes are especially adapted for the accumulation of polyphosphate.  相似文献   

9.
Feng-Jun Li  Cynthia Y He 《Autophagy》2014,10(11):1978-1988
Lysosomes play important roles in autophagy, not only in autophagosome degradation, but also in autophagy initiation. In Trypanosoma brucei, an early divergent protozoan parasite, we discovered a previously unappreciated function of the acidocalcisome, a lysosome-related organelle characterized by acidic pH and large content of Ca2+ and polyphosphates, in autophagy regulation. Starvation- and chemical-induced autophagy is accompanied with acidocalcisome acidification, and blocking the acidification completely inhibits autophagosome formation. Blocking acidocalcisome biogenesis by depleting the adaptor protein-3 complex, which does not affect lysosome biogenesis or function, also inhibits autophagy. Overall, our results support the role of the acidocalcisome, a conserved organelle from bacteria to human, as a relevant regulator in autophagy.  相似文献   

10.
ABSTRACT. Acidocalcisomes are acidic organelles with a high concentration of phosphorus present as pyrophosphate (PPi) and polyphosphate (poly P) complexed with calcium and other cations. The acidocalcisome membrane contains a number of pumps (Ca2+‐ATPase, V‐H+‐ATPase, H+‐PPase), exchangers (Na+/H+, Ca2+/H+), and channels (aquaporins), while its matrix contains enzymes related to PPi and poly P metabolism. Acidocalcisomes have been observed in pathogenic, as well as non‐pathogenic prokaryotes and eukaryotes, e.g. Chlamydomonas reinhardtii, and Dictyostelium discoideum. Some of the potential functions of the acidocalcisome are the storage of cations and phosphorus, the participation of phosphorus in PPi and poly P metabolism, calcium homeostasis, maintenance of intracellular pH homeostasis, and osmoregulation. In addition, acidocalcisomes resemble lysosome‐related organelles (LRO) from mammalian cells in many of their properties. For example, we found that platelet dense granules, which are LROs, are very similar to acidocalcisomes. They share a similar size, acidic properties, and both contain PPi, poly P, and calcium. Recent work that indicates that they also share the system for targeting of their membrane proteins through adaptor protein 3 reinforces this concept. The fact that acidocalcisomes interact with other organelles in parasitic protists, e.g. the contractile vacuole in Trypanosoma cruzi, and other vacuoles observed in Toxoplasma gondii, suggests that these cellular compartments may be associated with the endosomal/lysosomal pathway.  相似文献   

11.
Acidocalcisomes     
Docampo R  Moreno SN 《Cell calcium》2011,50(2):113-119
Acidocalcisomes are acidic organelles containing calcium and a high concentration of phosphorus in the form of pyrophosphate (PPi) and polyphosphate (poly P). Organelles with these characteristics have been found from bacteria to human cells implying an early appearance and persistence over evolutionary time or their appearance by convergent evolution. Acidification of the organelles is driven by the presence of vacuolar proton pumps, one of which, the vacuolar proton pyrophosphatase, is absent in animals, where it is substituted by a vacuolar proton ATPase. A number of other pumps, antiporters, and channels have been described in acidocalcisomes of different species and are responsible for their internal content. Enzymes involved in the synthesis and degradation of PPi and poly P are present within the organelle. Acidocalcisomes function as storage sites for cations and phosphorus, and participate in PPi and poly P metabolism, calcium homeostasis, maintenance of intracellular pH, and osmoregulation. Experiments in which the acidocalcisome Ca2+-ATPase of different parasites were downregulated or eliminated, or acidocalcisome Ca2+ was depleted revealed the importance of this store in Ca2+ signaling needed for host invasion and virulence. Acidocalcisomes interact with other organelles in a number of organisms suggesting their association with the endosomal/lysosomal pathway, and are considered part of the lysosome-related group of organelles.  相似文献   

