首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermolytic hyperkeratosis is an autosomal dominant disorder affecting the structural integrity of the suprabasal layers of human epidermis. We have recently documented in one family linkage of the disease phenotype to the cluster of type II keratins. We have now identified a leucine----proline amino acid substitution in the conserved H1 subdomain of keratin 1 that is present only in affected family members. Using a quantitative assay and electron microscopy with synthetic peptides, we show that, whereas the wild-type H1 peptide rapidly disassembles preformed keratin filaments in vitro, the mutant peptide does this far less efficiently. Therefore the mutation in keratin 1 is likely to cause defective keratin filaments and hence a defective cytoskeleton in the epidermal cells in vivo.  相似文献   

2.
In order to improve our understanding of the role of the yeast MSH1 gene in error avoidance in mitochondrial DNA, two msh1 alleles were constructed, which encode proteins with amino acid substitutions in an ATP-binding domain that is highly conserved among MutS homologs. Here, we report that moderate overexpression of the msh1-R813W or msh1-G776D allele, in strains which also carry the wild-type MSH1 allele, slightly increases the frequency of mutations conferring resistance to erythromycin (E(r)) and elevates the frequency of alterations within a polyGT tract present in mitochondrial DNA (mtDNA). This result indicates that the mutant alleles confer a dominant mitochondrial mutator phenotype and strongly suggests that the ATP-binding domain plays a crucial role in the in vivo function of Msh1p. Interestingly, we have found that overexpression of wild-type MSH1 has opposite effects on the stability of polyGT vs. polyAT tracts present in mtDNA; excess of Msh1p slightly increases the stability of polyGT tracts, whereas the stability of polyAT tracts is dramatically decreased. We show that although overexpression of msh1-R813W or msh1-G776D also results in a marked overall increase in the frequency of alterations in polyAT tracts, the spectrum of alterations differs from that found in cells overexpressing MSH1; large deletions predominate in the latter case, while 2-bp deletions are generated in cells that overproduce the mutant msh1p. This result strongly suggests that the mutations in the ATP binding domain change the specificity of the protein with respect to the recognition of potentially mutagenic structures in mtDNA.  相似文献   

3.
Potassium channels control the repolarization of nerve terminals and thus play important roles in the control of synaptic transmission. Here we describe the effects of mutations in theslowpoke gene, which is the structural gene for a calcium activated potassium channel, on transmitter release at the neuromuscular junction inDrosophila melanogaster. Surprisingly, we find that theslowpoke mutant exhibits reduced transmitter release compared to normal. Similarly, theslowpoke mutation significantly suppresses the increased transmitter release conferred either by a mutation inShaker or by application of 4-aminopyridine, which blocks theShaker-encoded potassium channel at theDrosophila nerve terminal. Furthermore, theslowpoke mutation suppresses the striking increase in transmitter release that occurs following application of 4-aminopyridine to theether a go-go mutant. This suppression is most likely the result of a reduction of Ca2+ influx into the nerve terminal in theslowpoke mutant. We hypothesize that the effects of theslowpoke mutation are indirect, perhaps resulting from increased Ca2+ channel inactivation, decreased Na+ or Ca2+ channel localization or gene expression, or by increases in the expression or activity of potassium channels distinct fromslowpoke.  相似文献   

4.
Many alpha-helical proteins that form two-chain coiled coils possess a 13-residue trigger motif that seems to be required for the stability of the coiled coil. However, as currently defined, the motif is absent from intermediate filament (IF) protein chains, which nevertheless form segmented two-chain coiled coils. In the present work, we have searched for and identified two regions in IF chains that are essential for the stability necessary for the formation of coiled-coil molecules and thus may function as trigger motifs. We made a series of point substitutions with the keratin 5/keratin 14 IF system. Combinations of the wild-type and mutant chains were assembled in vitro and in vivo, and the stabilities of two-chain (one-molecule) and two-molecule assemblies were examined with use of a urea disassembly assay. Our new data document that there is a region located between residues 100 and 113 of the 2B rod domain segment that is absolutely required for molecular stability and IF assembly. This potential trigger motif differs slightly from the consensus in having an Asp residue at position 4 (instead of a Glu) and a Thr residue at position 9 (instead of a charged residue), but there is an absolute requirement for a Glu residue at position 6. Because these 13 residues are highly conserved, it seems possible that this motif functions in all IF chains. Likewise, by testing keratin IF with substitutions in both chains, we identified a second potential trigger motif between residues 79 and 91 of the 1B rod domain segment, which may also be conserved in all IF chains. However, we were unable to find a trigger motif in the 1A rod domain segment. In addition, many other point substitutions had little detectable effect on IF assembly, except for the conserved Lys-23 residue of the 2B rod domain segment. Cross-linking and modeling studies revealed that Lys-23 may lie very close to Glu-106 when two molecules are aligned in the A(22) mode. Thus, the Glu-106 residue may have a dual role in IF structure: it may participate in trigger formation to afford special stability to the two-chain coiled-coil molecule, and it may participate in stabilization of the two-molecule hierarchical stage of IF structure.  相似文献   

