首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Fertilization-induced intracellular calcium (Ca(2+)) oscillations stimulate the onset of mammalian development, and little is known about the biochemical mechanism by which these Ca(2+) signals are transduced into the events of egg activation. This study addresses the hypothesis that transient increases in Ca(2+) similar to those at fertilization stimulate oscillatory Ca(2+)/calmodulin-dependent kinase II (CaMKII) enzyme activity, incrementally driving the events of egg activation. Since groups of fertilized eggs normally oscillate asynchronously, synchronous oscillatory Ca(2+) signaling with a frequency similar to fertilization was experimentally induced in unfertilized mouse eggs by using ionomycin and manipulating extracellular calcium. Coanalysis of intracellular Ca(2+) levels and CaMKII activity in the same population of eggs demonstrated a rapid and transient enzyme response to each increase in Ca(2+). Enzyme activity increased 370% during the first Ca(2+) rise, representing about 60% of maximal activity, and had decreased to basal levels within 5 min from the time Ca(2+) reached its peak value. Single fertilized eggs monitored for Ca(2+) had a mean increase in CaMKII activity of 185%. One and two ionomycin-induced Ca(2+) transients resulted in 39 and 49% mean cortical granule (CG) loss, respectively, while CG exocytosis and resumption of meiosis were inhibited by a CaMKII antagonist. These studies demonstrate that changes in the level of Ca(2+) and in CaMKII activity can be studied in the same cell and that CaMKII activity is exquisitely sensitive to experimentally induced oscillations of Ca(2+) in vivo. The data support the hypothesis that CaMKII activity oscillates for a period of time after normal fertilization and temporally regulates many events of egg activation.  相似文献   

2.
Fertilization triggers initiation of development and establishment of blocks on the egg coat and plasma membrane to prevent fertilization by multiple sperm (polyspermy). The mechanism(s) by which mammalian eggs establish the membrane block to polyspermy is largely unknown. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) appears to be the key regulator of several egg activation events (completion of meiosis, progression to embryonic interphase, recruitment of maternal mRNAs). Since sperm-induced increases in cytosolic Ca(2+) play a role in establishment of the membrane block to polyspermy in mouse eggs, we hypothesized that CaMKII was a Ca(2+)-dependent effector leading to this change in egg membrane function. To test this hypothesis, we modulated CaMKII activity in two ways: activating eggs parthenogenetically by introducing constitutively active CaMKIIalpha (CA-CaMKII) into unfertilized eggs, and inhibiting endogenous CaMKII in fertilized eggs with myristoylated autocamtide 2-related inhibitory peptide (myrAIP). We find that eggs treated with myrAIP establish a less effective membrane block to polyspermy than do control eggs, but that CA-CaMKII is not sufficient for membrane block establishment, despite the fact that CA-CaMKII-activated eggs undergo other egg activation events. This suggests that: (1) CaMKII activity contributes to the membrane block, but this not faithfully mimicked by CA-CaMKII and furthermore, other pathways, in addition to those activated by Ca(2+) and CaMKII, also participate in membrane block establishment; (2) CA-CaMKII has a range of effects as a parthenogenetic trigger of egg activation (high levels of cell cycle resumption, modest levels of cortical granule exocytosis, and no membrane block establishment).  相似文献   

3.
Fertilization in mammalian eggs is accompanied by oscillatory changes in intracellular Ca(2+) concentration, which are critical for initiating and completing egg activation events and the developmental program. Ca(2+)/Camodulin-dependent protein kinase II (CaMKII) is a multifunctional enzyme that is postulated to be the downstream transducer of the Ca(2+) signal in many cell types. We tested the hypothesis that CaMKII is the major integrator of Ca(2+)-induced egg activation events and embryo development by microinjecting a cRNA that encodes a constitutively active (Ca(2+)-independent) mutant form of CaMKII (CA-CaMKII) into mouse eggs. Expression of this cRNA, which does not increase intracellular Ca(2+), induced a sustained rise in CaMKII activity and triggered egg activation events, including cell cycle resumption, and degradation and recruitment of maternal mRNAs; cortical granule exocytosis, however, did not occur normally. Furthermore, when mouse eggs were injected with sperm devoid of Ca(2+)-releasing activity and activated with either CA-CaMKII cRNA or by SrCl(2), similar rates and incidence of development to the blastocyst stage were observed. These results strongly suggest that CaMKII is a major integrator of the Ca(2+) changes that occur following fertilization.  相似文献   