12.
Toxoplasma gondii tachyzoites were fractionated by modification of an iodixanol density gradient method previously used for acidocalcisome isolation from Trypanosoma cruzi epimastigotes. Fractions were characterized using electron microscopy, x-ray microanalysis, and enzymatic markers, and it was demonstrated that the heaviest (pellet) fraction contains electron-dense vacuoles rich in phosphorus, calcium, and magnesium, as found before for acidocalcisomes. Staining with 4',6-diamidino-2-phenylindole (DAPI) indicated that poly- phosphate (polyP) was preferentially localized in this fraction together with pyrophosphate (PP(i)). Using an enzyme-based method, millimolar levels (in terms of P(i) residues) of polyP chains of less than 50 residues long and micromolar levels in polyP chains of about 700-800 residues long were found to be preferentially localized in this fraction. The fraction also contained the pyrophosphatase and polyphosphatase activities characteristic of acidocalcisomes. Western blot analysis using antibodies against proteins from micronemes, dense granules, rhoptries, and plasma membrane showed that the acidocalcisomal fraction was not contaminated by these other organelles. T. gondii polyP levels rapidly decreased upon exposure of the parasites to a calcium ionophore (ionomycin), to an inhibitor of the V-H(+)-ATPase (bafilomycin A(1)), or to the alkalinizing agent NH(4)Cl. These changes were in parallel to an increase in intracellular Ca(2+) concentration, suggesting a close association between polyP hydrolysis and Ca(2+) release from the acidocalcisome. These results provide a useful method for the isolation and characterization of acidocalcisomes, showing that they are distinct from other previously recognized organelles present in T. gondii, and provide evidence for the role of polyP metabolism in response to cellular stress.  相似文献   

13.
The acidic food vacuole of Plasmodium falciparum has been the subject of intense scientific investigation in the 40 years since its role in the digestion of host hemoglobin was first suggested. This proposed role has important implications for the complex host-parasite inter-relationship and also for the mode of action of several of the most effective antimalarial drugs. In addition, adaptive changes in the physiology of this organelle are implicated in drug resistance. Here we show that in addition to these functions, the digestive food vacuole of the malaria parasite is a dynamic internal store for free Ca2+, a role hitherto unsuspected. With the aid of live-cell laser scanning confocal imaging, spatiotemporal studies revealed that maintenance of elevated free Ca2+ in the digestive food vacuole (relative to cytosolic levels) is achieved by a thapsigargin (and cyclopiazonic acid)-sensitive Ca2+-pump in cooperation with a H+-dependent Ca2+ transporter. Redistribution of free cytosolic and vacuolar Ca2+ during parasite growth also suggests that vacuolar Ca2+ plays an essential role in parasite morphogenesis. These data imply that the digestive food vacuole of the malaria parasite is functionally akin to the vacuole of plants (tonoplast) and the small electron-dense granules of some parasites (acidocalcisomes) whereby H+-coupled Ca2+ transport is involved in ion transport, Ca2+ homeostasis, and signal transduction. These findings have significant implications for parasite development, antimalarial drug action, and mechanisms of drug resistance.  相似文献   

14.
Calcineurin, or PP2B, plays a critical role in mediating Ca2+-dependent signaling in many cell types. In yeast cells, this highly conserved protein phosphatase regulates aspects of ion homeostasis and cell wall synthesis. We show that calcineurin mutants are sensitive to high concentrations of Mn2+ and identify two genes, CCC1 and HUM1, that, at high dosages, increase the Mn2+ tolerance of calcineurin mutants. CCC1 was previously identified by complementation of a Ca2+-sensitive (csg1) mutant. HUM1 (for "high copy number undoes manganese") is a novel gene whose predicted protein product shows similarity to mammalian Na+/Ca2+ exchangers. hum1 mutations confer Mn2+ sensitivity in some genetic backgrounds and exacerbate the Mn2+ sensitivity of calcineurin mutants. Furthermore, disruption of HUM1 in a calcineurin mutant strain results in a Ca2+-sensitive phenotype. We investigated the effect of disrupting HUM1 in other strains with defects in Ca2+ homeostasis. The Ca2+ sensitivity of pmc1 mutants, which lack a P-type ATPase presumed to transport Ca2+ into the vacuole, is exacerbated in a hum1 mutant strain background. Also, the Ca2+ content of hum1 pmc1 cells is less than that of pmc1 cells. In contrast, the Ca2+ sensitivity of vph1 mutants, which are specifically defective in vacuolar acidification, is not significantly altered by disruption of Hum1p function. These genetic interactions suggest that Hum1p may participate in vacuolar Ca2+/H+ exchange. Therefore, we prepared vacuolar membrane vesicles from wild-type and hum1 cells and compared their Ca2+ transport properties. Vacuolar membrane vesicles from hum1 mutants lack all Ca2+/H+ antiport activity, demonstrating that Hum1p catalyzes the exchange of Ca2+ for H+ across the yeast vacuolar membrane.  相似文献   