5.
Leder K  Foo J  Skaggs B  Gorre M  Sawyers CL  Michor F 《PloS one》2011,6(11):e27682
Chronic myeloid leukemia (CML) is the first human malignancy to be successfully treated with a small molecule inhibitor, imatinib, targeting a mutant oncoprotein (BCR-ABL). Despite its successes, acquired resistance to imatinib leads to reduced drug efficacy and frequent progression of disease. Understanding the characteristics of pre-existing resistant cells is important for evaluating the benefits of first-line combination therapy with second generation inhibitors. However, due to limitations of assay sensitivity, determining the existence and characteristics of resistant cell clones at the start of therapy is difficult. Here we combined a mathematical modeling approach using branching processes with experimental data on the fitness changes (i.e., changes in net reproductive rate) conferred by BCR-ABL kinase domain mutations to investigate the likelihood, composition, and diversity of pre-existing resistance. Furthermore, we studied the impact of these factors on the response to tyrosine kinase inhibitors. Our approach predicts that in most patients, there is at most one resistant clone present at the time of diagnosis of their disease. Interestingly, patients are no more likely to harbor the most aggressive, pan-resistant T315I mutation than any other resistance mutation; however, T315I cells on average establish larger-sized clones at the time of diagnosis. We established that for patients diagnosed late, the relative benefit of combination therapy over monotherapy with imatinib is significant, while this benefit is modest for patients with a typically early diagnosis time. These findings, after pre-clinical validation, will have implications for the clinical management of CML: we recommend that patients with advanced-phase disease be treated with combination therapy with at least two tyrosine kinase inhibitors.  相似文献   

6.
7.
Escherichia coli cells that are aged in batch culture display an increased fitness referred to as the growth advantage in stationary phase, or GASP, phenotype. A common early adaptation to this culture environment is a mutant rpoS allele, such as rpoS819, that results in attenuated RpoS activity. However, it is important to note that during long-term batch culture, environmental conditions are in flux. To date, most studies of the GASP phenotype have focused on identifying alleles that render an advantage in a specific environment, Luria-Bertani broth (LB) batch culture. To determine what role environmental conditions play in rendering relative fitness advantages to E. coli cells carrying either the wild-type or rpoS819 alleles, we performed competitions under a variety of culture conditions in which either the available nutrients, the pH, or both were manipulated. In LB medium, we found that while the rpoS819 allele confers a strong competitive fitness advantage at basic pH, it confers a reduced advantage under neutral conditions, and it is disadvantageous under acidic conditions. Similar results were found using other media. rpoS819 conferred its greatest advantage in basic minimal medium in which either glucose or Casamino Acids were the sole source of carbon and energy. In acidic medium supplemented with either Casamino Acids or glucose, the wild-type allele conferred a slight advantage. In addition, populations were dynamic under all pH conditions tested, with neither the wild-type nor mutant rpoS alleles sweeping a culture. We also found that the strength of the fitness advantage gained during a 10-day incubation is pH dependent.  相似文献   