4.
Ca2+-influx and membrane hyperpolarization by sperm-activating and -attracting factor (SAAF) released from the unfertilized egg of the ascidians Ciona cause a transient increase in cAMP, which triggers activation of sperm motility. We demonstrated here the presence of Ca2+-binding protein, calmodulin (CaM), and CaM-dependent kinase II (CaMKII) in the sperm. CaM antagonist, W-7, and CaMKII inhibitor, KN-93, suppressed SAAF-induced membrane hyperpolarization, increase in cAMP, and activation of sperm motility, but inactive analogues of W-7 and KN-93, namely W-5 and KN-92, respectively, did not. Subsequent addition of K+ ionophore, valinomycin, hyperpolarized the plasma membrane, increased cAMP, and conferred motility to the immotile sperm even in the presence of W-7 and KN-93. Addition of IBMX activated motility of sperm, which has been immobilized by W-7 and KN-93. These suggest that increased [Ca2+]i through influx of Ca2+ by SAAF binds to CaM to activate CaMKII. The activated CaMKII may cause membrane hyperpolarization to increase cAMP, which triggers the activation of sperm motility in Ciona.  相似文献   

5.
To investigate whether or not causal relationship exists between the increase in intracellular Ca2+ and other cortical reactions at fertilization in the medaka, Oryzias latipes , intracellular Ca2+ was determined from luminescence of aequorin previously microinjected into cortical cytoplasm in acetone-treated eggs, when they were inseminated or activated by microinjection of Ca2+. Neither an increase in cytoplasmic calcium nor exocytosis of cortical alveoli occurred in eggs treated with acetone, though other events of fertilization i.e. completion of meiosis, fusion of pronuclei, and accumulation of cortical cytoplasm with intact cortical alveoli in the animal pole region were observed in normal time sequence in these eggs. When denuded eggs were treated with acetone, contraction of the egg and slow resumption of meiosis (extrusion of polar body) were observed without insemination. When denuded eggs were inseminated immediately after acetone-treatment, the number of spermatozoa that penetrated into the egg was greater in the animal hemisphere than in the vegetal hemisphere. These results may indicate that acetone inactivates the egg plasma membrane or its adjacent cortical cytoplasm so that it cannot participate in a propagative increase in intracellular Ca2+ and exocytosis, while it also induces cytoplasmic activation leading to egg contraction, resumption of meiosis and formation of pronuclei. The present results suggest that sperm penetration, resumption of meiosis and ooplasmic segregation are regulated separately from the release of intracellular Ca2+ and exocytosis.  相似文献   

6.
The role of calcium in cortical granule exocytosis and activation of the cell cycle at fertilization was examined in the mouse egg using the calcium chelator BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) and the fluorescent calcium indicator fluo-3. BAPTA and fluo-3 were introduced into zona-free mouse eggs by a 30-min incubation with 0.01-50 microM BAPTA acetoxymethyl ester (AM) and/or 1-20 microM fluo-3 AM prior to in vitro fertilization. Incubation of eggs in greater than or equal to 5.0 microM BAPTA AM inhibited cortical granule exocytosis in all cases. Introduction of the calcium chelator into the egg blocked second polar body formation at greater than or equal to 1.0 microM BAPTA AM. Sperm entry occurred in all eggs regardless of the BAPTA AM concentration. Sperm induce a large transient increase in calcium lasting 2.3 +/- 0.6 min, followed by repetitive transients lasting 0.5 +/- 0.1 min and occurring at 3.4 +/- 1.4-min intervals. Incubation with greater than or equal to 5.0 microM BAPTA AM inhibited all calcium transients. Introduction of BAPTA also inhibited calcium transients, exocytosis, and the resumption of meiosis following application of the calcium ionophore A23187 or SrCl2, which activate eggs. These results demonstrate that the calcium increase at fertilization is required for cortical granule exocytosis and resumption of the cell cycle in a mammalian egg.  相似文献   