15.
Inorganic pyrophosphate promoted the acidification of an intracellular compartment in permeabilized procyclic trypomastigotes of Trypanosoma brucei, as measured by acridine orange uptake. The proton gradient generated by pyrophosphate was collapsed by addition of nigericin or NH(4)Cl. Pyrophosphate-driven proton translocation was stimulated by potassium ions and inhibited by KF, by the pyrophosphate analogs imidodiphosphate and aminomethylenediphosphonate (AMDP), and by the thiol reagent p-hydroxymercuribenzoate at concentrations similar to those that inhibit the plant vacuolar H(+)-pyrophosphatase (PPase). The proton translocation activity had a pH optimum around 7.5 and was partially inhibited by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (10 microM) and unaffected by bafilomycin A(1) (40 nM), concanamycin A (5 nM), sodium o-vanadate (500 microM), oligomycin (1 microM), N-ethylmaleimide (100 microM), and KNO(3). AMDP-sensitive pyrophosphate hydrolysis was detected in both procyclic and bloodstream trypomastigotes. Measurements of acridine orange uptake in permeabilized procyclic trypomastigotes in the presence of different substrates and inhibitors suggested the presence of H(+)-ATPase, H(+)-PPase, and (ADP-dependent) H(+)/Na(+) antiport activity in the same compartment. Separation of bloodstream and procyclic trypomastigote extracts on Percoll gradients yielded fractions that contained H(+)-PPase (both stages) and H(+)/Na(+) exchanger (procyclics) activities but lacked markers for mitochondria, glycosomes, and lysosomes. The organelles in these fractions were identified by electron microscopy and X-ray microanalysis as acidocalcisomes (electron-dense vacuoles). These results provide further evidence for the unique nature of acidocalcisomes in comparison with other, previously described, organelles.  相似文献   

16.
Ca(2+)-ATPases are likely to play critical roles in the biochemistry of Toxoplasma gondii, since these protozoa are obligate intracellular parasites and the Ca(2+) concentration in their intracellular location is three orders of magnitude lower than in the extracellular medium. Here, we report the cloning and sequencing of a gene encoding a plasma membrane-type Ca(2+)-ATPase (PMCA) of T.gondii (TgA1). The predicted protein (TgA1) exhibits 32-36% identity to vacuolar Ca(2+)-ATPases of Trypanosoma cruzi, Saccharomyces cerevisiae, Entamoeba histolytica and Dictyostelium discoideum. Sequencing of both cDNA and genomic DNA from T.gondii indicated that TgA1 contains two introns near the C-terminus. A hydropathy profile of the protein suggests 10 transmembrane domains. TgA1 suppresses the Ca(2+) hypersensitivity of a mutant of S.cerevisiae that has a defect in vacuolar Ca(2+) accumulation. Indirect immunofluorescence and immunoelectron microscopy analysis indicate that TgA1 localizes to the plasma membrane and co-localizes with the vacuolar H(+)-pyrophosphatase to intracellular vacuoles identified morphologically and by X-ray microanalysis as the acidocalcisomes. This vacuolar-type Ca(2+)-ATPase could play an important role in Ca(2+) homeostasis in T.gondii.  相似文献   

