首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protozoan parasite Plasmodium causes malaria, with hundreds of millions of cases recorded annually. Protection against malaria infection can be conferred by antibodies against merozoite surface protein (MSP)-1, making it an attractive vaccine candidate. Here we present the structure of the C-terminal domains of MSP-1 (known as MSP-1(19)) from Plasmodium knowlesi. The structure reveals two tightly packed epidermal growth factor-like domains oriented head to tail. In domain 1, the molecule displays a histidine binding site formed primarily by a highly conserved tryptophan. The protein carries a pronounced overall negative charge primarily due to the large number of acidic groups in domain 2. To map protein binding surfaces on MSP-1(19), we have analyzed the crystal contacts in five different crystal environments, revealing that domain 1 is highly preferred in protein-protein interactions. A comparison of MSP-1(19) structures from P. knowlesi, P. cynomolgi, and P. falciparum shows that, although the overall protein folds are similar, the molecules show significant differences in charge distribution. We propose the histidine binding site in domain 1 as a target for inhibitors of protein binding to MSP-1, which might prevent invasion of the merozoite into red blood cells.  相似文献   

2.
With more than half the world's population living at risk of malaria infection, there is a strong demand for the development of an effective malaria vaccine. One promising vaccine candidate is merozoite surface protein 2 (MSP2), which is among the most abundant antigens of the blood stage of the Plasmodium falciparum parasite. In solution, MSP2 is intrinsically unstructured, but little is known about the conformation of native MSP2, which is GPI-anchored to the merozoite surface, or of the implications of that conformation for the immune response induced by MSP2. Initial NMR studies have shown that MSP2 interacts with lipid micelles through a highly conserved N-terminal domain. We have further developed these findings by investigating how different lipid environments affect the protein structure. All of the tested lipid preparations perturbed only the N-terminal part of MSP2. In DPC micelles this region adopts an α-helical structure which we have characterized in detail. Our findings suggest a possible mechanism by which lipid interactions might modulate immune recognition of the conserved N-terminus of MSP2, potentially explaining the apparent immunodominance of the central variable region of this important malaria antigen.  相似文献   

3.
Merozoite surface protein 2 (MSP2) from the human malaria parasite Plasmodium falciparum is expressed as a GPI-anchored protein on the merozoite surface. It has been implicated in the process of erythrocyte invasion and is a leading vaccine candidate. MSP2 is an intrinsically unstructured protein (IUP), and recombinant MSP2 forms amyloid-like fibrils upon storage. We have examined synthetic peptides corresponding to sequences in the conserved N-terminal region of MSP2 for the presence of local structure and the ability to form fibrils related to those formed by full-length MSP2. In a 25-residue peptide corresponding to the entire N-terminal region of mature MSP2, structures calculated from NMR data show the presence of nascent helical and turn-like structures. An 8-residue peptide from the central region of the N-terminal domain (residues 8-15) also formed a turn-like structure. Both peptides formed fibrils that were similar but not identical to the amyloid-like fibrils formed by full-length MSP2. Notably, the fibrils formed by the peptides bound both Congo Red and Thioflavin T, whereas the fibrils formed by full-length MSP2 bound only Congo Red. The propensity of peptides from the N-terminal conserved region of MSP2 to form amyloid-like fibrils makes it likely that this region contributes to fibril formation by the full-length protein. Thus, in contrast to the more common pathway of amyloid formation by structured proteins, which proceeds via partially unfolded intermediates that then undergo beta-aggregation, MSP2 is an example of a largely unstructured protein with at least one small structured region that has an important role in fibril formation.  相似文献   