7.
《Journal of molecular biology》2019,431(7):1440-1459
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine protein kinase that transmits calcium signals in various cellular processes. CaMKII is activated by calcium-bound calmodulin (Ca2+/CaM) through a direct binding mechanism involving a regulatory C-terminal α-helix in CaMKII. The Ca2+/CaM binding triggers transphosphorylation of critical threonine residues proximal to the CaM-binding site leading to the autoactivated state of CaMKII. The demonstration of its critical roles in pathophysiological processes has elevated CaMKII to a key target in the management of numerous diseases. The molecule KN-93 is the most widely used inhibitor for studying the cellular and in vivo functions of CaMKII. It is widely believed that KN-93 binds directly to CaMKII, thus preventing kinase activation by competing with Ca2+/CaM. Herein, we employed surface plasmon resonance, NMR, and isothermal titration calorimetry to characterize this presumed interaction. Our results revealed that KN-93 binds directly to Ca2+/CaM and not to CaMKII. This binding would disrupt the ability of Ca2+/CaM to interact with CaMKII, effectively inhibiting CaMKII activation. Our findings also indicated that KN-93 can specifically compete with a CaMKIIδ-derived peptide for binding to Ca2+/CaM. As indicated by the surface plasmon resonance and isothermal titration calorimetry data, apparently at least two KN-93 molecules can bind to Ca2+/CaM. Our findings provide new insight into how in vitro and in vivo data obtained with KN-93 should be interpreted. They further suggest that other Ca2+/CaM-dependent, non-CaMKII activities should be considered in KN-93–based mechanism-of-action studies and drug discovery efforts.  相似文献   

8.
Calreticulin, a protein best known as an endoplasmic reticulum chaperone, also is found on the extracellular plasma membrane surface of many cell types where it serves as a mediator of adhesion and as a regulator of the immune response. In this report, we demonstrate that calreticulin is present on the extracellular surface of the mouse egg plasma membrane and is increased in the perivitelline space after egg activation. The extracellular calreticulin appears to be secreted by vesicles in the egg cortex that are distinct from cortical granules. An anticalreticulin antibody binds to extracellular calreticulin on live eggs and inhibits sperm-egg binding but not fusion. In addition, engagement of cell surface calreticulin by incubation of mouse eggs in the presence of anticalreticulin antibodies results in alterations in the localization of cortical actin and the resumption of meiosis as indicated by alterations in chromatin configuration, decreases in cdc2/cyclin B1 and MAP kinase activities, and pronuclear formation. These events occur in the absence of any observable alterations in intercellular calcium. These data demonstrate that calreticulin functionally interacts with the egg cytoskeleton and can mediate transmembrane signaling linked to cell cycle resumption. These studies suggest a role for calreticulin as a lectin that may be involved in signal transduction events during or after sperm-egg interactions at fertilization.  相似文献   

9.
Calcium signal is important for the regulation of meiotic cell cycle in oocytes, but its downstream mechanism is not well known. The functional roles of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes were studied by drug treatment, Western blot analysis, kinase activity assay, indirect immunostaining, and confocal microscopy. The results indicated that meiotic resumption of both cumulus-enclosed and denuded oocytes was prevented by CaMKII inhibitor KN-93, Ant-AIP-II, or CaM antagonist W7 in a dose-dependent manner, but only germinal vesicle breakdown (GVBD) of denuded oocytes was inhibited by membrane permeable Ca2+ chelator BAPTA-AM. When the oocytes were treated with KN-93, W7, or BAPTA-AM after GVBD, the first polar body emission was inhibited. A quick elevation of CaMKII activity was detected after electrical activation of mature pig oocytes, which could be prevented by the pretreatment of CaMKII inhibitors. Treatment of oocytes with KN-93 or W7 resulted in the inhibition of pronuclear formation. The possible regulation of CaMKII on maturation promoting factor (MPF), mitogen-activated protein kinase (MAPK), and ribosome S6 protein kinase (p90rsk) during meiotic cell cycles of pig oocytes was also studied. KN-93 and W7 prevented the accumulation of cyclin B and the full phosphorylation of MAPK and p90rsk during meiotic maturation. When CaMKII activity was inhibited during parthenogenetic activation, cyclin B, the regulatory subunit of MPF, failed to be degraded, but MAPK and p90rsk were quickly dephosphorylated and degraded. Confocal microscopy revealed that CaM and CaMKII were localized to the nucleus and the periphery of the GV stage oocytes. Both proteins were concentrated to the condensed chromosomes after GVBD. In oocytes at the meiotic metaphase MI or MII stage, CaM distributed on the whole spindle, but CaMKII was localized only on the spindle poles. After transition into anaphase, both proteins were translocated to the area between separating chromosomes. All these results suggest that CaMKII is a multifunctional regulator of meiotic cell cycle and spindle assembly and that it may exert its effect via regulation of MPF and MAPK/p90rsk activity during the meiotic maturation and activation of pig oocytes.  相似文献   

