共查询到20条相似文献,搜索用时 8 毫秒
1.
Cellular senescence is thought to be an important tumor suppression process in vivo. We have previously shown that p53 activation is necessary for CKII inhibition-mediated cellular senescence. Here, CKII inhibition induced acetylation of p53 at K382 in HCT116 and HEK293 cells. This acetylation event was suppressed by SIRT1 activation. CKIIα and CKIIβ were co-immunoprecipitated with SIRT1 in a p53-independent manner. Maltose binding protein pull-down and yeast two-hybrid indicated that SIRT1 bound to CKIIβ, but not to CKIIα. CKII inhibition reduced SIRT1 activity in cells. CKII phosphorylated and activated human SIRT1 in vitro. Finally, SIRT1 overexpression antagonized CKII inhibition-mediated cellular senescence. These results reveal that CKII downregulation induces p53 stabilization by negatively regulating SIRT1 deacetylase activity during senescence. 相似文献
2.
Regulation of cellular senescence by p53. 总被引:17,自引:0,他引:17
Many normal cells respond to potentially oncogenic stimuli by undergoing cellular senescence, a state of irreversibly arrested proliferation and altered differentiated function. Cellular senescence very likely evolved to suppress tumorigenesis. In support of this idea, it is regulated by several tumor suppressor genes. At the heart of this regulation is p53. p53 is essential for the senescence response to short telomeres, DNA damage, oncogenes and supraphysiological mitogenic signals, and overexpression of certain tumor suppressor genes. Despite the well-documented central role for p53 in the senescence response, many questions remain regarding how p53 senses senescence-inducing stimuli and how it elicits the senescent phenotype. 相似文献
3.
MAGE-A genes are a subfamily of the melanoma antigen genes (MAGEs), whose expression is restricted to tumor cells of different origin and normal tissues of the human germline. Although the specific function of individual MAGE-A proteins is being currently explored, compelling evidence suggest their involvement in the regulation of different pathways during tumor progression. We have previously reported that MageA2 binds histone deacetylase (HDAC)3 and represses p53-dependent apoptosis in response to chemotherapeutic drugs. The promyelocytic leukemia (PML) tumor suppressor is a regulator of p53 acetylation and function in cellular senescence. Here, we demonstrate that MageA2 interferes with p53 acetylation at PML-nuclear bodies (NBs) and with PMLIV-dependent activation of p53. Moreover, a fraction of MageA2 colocalizes with PML-NBs through direct association with PML, and decreases PMLIV sumoylation through an HDAC-dependent mechanism. This reduction in PML post-translational modification promotes defects in PML-NBs formation. Remarkably, we show that in human fibroblasts expressing RasV12 oncogene, MageA2 expression decreases cellular senescence and increases proliferation. These results correlate with a reduction in NBs number and an impaired p53 response. All these data suggest that MageA2, in addition to its anti-apoptotic effect, could have a novel role in the early progression to malignancy by interfering with PML/p53 function, thereby blocking the senescence program, a critical barrier against cell transformation. 相似文献
4.
Duc Tran Johann Bergholz Haibo Zhang Hanbing He Yang Wang Yujun Zhang Qintong Li James L. Kirkland Zhi‐Xiong Xiao 《Aging cell》2014,13(4):669-678
Cellular senescence, which is known to halt proliferation of aged and stressed cells, plays a key role against cancer development and is also closely associated with organismal aging. While increased insulin‐like growth factor (IGF) signaling induces cell proliferation, survival and cancer progression, disrupted IGF signaling is known to enhance longevity concomitantly with delay in aging processes. The molecular mechanisms involved in the regulation of aging by IGF signaling and whether IGF regulates cellular senescence are still poorly understood. In this study, we demonstrate that IGF‐1 exerts a dual function in promoting cell proliferation as well as cellular senescence. While acute IGF‐1 exposure promotes cell proliferation and is opposed by p53, prolonged IGF‐1 treatment induces premature cellular senescence in a p53‐dependent manner. We show that prolonged IGF‐1 treatment inhibits SIRT1 deacetylase activity, resulting in increased p53 acetylation as well as p53 stabilization and activation, thus leading to premature cellular senescence. In addition, either expression of SIRT1 or inhibition of p53 prevented IGF‐1‐induced premature cellular senescence. Together, these findings suggest that p53 acts as a molecular switch in monitoring IGF‐1‐induced proliferation and premature senescence, and suggest a possible molecular connection involving IGF‐1‐SIRT1‐p53 signaling in cellular senescence and aging. 相似文献
5.