8.
We previously demonstrated that hIK1 is activated directly by ATP in excised, inside-out patches in a protein kinase A inhibitor 5-24 dependent manner, suggesting a role for phosphorylation in the regulation of this Ca(2+)-dependent channel. However, mutation of the single consensus cAMP-dependent protein kinase phosphorylation site (S334A) failed to modify the response of hIK1 to ATP (Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000) J. Biol. Chem. 275, 585-598). Here we demonstrate that ATP does not similarly activate the highly homologous Ca(2+)-dependent K(+) channels, hSK1, rSK2, and rSK3. To define the region of hIK1 responsible for the ATP-dependent regulation, we generated a series of hIK1 truncations and hIK1/rSK2 chimeras. ATP did not activate a chimera containing the N terminus plus S1-S4 from hIK1. In contrast, ATP activated a chimera containing the hIK1 C-terminal amino acids His(299)-Lys(427). Furthermore, truncation of hIK1 at Leu(414) resulted in an ATP-dependent channel, whereas larger truncations of hIK1 failed to express. Additional hIK1/rSK2 chimeras defined the minimal region of hIK1 required to confer complete ATP sensitivity as including amino acids Arg(355)-Ala(413). An alanine scan of all non-conserved serines and threonines within this region failed to alter the response of hIK1 to ATP, suggesting that hIK1 itself is not directly phosphorylated. Additionally, substitution of amino acids Arg(355)-Met(368) of hIK1 into the corresponding region of rSK2 resulted in an ATP-dependent activation, which was approximately 50% of that of hIK1. These results demonstrate that amino acids Arg(355)-Ala(413) within the C terminus of hIK1 confer sensitivity to ATP. Finally, we demonstrate that the ATP-dependent phosphorylation of hIK1 or an associated protein is independent of Ca(2+).  相似文献   

9.
We previously demonstrated that hIK1 is activated directly by ATP in excised, inside-out patches in a protein kinase A inhibitor 5-24 dependent manner, suggesting a role for phosphorylation in the regulation of this Ca(2+)-dependent channel. However, mutation of the single consensus cAMP-dependent protein kinase phosphorylation site (S334A) failed to modify the response of hIK1 to ATP (Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000) J. Biol. Chem. 275, 585-598). Here we demonstrate that ATP does not similarly activate the highly homologous Ca(2+)-dependent K(+) channels, hSK1, rSK2, and rSK3. To define the region of hIK1 responsible for the ATP-dependent regulation, we generated a series of hIK1 truncations and hIK1/rSK2 chimeras. ATP did not activate a chimera containing the N terminus plus S1-S4 from hIK1. In contrast, ATP activated a chimera containing the hIK1 C-terminal amino acids His(299)-Lys(427). Furthermore, truncation of hIK1 at Leu(414) resulted in an ATP-dependent channel, whereas larger truncations of hIK1 failed to express. Additional hIK1/rSK2 chimeras defined the minimal region of hIK1 required to confer complete ATP sensitivity as including amino acids Arg(355)-Ala(413). An alanine scan of all non-conserved serines and threonines within this region failed to alter the response of hIK1 to ATP, suggesting that hIK1 itself is not directly phosphorylated. Additionally, substitution of amino acids Arg(355)-Met(368) of hIK1 into the corresponding region of rSK2 resulted in an ATP-dependent activation, which was approximately 50% of that of hIK1. These results demonstrate that amino acids Arg(355)-Ala(413) within the C terminus of hIK1 confer sensitivity to ATP. Finally, we demonstrate that the ATP-dependent phosphorylation of hIK1 or an associated protein is independent of Ca(2+).  相似文献   

10.
SH2B1 is a multidomain protein that serves as a key adaptor to regulate numerous cellular events, such as insulin, leptin, and growth hormone signaling pathways. Many of these protein‐protein interactions are mediated by the SH2 domain of SH2B1, which recognizes ligands containing a phosphorylated tyrosine (pY), including peptides derived from janus kinase 2, insulin receptor, and insulin receptor substrate‐1 and ?2. Specificity for the SH2 domain of SH2B1 is conferred in these ligands either by a hydrophobic or an acidic side chain at the +3 position C‐terminal to the pY. This specificity for chemically disparate species suggests that SH2B1 relies on distinct thermodynamic or structural mechanisms to bind to peptides. Using binding and structural strategies, we have identified unique thermodynamic signatures for each peptide binding mode, and several SH2B1 residues, including K575 and R578, that play distinct roles in peptide binding. The high‐resolution structure of the SH2 domain of SH2B1 further reveals conformationally plastic protein loops that may contribute to the ability of the protein to recognize dissimilar ligands. Together, numerous hydrophobic and electrostatic interactions, in addition to backbone conformational flexibility, permit the recognition of diverse peptides by SH2B1. An understanding of this expanded peptide recognition will allow for the identification of novel physiologically relevant SH2B1/peptide interactions, which can contribute to the design of obesity and diabetes pharmaceuticals to target the ligand‐binding interface of SH2B1 with high specificity.  相似文献   