10.
Elucidation of the biochemical mechanisms by which specific proteins transduce the all important intracellular calcium (Ca2+) signal at fertilization into events of egg activation will increase our understanding of the regulation of the onset of development and the extent to which these signals can be experimentally modified. Previously, we reported data supporting the hypothesis that mouse eggs have the capability to generate oscillations of the activity of Ca2+ and calmodulin-dependent kinase II (CaMKII), regulating the cell cycle and secretion. This study directly demonstrates transient increases of enzyme activity in relatively close synchrony with Ca2+ oscillations for the first hour of fertilization in single mouse eggs monitored for both Ca2+ and CaMKII activity. The extent of the enzyme activity increase was correlated with the level of intracellular Ca2+. After a rise in activity, the decrease in activity did not appear to be due to negative feedback from elevated Ca2+ or CaMKII activity over time, since enzyme activity persisted after 8 min of elevated Ca2+ from 7% ethanol activation. The contribution of CaMKII from a single sperm to the rise in CaMKII activity at fertilization appeared to be negligible. Also, long-term cell cycle inhibition was observed in fertilized eggs with the CaMKII antagonist myrAIP (50 microM), which did not inhibit the first large Ca2+ transient or subsequent early oscillations but did reduce the percentage of eggs fertilized. Thus, mammalian eggs appear to drive many activation events over time to completion with repeated short bursts of Ca2+ oscillation-dependent CaMKII activity, rather than by a steady-state, continuously elevated level of CaMKII activity that is maintained by periodic Ca2+ oscillations.  相似文献   

11.
The ability of parthenogenetically activated mouse eggs to establish a plasma membrane (PM) block to sperm penetration was studied. Zona-free eggs preloaded with Hoechst 33342 were activated by exposure to ethanol or OAG (1-oleoyl-2-acetyl-sn-glycerol) and inseminated after different periods. Eggs challenged with sperm at 30- or 60-min postactivation displayed a fertilization frequency significantly lower than that of control eggs. Conversely, when insemination was carried out at 120-min postactivation, the proportion of fertilized eggs was equivalent to that observed in the control group. Moreover, we report that when the eggs were induced to resume meiosis without any notable loss of CGs (egg exposure to OAG at 100 μM external Ca2+ or to heat shock), a normal ability to be penetrated was recorded at 30-min postactivation. Similar behaviour was exhibited by eggs that underwent a CG exocytosis close to that triggered by sperm in absence of nuclear activation (microinjection of inositol 1,4,5-trisphosphate into the egg at 1 μM cytosolic concentration). Present data support the conclusion that parthenogenetically activated mouse eggs are capable of a transitory PM block response that requires both CG exocytosis and meiosis resumption to occur. © 1994 Wiley-Liss, Inc.  相似文献   

12.
The selective inhibitor of the multifunctional calcium/calmodulin-dependent kinases (CaMK), KN-93, arrests a variety of cell types in G(1). However, the biochemical nature of this G(1) arrest point and the physiological target of KN-93 in G(1) remain controversial. Here we show that in WI-38 human diploid fibroblasts KN-93 reversibly arrested cells in late G(1) prior to detectable cyclin-dependent kinase 4 (cdk4) activation. At the KN-93 arrest point, we found that cyclin D1/cdk4 complexes had assembled with p21/p27, accumulated in the nucleus, and become phosphorylated on Thr-172, yet were relatively inactive. Additional examination of cdk4 complexes by gel filtration analysis demonstrated that, in late G(1), cyclin D1-containing complexes migrated toward lower molecular weight (M(r)) fractions and this altered migration was accompanied by the appearance of two peaks of cdk4 activity, at 150-200 and 70 kDa, respectively. KN-93 prevented both the activation of cdk4, and this shift in cyclin D1 migration and overexpression of cyclin D1/cdk4 overcame the KN-93 arrest. To determine which multifunctional CaMK acts in G(1), we expressed kinase-deficient forms of CaMKI and CaMKII. Overexpression of kinase-deficient CaMKI, but not CaMKII, prevented cdk4 activation, mimicking the KN-93 arrest point. Therefore, we hypothesize that KN-93 prevents a very late, uncharacterized step in cyclin D/cdk4 activation that involves CaMKI and follows complex assembly, nuclear entry, and phosphorylation.  相似文献   