Extracellular NAMPT/visfatin causes p53 deacetylation via NAD production and SIRT1 activation in breast cancer cells 下载免费PDF全文
Kiarash Behrouzfar Mohammad Alaee Mitra Nourbakhsh Zafar Gholinejad Abolfazl Golestani 《Cell biochemistry and function》2017,35(6):327-333
Visfatin, which is secreted as an adipokine and cytokine, has been implicated in cancer development and progression. In this study, we investigated the NAD‐producing ability of visfatin and its relationship with SIRT1 (silent information regulator 2) and p53 to clarify the role of visfatin in breast cancer. MCF‐7 breast cancer cells were cultured and treated with visfatin. SIRT1 activity was assessed by measuring fluorescence intensity from fluoro‐substrate peptide. To investigate the effect of visfatin on p53 acetylation, SDS‐PAGE followed by western blotting was performed using specific antibodies against p53 and its acetylated form. Total NAD was measured both in cell lysate and the extracellular medium by colorimetric method. Visfatin increased both extracellular and intracellular NAD concentrations. It also induced proliferation of breast cancer cells, an effect that was abolished by inhibition of its enzymatic activity. Visfatin significantly increased SIRT1 activity, accompanied by induction of p53 deacetylation. In conclusion, the results show that extracellular visfatin produces NAD that causes upregulation of SIRT1 activity and p53 deacetylation. These findings explain the relationship between visfatin and breast cancer progression. 相似文献
6.
Wld(S) is a fusion protein with NAD synthesis activity, and has been reported to protect axonal and synaptic compartments of neurons from various mechanical, genetic and chemical insults. However, whether Wld(S) can protect non-neuronal cells against toxic chemicals is largely unknown. Here we found that Wld(S) significantly reduced the cytotoxicity of bipyridylium herbicides paraquat and diquat in mouse embryonic fibroblasts, but had no effect on the cytotoxicity induced by chromium (VI), hydrogen peroxide, etoposide, tunicamycin or brefeldin A. Wld(S) also slowed down the death of mice induced by intraperitoneal injection of paraquat. Further studies demonstrated that Wld(S) markedly attenuated mitochondrial injury including disruption of mitochondrial membrane potential, structural damage and decline of ATP induced by paraquat. Disruption of the NAD synthesis activity of Wld(S) by an H112A or F116S point mutation resulted in loss of its protective function against paraquat-induced cell death. Furthermore, Wld(S) delayed the decrease of intracellular NAD levels induced by paraquat. Similarly, treatment with NAD or its precursor nicotinamide mononucleotide attenuated paraquat-induced cytotoxicity and decline of ATP and NAD levels. In addition, we showed that SIRT1 was required for both exogenous NAD and Wld(S)-mediated cellular protection against paraquat. These findings suggest that NAD and SIRT1 mediate the protective function of Wld(S) against the cytotoxicity induced by paraquat, which provides new clues for the mechanisms underlying the protective function of Wld(S) in both neuronal and non-neuronal cells, and implies that attenuation of NAD depletion may be effective to alleviate paraquat poisoning. 相似文献
7.
8.
Chi Zhang Shunlin Qu Xing Wei Yansheng Feng Honglin Zhu Jia Deng Kangkai Wang Ke Liu Meidong Liu Huali Zhang Xianzhong Xiao 《Cell stress & chaperones》2016,21(2):251-260
Heat shock proteins (HSPs) play important roles in cellular stress resistance. Previous reports had already suggested that HSP27 played multiple roles in preventing doxorubicin-induced cardiotoxicity. Although HSP25 might have biological functions similar to its human homolog HSP27, the mechanism of HSP25 is still unclear in doxorubicin-induced cardiomyocyte apoptosis. To investigate HSP25 biological function on doxorubicin-induced apoptosis, flow cytometry was employed to analyze cell apoptosis in over-expressing HSP25 H9c2 cells in presence of doxorubicin. Unexpectedly, the H9c2 cells of over-expressing HSP25 have no protective effect on doxorubicin-induced apoptosis. Moreover, no detectable interactions were detected by coimmunoprecipitation between HSP25 and cytochrome c, and HSP25 over-expression failed in preventing cytochrome c release induced by doxorubicin. However, down-regulation of endogenous HSP25 by a specific small hairpin RNA aggravates apoptosis in H9c2 cells. Subsequent studies found that HSP25, but not HSP90, HSP70, and HSP20, interacted with SIRT1. Knockdown of HSP25 decreased the interaction between SIRT1 and p53, leading to increased p53 acetylation on K379, up-regulated pro-apoptotic Bax protein expression, induced cytochrome c release, and triggered caspase-3 and caspase-9 activation. These findings indicated a novel mechanism by which HSP25 regulated p53 acetylation through dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. 相似文献
9.