4.
Merozoite surface protein 1 (MSP1) is the major protein component on the surface of the merozoite, the erythrocyte-invasive form of the malaria parasite Plasmodium. Present in all species of Plasmodium, it undergoes two distinct proteolytic maturation steps during the course of merozoite development that are essential for invasion of the erythrocyte. Antibodies specific for the C-terminal maturation product, MSP1-19, can inhibit erythrocyte invasion and parasite growth. This polypeptide is therefore considered to be one of the more promising malaria vaccine candidates. We describe here the crystal structure of recombinant MSP1-19 from P.falciparum (PfMSP1-19), the most virulent species of the parasite in humans, as a complex with the Fab fragment of the monoclonal antibody G17.12. This antibody recognises a discontinuous epitope comprising 13 residues on the first epidermal growth factor (EGF)-like domain of PfMSP1-19. Although G17.12 was raised against the recombinant antigen expressed in an insect cell/baculovirus system, it binds uniformly to the surface of merozoites from the late schizont stage, showing that the cognate epitope is exposed on the naturally occurring MSP1 polypeptide complex. Although the epitope includes residues that have been mapped to regions recognised by invasion-inhibiting antibodies studied by other workers, G17.12 does not inhibit erythrocyte invasion or MSP1 processing.  相似文献   

5.
Merozoite surface protein 2 (MSP2), one of the most abundant proteins on the surface of the merozoite stage of Plasmodium falciparum, is a potential component of a malaria vaccine, having shown some efficacy in a clinical trial in Papua New Guinea. MSP2 is a GPI-anchored protein consisting of conserved N- and C-terminal domains and a variable central region. Previous studies have shown that it is an intrinsically unstructured protein with a high propensity for fibril formation, in which the conserved N-terminal domain has a key role. Secondary structure predictions suggest that MSP2 contains long stretches of random coil with very little α-helix or β-strand. Circular dichroism spectroscopy confirms this prediction under physiological conditions (pH 7.4) and in more acidic solutions (pH 6.2 and 3.4). Pulsed field gradient NMR diffusion measurements showed that MSP2 under physiological conditions has a large effective hydrodynamic radius consistent with an intrinsic pre-molten globule state, as defined by Uversky. This was supported by sedimentation velocity studies in the analytical ultracentrifuge. NMR resonance assignments have been obtained for FC27 MSP2, allowing the residual secondary structure and backbone dynamics to be defined. There is some motional restriction in the conserved C-terminal region in the vicinity of an intramolecular disulfide bond. Two other regions show motional restrictions, both of which display helical structure propensities. One of these helical regions is within the conserved N-terminal domain, which adopts essentially the same conformation in full-length MSP2 as in corresponding peptide fragments. We see no evidence of long-range interactions in the full-length protein. MSP2 associates with lipid micelles, but predominantly through the N-terminal region rather than the C terminus, which is GPI-anchored to the membrane in the parasite.  相似文献   

6.
Plasmodium falciparum merozoite surface is specifically labelledwith a neoglycoprotein bearing N-acetylgluco-samine (GlcNAc)residues in a sugar-dependent manner, as shown by affinity cytochemistryin fluorescence and electron microscopy. To ascertain the natureof the sugar receptor, merozoite proteins were blotted and testedby a two-step method using biotinylated GlcNAc—bovineserum albumin (BSA) and streptavidin—peroxidase conjugate.Three parasite proteins were specifically revealed and designatedas Pf 120, Pf 83 and Pf 45 GlcNAc-binding proteins. These proteinsbind to a gel substituted with GlcNAc and are specifically elutedwith 300 mM GlcNAc. Using a rabbit antiserum raised againstPf 83, the Pf 120 GlcNAc-binding protein, in addition to Pf83, was labelled by Western blotting. Comparative analyses withan antibody against the Pf 83 MSP derived from the P.falciparummerozoite surface protein (Pf MSP) indicated that the Pf 83GlcNAc-binding protein is not related to the fragment of thePf MSP antigen. Similarly, the Pf 83 GlcNAc-binding proteinis not related to the apical membrane antigen 1 (AMA 1) whichalso has the same molecular mass. Therefore the Pf 120, Pf 83and Pf 45 GlcNAc-binding proteins which are located on the merozoitesurface and recognize GlcNAc residues could be involved in thebinding of merozoites to the glycoconjugates of the surfaceof the red blood cells. GlcNAc lectin neoglycoprotein Plasmodium falciparum red blood cell  相似文献   