13.
Preovulatory, germinal vesicle (GV)-stage mouse oocytes are unable to undergo normal cortical granule (CG) secretion. Full secretory competence is observed by metaphase II (MII) of meiosis and involves the development of calcium response mechanisms. To identify the deficient or inhibited step in CG secretion, preovulatory GV-stage oocytes were stimulated and tested for their ability to undergo translocation, docking, and/or fusion. The mean CG distance to the plasma membrane was not reduced in fertilized or sperm fraction-injected, GV-stage oocytes relative to that in control GV-stage oocytes. In addition, analysis of individual CG distances to the plasma membrane indicated no subpopulation of CGs competent to translocate. Further analysis demonstrated that secretory incompetence likely is not due to a lack of proximity of CGs to the egg's primary calcium store, the endoplasmic reticulum. Calcium/calmodulin-dependent protein kinase II (CaMKII), which is reportedly involved in secretory granule translocation and secretion in many cells, including eggs, was investigated. A 60-kDa CaMKII isoform detected by Western blot analysis increased 150% during oocyte maturation. The CaMKII activity assays indicated that MII-stage eggs correspondingly have 110% more maximal activity than GV-stage oocytes. These data demonstrate that the primary secretory deficiency is due to a failure of CG translocation, and that a maturation-associated increase in CaMKII correlates with the acquisition of secretory competence and the ability of the egg to undergo normal activation.  相似文献   

14.
KN-93, a Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor, concentration-dependently and reversibly inhibited inositol 1,4,5-trisphosphate receptor (IP(3)R)-mediated [Ca(2+)](i) signaling in mouse eggs and permeabilized A7r5 smooth muscle cells, two cell types predominantly expressing type-1 IP(3)R (IP(3)R-1). KN-92, an inactive analog, was ineffective. The inhibitory action of KN-93 on Ca(2+) signaling depended neither on effects on IP(3) metabolism nor on the filling grade of Ca(2+) stores, suggesting a direct action on the IP(3)R. Inhibition was independent of CaMKII, since in identical conditions other CaMKII inhibitors (KN-62, peptide 281-309, and autocamtide-related inhibitory peptide) were ineffective and since CaMKII activation was precluded in permeabilized cells. Moreover, KN-93 was most effective in the absence of Ca(2+). Analysis of Ca(2+) release in A7r5 cells at varying [IP(3)], of IP(3)R-1 degradation in eggs, and of [(3)H]IP(3) binding in Sf9 microsomes all indicated that KN-93 did not affect IP(3) binding. Comparison of the inhibition of Ca(2+) release and of [(3)H]IP(3) binding by KN-93 and calmodulin (CaM), either separately or combined, was compatible with a specific interaction of KN-93 with a CaM-binding site on IP(3)R-1. This was also consistent with the much smaller effect of KN-93 in permeabilized 16HBE14o(-) cells that predominantly express type 3 IP(3)R, which lacks the high affinity CaM-binding site. These findings indicate that KN-93 inhibits IP(3)R-1 directly and may therefore be a useful tool in the study of IP(3)R functional regulation.  相似文献   