10.
11.
Sirtuins (SIRT) belonging to the NAD+ dependent histone deacetylase III class of enzymes have emerged as master regulators of metabolism and longevity. However, their role in prevention of organismal aging and cellular senescence still remains controversial. In the present study, we now report upregulation of SIRT2 as a specific feature associated with stress induced premature senescence but not with either quiescence or cell death. Additionally, increase in SIRT2 expression was noted in different types of senescent conditions such as replicative and oncogene induced senescence using multiple cell lines. Induction of SIRT2 expression during senescence was dependent on p53 status as depletion of p53 by shRNA prevented its accumulation. Chromatin immunoprecipitation revealed the presence of p53 binding sites on the SIRT2 promoter suggesting its regulation by p53, which was also corroborated by the SEAP reporter assay. Overexpression or knockdown of SIRT2 had no effect on stress induced premature senescence, thereby indicating that SIRT2 increase is not a cause of senescence; rather it is an effect linked to senescence-associated changes. Overall, our results suggest SIRT2 as a promising marker of cellular senescence at least in cells with wild type p53 status. 相似文献
12.
13.
Kapić A Helmbold H Reimer R Klotzsche O Deppert W Bohn W 《Cell death and differentiation》2006,13(2):324-334
To determine pathways cooperating with p53 in cellular senescence when the retinoblastoma protein (pRb)/p16INK4a pathway is defunct, we stably transfected the p16INK4a-negative C6 rat glioma cell line with a temperature-sensitive mutant p53. Activation of p53(Val-135) induces a switch in pocket protein expression from pRb and p107 to p130(Rb2) and stalls the cells in late G1, early S-phase at high levels of cyclin E. Maintenance of the arrest depends on the functions of p130(Rb2) repressing cyclin A. Inactivation of p53 in senescent cultures restores the pocket proteins to initial levels and initiates progression into S-phase, but the cells fail to resume proliferation, likely due to DNA damage becoming apparent in the arrest and activating apoptosis subsequent to the release from p53-dependent growth suppression. The data indicate that p53 can cooperate selectively with p130(Rb2) to induce cellular senescence, a pathway that may be relevant when the pRb/p16INK4a pathway is defunct. 相似文献
14.
Moonen HJ Geraets L Vaarhorst A Bast A Wouters EF Hageman GJ 《Biochemical and biophysical research communications》2005,338(4):1805-1810
Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD+, resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD+ pool, and of NAD+-dependent cellular processes. In this study, PARP-1 activation by hydrogen peroxide decreased intracellular NAD+ levels in human pulmonary epithelial cells, which was found to be prevented in a dose-dependent manner by theophylline, a widely used compound in the treatment of COPD. This enzyme inhibition by theophylline was confirmed in an ELISA using purified human PARP-1 and was found to be competitive by nature. These findings provide new mechanistic insights into the therapeutic effect of theophylline in oxidative stress-induced lung pathologies. 相似文献
15.
Tanno M Sakamoto J Miura T Shimamoto K Horio Y 《The Journal of biological chemistry》2007,282(9):6823-6832
16.
17.
18.
Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence 总被引:2,自引:0,他引:2 下载免费PDF全文
Cosme-Blanco W Shen MF Lazar AJ Pathak S Lozano G Multani AS Chang S 《EMBO reports》2007,8(5):497-503
Dysfunctional telomeres induce p53-dependent cellular senescence and apoptosis, but it is not known which function is more important for tumour suppression in vivo. We used the p53 ( R172P ) knock-in mouse, which is unable to induce apoptosis but retains intact cell-cycle arrest and cellular senescence pathways, to show that spontaneous tumorigenesis is potently repressed in Terc -/- p53 ( R172P ) mice. Tumour suppression is accompanied by global induction of p53, p21 and the senescence marker senescence-associated-beta-galactosidase. By contrast, cellular senescence was unable to suppress chemically induced skin carcinomas. These results indicate that suppression of spontaneous tumorigenesis by dysfunctional telomeres requires the activation of the p53-dependent cellular senescence pathway. 相似文献
19.
hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. 总被引:56,自引:0,他引:56
H Vaziri S K Dessain E Ng Eaton S I Imai R A Frye T K Pandita L Guarente R A Weinberg 《Cell》2001,107(2):149-159