11.
The COP9 signalosome is a conserved cellular regulator present in diverse organisms. To understand the structural and functional relationship of the COP9 signalosome with its subunits, we expressed in wild-type and mutant Arabidopsis backgrounds two orthologues of subunit 1, rice FUS6 (rFUS6) and human GPS1, and Arabidopsis subunit 8 (COP9). In Arabidopsis, rFUS6 can functionally replace Arabidopsis endogenous FUS6 to form the COP9 signalosome complex and rescue the null fus6-1 mutant phenotype. Moreover, light-grown rFUS6 over-expression seedlings displayed longer hypocotyls and reduced anthocyanin accumulation in comparison to wild-type seedlings, which is opposite to the fus6/cop11 mutant phenotype. The long-hypocotyl phenotype was also observed in transgenic seedlings over-expressing Arabidopsis COP9. This finding indicates that over-expression of a functional subunit 1 or subunit 8 of the COP9 signalosome confers a gain-of-function phenotype relative to the complex. Human GPS1, when expressed in the fus6-1 null mutant of Arabidopsis, can assemble into a chimeric COP9 signalosome at low efficiency, demonstrating the structural conservation of the complexes between human and Arabidopsis. This low-abundancy chimeric complex is insufficient to fully rescue the mutant but is able to attenuate the mutant severity.  相似文献   

12.
A dynamic model is proposed to explain how the 1A and linker L1 segments of the rod domain in intermediate filament (IF) proteins affect the head domain organization and vice versa. We have shown in oxidized trichocyte IF that the head domain sequences fold back over and interact with the rod domain. This phenomenon may occur widely in reduced IF as well. Its function may be to stabilize the 1A segments into a parallel two-stranded coiled coil or something closely similar. Under differing reversible conditions, such as altered states of IF assembly, or posttranslational modifications, such as phosphorylation etc., the head domains may no longer associate with the 1A segment. This could destabilize segment 1A and cause the two alpha-helical strands to separate. Linker L1 would thus act as a hinge and allow the heads to function over a wide lateral range. This model has been explored using the amino acid sequences of the head (N-terminal) domains of Type I and Type II trichocyte keratin intermediate filament chains. This has allowed several quasi-repeats to be identified. The secondary structure corresponding to these repeats has been predicted and a model has been produced for key elements of the Type II head domain. Extant disulfide cross-link data have been used as structural constraints. A model for the head domain structure predicts that a twisted beta-sheet region may wrap around the 1A segment and this may reversibly stabilize a coiled-coil conformation for 1A. The evidence in favor of the swinging head model for IF is discussed.  相似文献   

13.
BACKGROUND: Thermodynamic and kinetic studies of the Protein L B1 domain (Ppl) suggest a folding pathway in which, during the folding transition, the first beta hairpin is formed while the second beta hairpin and the alpha helix are largely unstructured. The same mutations in the two beta turns have opposite effects on the folding and unfolding rates. Three of the four residues composing the second beta turn in Ppl have consecutive positive phi angles, indicating strain in the second beta turn. RESULTS: We have determined the crystal structures of the beta turn mutants G55A, K54G, and G15A, as well as a core mutant, V49A, in order to investigate how backbone strain affects the overall structure of Ppl. Perturbation of the hydrophobic interactions at the closed interface by the V49A mutation triggered the domain swapping of the C-terminal beta strand that relieved the strain in the second beta turn. Interestingly, the asymmetric unit of V49A contains two monomers and one domain-swapped dimer. The G55A mutation escalated the strain in the second beta turn, and this increased strain shifted the equilibrium toward the domain-swapped dimer. The K54G structure revealed that the increased stability is due to the reduction of strain in the second beta turn, while the G15A structure showed that increased strain alone is insufficient to trigger domain swapping. CONCLUSIONS: Domain swapping in Ppl is determined by the balance of two opposing components of the free energy. One is the strain in the second beta turn that favors the dimer, and the other is the entropic cost of dimer formation that favors the monomer. A single-site mutation can disrupt this balance and trigger domain swapping.  相似文献   