15.
Prenatal ethanol exposure causes significant neurodevelopmental deficits through its induction of apoptosis in neuronal progenitors including the neural crest. Using an established chick embryo model, we previously showed that clinically relevant ethanol concentrations cause neural crest apoptosis through mobilization of an intracellular calcium transient. How the calcium transient initiates this cell death is unknown. In this study, we identify CaMKII as the calcium target responsible for ethanol-induced apoptosis. Immunostaining revealed selective enrichment of activated phosphoCaMKII(Thr286) within ethanol-treated neural crest. CaMKII activation in response to ethanol was rapid (< 60 s) and robust, and CaMKII activity was increased 300% over control levels. Treatment with CaMKII-selective inhibitors but not those directed against CaMKIV or PKC completely prevented the cell death. Forced expression of dominant-negative CaMKII prevented ethanol's activation of CaMKII and prevented the ethanol-induced death, whereas constitutively active CaMKII in ethanol's absence significantly increased cell death to levels caused by ethanol treatment. In summary, CaMKII is the key signal that converts the ethanol-induced, short-lived Ca(i) (2+) transient into a long-lived cellular effector. This is the first identification of CaMKII as a critical mediator of ethanol-induced cell death. Because neural crest differentiates into several neuronal lineages, our findings offer novel insights into how ethanol disrupts early neurogenesis.  相似文献   

16.
Calcium-dependent signaling pathways are thought to be involved in the regulation of mammalian oocyte meiotic maturation. However, the molecular linkages between the calcium signal and the processes driving meiotic maturation are not clearly defined. The present study was conducted to test the hypothesis that the multi-functional calcium/calmodulin-dependent protein kinase II (CaM KII) functions as one of these key linkers. Mouse oocytes were treated with a pharmacological CaM KII inhibitor, KN-93, or a peptide CaM KII inhibitor, myristoylated AIP, and assessed for the progression of meiosis. Two systems for in vitro oocyte maturation were used: (1) spontaneous gonadotropin-independent maturation and (2) follicle-stimulating hormone (FSH)-induced reversal of hypoxanthine-mediated meiotic arrest. FSH-induced, but not spontaneous germinal vesicle breakdown (GVB) was dose-dependently inhibited by both myristoylated AIP and KN-93, but not its inactive analog, KN-92. However, emission of the first polar body (PB1) was inhibited by myristoylated AIP and KN-93 in both oocyte maturation systems. Oocytes that failed to produce PB1 exhibited normal-appearing metaphase I chromosome congression and spindles indicating that CaM KII inhibitors blocked the metaphase I to anaphase I transition. Similar results were obtained when the oocytes were treated with a calmodulin antagonist, W-7, and matured spontaneously. These results suggest that CaM KII, and hence the calcium signaling pathway, is potentially involved in regulating the meiotic maturation of mouse oocytes. This kinase both participates in gonadotropin-induced resumption of meiosis, as well as promoting the metaphase I to anaphase I transition. Further evidence is therefore, provided of the critical role of calcium-dependent pathways in mammalian oocyte maturation.  相似文献   

17.
GluA1 (formerly GluR1) AMPA receptor subunit phosphorylation at Ser-831 is an early biochemical marker for long-term potentiation and learning. This site is a substrate for Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and protein kinase C (PKC). By directing PKC to GluA1, A-kinase anchoring protein 79 (AKAP79) facilitates Ser-831 phosphorylation and makes PKC a more potent regulator of GluA1 than CaMKII. PKC and CaM bind to residues 31-52 of AKAP79 in a competitive manner. Here, we demonstrate that common CaMKII inhibitors alter PKC and CaM interactions with AKAP79(31-52). Most notably, the classical CaMKII inhibitors KN-93 and KN-62 potently enhanced the association of CaM to AKAP79(31-52) in the absence (apoCaM) but not the presence of Ca(2+). In contrast, apoCaM association to AKAP79(31-52) was unaffected by the control compound KN-92 or a mechanistically distinct CaMKII inhibitor (CaMKIINtide). In vitro studies demonstrated that KN-62 and KN-93, but not the other compounds, led to apoCaM-dependent displacement of PKC from AKAP79(31-52). In the absence of CaMKII activation, complementary cellular studies revealed that KN-62 and KN-93, but not KN-92 or CaMKIINtide, inhibited PKC-mediated phosphorylation of GluA1 in hippocampal neurons as well as AKAP79-dependent PKC-mediated augmentation of recombinant GluA1 currents. Buffering cellular CaM attenuated the ability of KN-62 and KN-93 to inhibit AKAP79-anchored PKC regulation of GluA1. Therefore, by favoring apoCaM binding to AKAP79, KN-62 and KN-93 derail the ability of AKAP79 to efficiently recruit PKC for regulation of GluA1. Thus, AKAP79 endows PKC with a pharmacological profile that overlaps with CaMKII.  相似文献   