17.
The vacuole is the major site of intracellular Ca2+ storage in yeast and functions to maintain cytosolic Ca2+ levels within a narrow physiological range. In this study, we examined how cellular Ca2+ homeostasis is maintained in a vps33Delta vacuolar biogenesis mutant. We found that growth of the vps33Delta strain was sensitive to high or low extracellular Ca2+. This strain could not properly regulate cytosolic Ca2+ levels and was able to retain only a small fraction of its total cellular Ca2+ in a nonexchangeable intracellular pool. Surprisingly, the vps33Delta strain contained more total cellular Ca2+ than the wild type strain. Because most cellular Ca2+ is normally found within the vacuole, this suggested that other intracellular compartments compensated for the reduced capacity to store Ca2+ within the vacuole of this strain. To test this hypothesis, we examined the contribution of the Golgi-localized Ca2+ ATPase Pmr1p in the maintenance of cellular Ca2+ homeostasis. We found that a vps33Delta/pmr1Delta strain was hypersensitive to high extracellular Ca2+. In addition, certain combinations of mutations effecting both vacuolar and Golgi Ca2+ transport resulted in synthetic lethality. These results indicate that the Golgi apparatus plays a significant role in maintaining Ca2+ homeostasis when vacuolar biogenesis is compromised.  相似文献   

18.
Kinetic and molecular properties of the Ca2+/H+ antiporter in the vacuolar membrane of mung bean hypocotyls were examined and compared with Ca2+-ATPase. Ca2+ transport activities of both transporters were assayed separately by the filtration method using vacuolar membrane vesicles and 45Ca2+. Ca2+ uptake in the presence of ATP and bafilomycin A1, namely Ca2+-ATPase, showed a relatively low Vmax (6 nmol.min-1.mg-1 protein) and a low Km for Ca2+. The Ca2+/H+ antiporter activity driven by H+-pyrophosphatase showed a high Vmax (25 nmol.min-1.mg-1) and a relatively high Km for Ca2+. The cDNA for mung bean Ca2+/H+ antiporter (VCAX1) codes for a 444 amino-acid polypeptide. Two peptide-specific antibodies of the antiporter clearly reacted with a 42-kDa protein from vacuolar membranes and a cell lysate from a Escherichia coli transformant in which VCAX1 was expressed. These observations directly demonstrate that a low-affinity, high-capacity Ca2+/H+ antiporter and a high-affinity Ca2+-ATPase coexist in the vacuolar membrane. It is likely that the Ca2+/H+ antiporter removes excess Ca2+ in the cytosol to lower the Ca2+ concentration to micromolar levels after stimuli have increased the cytosolic Ca2+ level, the Ca2+-ATPase then acts to lower the cytosolic Ca2+ level further.  相似文献   

19.
The structural organization of parasites has been the subject of investigation by many groups and has lead to the identification of structures and metabolic pathways that may represent targets for anti-parasitic drugs. A specific group of organelles named acidocalcisomes has been identified in a number of organisms, including the apicomplexan parasites such as Toxoplasma and Plasmodium, where they have been shown to be involved in cation homeostasis, polyphosphate metabolism, and osmoregulation. Their structural counterparts in the apicomplexan parasite Eimeria have not been fully characterized. In this work, the ultrastructural and chemical properties of acidocalcisomes in Eimeria were characterized. Electron microscopy analysis of Eimeria parasites showed the dense organelles called volutin granules similar to acidocalcisomes. Immunolocalization of the vacuolar proton pyrophosphatase, considered as a marker for acidocalcisomes, showed labeling in vesicles of size and distribution similar to the dense organelles seen by electron microscopy. Spectrophotometric measurements of the kinetics of proton uptake showed a vacuolar proton pyrophosphatase activity. X-ray mapping revealed significant amounts of Na, Mg, P, K, Ca, and Zn in their matrix. The results suggest that volutin granules of Eimeria parasites are acidic, dense organelles, and possess structural and chemical properties analogous to those of other acidocalcisomes, suggesting a similar functional role in these parasites.  相似文献   

20.
Acidocalcisomes are acidic calcium stores found in diverse organisms, being conserved from bacteria to man. They posses an acidic matrix that contains several cations bound to phosphates, mainly present in the form of short and long polyphosphate chains. Their matrix is acidified through the action of proton pumps such as a vacuolar proton ATPase and a vacuolar proton pyrophosphatase. The calcium uptake occurs through a Ca2+/H+ counter transporting ATPase located in the membrane of the organelle. Acidocalcisomes have been identified in a variety of microorganisms, including Apicomplexan parasites such as Plasmodium and Eimeria species, and in Toxoplasma gondii. In this paper, we review the structural, biochemical and physiological aspects of acidocalcisomes in Apicomplexan parasites and discuss their functional roles in the maintenance of intracellular ion homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号