14.
Acetohydroxy-acid synthases (AHAS) of two mutant strains Streptomyces cinnamonensis ACB-NLR-2 and BVR-18 were chosen for this study for their apparent activation by valine, which regularly acts as an allosteric inhibitor. Sequencing the ilvB genes coding for the AHAS catalytic subunit revealed two distant changes in the mutants, ΔQ217 and E139A, respectively. Homology modeling was used to propose the structural changes caused by those mutations. In the mutant strain ACB-NLR-2 (resistant to 2-amino-3-chlorobutyrate and norleucine), deletion of Q217 affected a helix in ß-domain, distant from the active center. As no mutation was found in the regulatory subunit of this strain, ΔQ217 in IlvB was supposed to be responsible for the observed valine activation, probably via changed properties on the proposed regulatory-catalytic subunit interface. In mutant strain BVR-18 (resistant to 2-oxobutyrate), substitution E139A occurred in a conservative loop near the active center. In vitro AHAS activity assay with the enzyme reconstituted from the wild-type regulatory and BVR-18 catalytic subunits proved that the substitution in the catalytic subunit led to the apparent activation of AHAS by valine. We suggest that the conservative loop participated in a conformational change transfer to the active center during the allosteric regulation.  相似文献   

15.
The oculocerebrorenal syndrome of Lowe (OCRL), also called Lowe syndrome, is characterized by defects of the nervous system, the eye and the kidney. Lowe syndrome is a monogenetic X-linked disease caused by mutations of the inositol-5-phosphatase OCRL1. OCRL1 is a membrane-bound protein recruited to membranes via interaction with a variety of Rab proteins. The structural and kinetic basis of OCRL1 for the recognition of several Rab proteins is unknown. In this study, we report the crystal structure of the Rab-binding domain (RBD) of OCRL1 in complex with Rab8a and the kinetic binding analysis of OCRL1 with several Rab GTPases (Rab1b, Rab5a, Rab6a and Rab8a). In contrast to other effectors that bind their respective Rab predominantly via α-helical structure elements, the Rab-binding interface of OCRL1 consists mainly of the IgG-like β-strand structure of the ASPM-SPD-2-Hydin domain as well as one α-helix. Our results give a deeper structural understanding of disease-causing mutations of OCRL1 affecting Rab binding.  相似文献   

16.
Dual oxidase (DUOX) enzymes support a wide variety of essential reactions, from cellular signaling to thyroid hormone biosynthesis. In Caenorhabditis elegans, the DUOX system (CeDUOX1/2) plays a crucial role in innate immunity and in stabilizing the cuticle by forming tyrosine cross-links. The current model suggests that superoxide generated by CeDUOX1 at the C-terminal NADPH oxidase domain is rapidly converted to H(2)O(2). The H(2)O(2) is then utilized by the N-terminal peroxidase-like domain to cross-link tyrosines. We have now created a series of mutations in the isolated peroxidase domain, CeDUOX1(1-589). One set of mutations investigate the roles of a putative distal tyrosine (Tyr(105)) and Glu(238), a proposed covalent heme-binding residue. The results confirm that Glu(238) covalently binds to the heme group. A second set of mutations (G246D and D392N) responsible for a C. elegans blistering cuticle phenotype was also investigated. Surprisingly, although not among the catalytic residues, both mutations affected heme co-factor binding. The G246D mutant bound less total heme than the wild type, but a higher fraction of it was covalently bound. In contrast, the D392N mutant appears to fold normally but does not bind heme. Molecular dynamics simulations of a CeDUOX1(1-589) homology model implicate displacements of the proximal histidine residue as the likely cause. Both enzymes are structurally stable and through altered heme interactions exhibit partial or complete loss of tyrosine cross-linking activity, explaining the blistering phenotype. This result argues that the CeDUOX peroxidase domain is primarily responsible for tyrosine cross-linking.  相似文献   

17.
Pugh RA  Wu CG  Spies M 《The EMBO journal》2012,31(2):503-514
Structurally similar superfamily I (SF1) and II (SF2) helicases translocate on single-stranded DNA (ssDNA) with defined polarity either in the 5'-3' or in the 3'-5' direction. Both 5'-3' and 3'-5' translocating helicases contain the same motor core comprising two RecA-like folds. SF1 helicases of opposite polarity bind ssDNA with the same orientation, and translocate in opposite directions by employing a reverse sequence of the conformational changes within the motor domains. Here, using proteolytic DNA and mutational analysis, we have determined that SF2B helicases bind ssDNA with the same orientation as their 3'-5' counterparts. Further, 5'-3' translocation polarity requires conserved residues in HD1 and the FeS cluster containing domain. Finally, we propose the FeS cluster-containing domain also provides a wedge-like feature that is the point of duplex separation during unwinding.  相似文献   