18.
Although Ca(2+)/calmodulin-dependent protein kinase II delta (CaMKIIδ) has been implicated in development of different phenotypes of myocardial ischaemia-reperfusion injury, its involvement in arrhythmogenesis and cardiac stunning is not sufficiently elucidated. Moreover, the mechanisms by which CaMKIIδ mediates disturbances in excitation-contraction coupling, are not exactly known. To investigate this, KN-93 (0.5 μmol/L), a CaMKII inhibitor, was administered before induction of global ischaemia and reperfusion in isolated Langendorff-perfused rat hearts. Expression of CaMKIIδ and the sarcollemal Ca(2+)-cycling proteins, known to be activated during reperfusion, was analyzed using immunoblotting. KN-93 reduced reperfusion-induced ectopic activity and the incidence of ventricular fibrillation. Likewise, the severity of arrhythmias was lower in KN-treated hearts. During the pre-ischaemia phase, neither inotropic nor chronotropic effects were elicited by KN-93, whereas post-ischaemic contractile recovery was significantly improved. Ischaemia-reperfusion increased the expression of CaMKIIδ and sodium-calcium exchanger (NCX1) proteins without any influence on the protein content of alpha 1c, a pore-forming subunit of L-type calcium channels (LTCCs). On the other hand, inhibition of CaMKII normalized changes in the expression of CaMKIIδ and NCX1. Taken together, CaMKIIδ seems to regulate its own turnover and to be an important component of cascade integrating NCX1, rather than LTCCs that promote ischaemia-reperfusion-induced contractile dysfunction and arrhythmias.  相似文献   

19.
We reported that one of the isoquinolinesulfonamide derivatives, KN-62, is a potent and specific inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII) (Tokumitsu, H., Chijiwa, T., Hagiwara, M., Mizutani, A., Terasawa, M. and Hidaka, H. (1990) J. Biol. Chem. 265, 4315-4320). We have now investigated the inhibitory property of a newly synthesized methoxybenzenesulfonamide, KN-93, on CaMKII activity in situ and in vitro. KN-93 elicited potent inhibitory effects on CaMKII phosphorylating activity with an inhibition constant of 0.37 microM but this compound had no significant effects on the catalytic activity of cAMP-dependent protein kinase, Ca2+/phospholipid dependent protein kinase, myosin light chain kinase and Ca(2+)-phosphodiesterase. KN-93 also inhibited the autophosphorylation of both the alpha- and beta-subunits of CaMKII. Kinetic analysis indicated that KN-93 inhibits CaMKII, in a competitive fashion against calmodulin. To evaluate the regulatory role of CaMKII on catecholamine metabolism, we examined the effect of KN-93 on dopamine (DA) levels in PC12h cells. The DA levels decreased in the presence of KN-93. Further, the tyrosine hydroxylase (TH) phosphorylation induced by KCl or acetylcholine was significantly suppressed by KN-93 in PC12h cells while events induced by forskolin or 8-Br-cAMP were not affected. These results suggest that KN-93 inhibits DA formation by modulating the reaction rate of TH to reduce the Ca(2+)-mediated phosphorylation levels of the TH molecule.  相似文献   

20.
The mechanisms responsible for the plasma membrane associated block to polyspermy in mouse eggs were studied. Reinsemination experiments using zona-free eggs indicated that, after fertilization, the egg plasma membrane is altered such that sperm binding to the egg plasma membrane is blocked, except in the region of the second polar body. Activation of the egg with either ethanol or strontium chloride did not result in a block to polyspermic penetration, as artificially activated eggs displayed identical penetration levels as to nonactivated control eggs. The penetrability of activated eggs was not altered by the presence or absence of the zona pellucida during activation. Lectin staining for egg cortical granule material indicated that activation did cause cortical granule exocytosis; however, activated eggs remained penetrable. These data support the following conclusions: (1) an alteration in the ability of the egg plasma membrane to allow sperm adherence accounts for the block to polyspermy; (2) establishment of the plasma membrane block to polyspermy is sperm dependent, since artificial egg activation does not result in a block response; (3) the contents of the egg's cortical granules do not play a role in the establishment of the plasmalemma block response. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号