18.
Keratins are cytoskeletal proteins encoded by a multigene family. We have identified the first human keratin pseudogene and determined its complete nucleotide sequence. Sequence comparisons indicate that the pseudogene arose from a very recent duplication of the 50-kd keratin (K14) gene. The coding and the intron sequences of the two genes are 95% and 93% identical, respectively. Although the sequence of the regulatory region in the pseudogene is virtually identical to that in the 50-kd functional gene, several deleterious mutations have been identified in the pseudogene. There are three frameshifts in the coding regions, one of which is a perfect 8-bp duplication. A single-base-pair deletion in the first exon and a single-base-pair insertion in the penultimate exon also result in frameshifts. The three remaining deleterious mutations interfere with the mRNA processing signals: two alter the intron/exon boundaries, and the third disrupts the polyadenylation signal. These mutations clearly identify the sequence as a human keratin pseudogene.  相似文献   

19.
Johnson JE  Giorgione J  Newton AC 《Biochemistry》2000,39(37):11360-11369
Protein kinase C is specifically activated by binding two membrane lipids: the second messenger, diacylglycerol, and the amino phospholipid, phosphatidylserine. This binding provides the energy to release an autoinhibitory pseudosubstrate from the active site. Interaction with these lipids recruits the enzyme to the membrane by engaging two membrane-targeting modules: the C1 domain (present as a tandem repeat in most protein kinase Cs) and the C2 domain. Here we dissect the contribution of each domain in recruiting protein kinase C betaII to membranes. Binding analyses of recombinant domains reveal that the C2 domain binds anionic lipids in a Ca(2+)-dependent, but diacylglycerol-independent, manner, with little selectivity for phospholipid headgroup beyond the requirement for negative charge. The C1B domain binds membranes in a diacylglycerol/phorbol ester-dependent, but Ca(2+)-independent manner. Like the C2 domain, the C1B domain preferentially binds anionic lipids. However, in striking contrast to the C2 domain, the C1B domain binds phosphatidylserine with an order of magnitude higher affinity than other anionic lipids. This preference for phosphatidylserine is, like that of the full-length protein, stereoselective for sn-1, 2-phosphatidyl-L-serine. Quantitative analysis of binding constants of individual domains and that of full-length protein reveals that the full-length protein binds membranes with lower affinity than expected based on the binding affinity of isolated domains. In addition to entropic and steric considerations, the difference in binding energy may reflect the energy required to expel the pseudosubstrate from the substrate binding cavity. This study establishes that each module is an independent membrane-targeting module with each, independently of the other, containing determinants for membrane recognition. The presence of each of these modules, separately, in a number of other signaling proteins epitomizes the use of these modules as discreet membrane targets.  相似文献   

20.
Food-borne infections due to Salmonella spp. seldom require antimicrobial therapy, but this is compulsory in systemic salmonellosis. Salmonella resistance to a large panel of antibiotics has been described worldwide. Since the introduction of nalidixic acid in therapy, Salmonella spp. have steadily developed resistance, especially over the last three decades. The source of quinolone resistance is thought to be the selective pressure determined by the use of quinolones in both human and veterinary practices. Resistance acquisition of Salmonella strains is a stepwise process. Several mechanisms are described, which can lead to the development of quinolone resistance. The main mechanism is considered to be linked with mutations in the quinolone-resistance determining region (QRDR) of the target genes (gyrA and gyrB encoding DNA gyrase, and parC and parE encoding topoisomerase IV). This first step in mutational resistance usually determines a rise in the nalidixic acid minimal inhibitory concentration (MIC). The most common amino acid substitutions in the GyrA subunit, resulting in varied degrees of quinolone resistance, occur at codons Ser83 and Asp87. Higher levels of resistance may occur by further mutational steps, with amino acid changes in the same or a different target enzyme. Other mechanisms are as well involved, like increased efflux or plasmid-mediated resistance. Acknowledgement of the epidemiology and the onset mechanisms of quinolone resistance in Salmonella spp. is compulsory, and surveillance for resistant bacteria among human, animal and food sources remains critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号