7.
Myosin 10 contains a region of predicted coiled coil 120 residues long. However, the highly charged nature and pattern of charges in the proximal 36 residues appear incompatible with coiled-coil formation. Circular dichroism, NMR, and analytical ultracentrifugation show that a synthesized peptide containing this region forms a stable single alpha-helix (SAH) domain in solution and does not dimerize to form a coiled coil even at millimolar concentrations. Additionally, electron microscopy of a recombinant myosin 10 containing the motor, the three calmodulin binding domains, and the full-length predicted coiled coil showed that it was mostly monomeric at physiological protein concentration. In dimers the molecules were joined only at their extreme distal ends, and no coiled-coil tail was visible. Furthermore, the neck lengths of both monomers and dimers were much longer than expected from the number of calmodulin binding domains. In contrast, micrographs of myosin 5 heavy meromyosin obtained under the same conditions clearly showed a coiled-coil tail, and the necks were the predicted length. Thus the predicted coiled coil of myosin 10 forms a novel elongated structure in which the proximal region is a SAH domain and the distal region is a SAH domain (or has an unknown extended structure) that dimerizes only at its end. Sequence comparisons show that similar structures may exist in the predicted coiled-coil domains of myosins 6 and 7a and MyoM and could function to increase the size of the working stroke.  相似文献   

8.
Merozoite surface protein 2 (MSP2) from the human malaria parasite Plasmodium falciparum is expressed as a GPI-anchored protein on the merozoite surface. MSP2 is assumed to have a role in erythrocyte invasion and is a leading vaccine candidate. Recombinant MSP2 forms amyloid-like fibrils upon storage, as do peptides corresponding to sequences in the conserved N-terminal region, which constitutes the structural core of fibrils formed by full-length MSP2. We have investigated the roles of individual residues in fibril formation and local ordered structure in two peptides, a recombinant 25-residue peptide corresponding to the entire N-terminal domain of mature MSP2 and an 8-residue peptide from the central region of this domain (residues 8–15). Both peptides formed fibrils that were similar to amyloid-like fibrils formed by full-length MSP2. Phe11 and Ile12 have important roles both in stabilising local structure in these peptides and promoting fibril formation; the F11A and I12A mutants of MSP28–15 were essentially unstructured in solution and fibril formation at pH 7.4 and 4.7 was markedly retarded. The T10A mutant showed intermediate behaviour, having a less well defined structure than wild-type and slower fibril formation at pH 7.4. The mutation of Phe11 and Ile12 in MSP21–25 significantly retarded but did not abolish fibril formation, indicating that these residues also play a key role in fibril formation by the entire N-terminal conserved region. These mutations had little effect on the aggregation of full-length MSP2, however, suggesting that regions outside the conserved N-terminus have unanticipated importance for fibril formation in the full-length protein.  相似文献   

9.
Plasmodium vivax remains the most widespread Plasmodium parasite species around the world, producing about 75 million malaria cases, mainly in South America and Asia. A vaccine against this disease is of urgent need, making the identification of new antigens involved in target cell invasion, and thus potential vaccine candidates, a priority. A protein belonging to the P. vivax merozoite surface protein 7 (PvMSP7) family was identified in this study. This protein (named PvMSP7(1)) has 311 amino acids displaying an N-terminal region sharing high identity with P. falciparum MSP7, as well as a similar proteolytical cleavage pattern. This protein's expression in P. vivax asexual blood stages was revealed by immuno-histochemical and molecular techniques.  相似文献   

10.
11.
Merozoite surface protein 3 (MSP3), an important vaccine candidate, is a soluble polymorphic antigen associated with the surface of Plasmodium falciparum merozoites. The MSP3 sequence contains three blocks of heptad repeats that are consistent with the formation of an intramolecular coiled-coil. MSP3 also contains a glutamic acid-rich region and a putative leucine zipper sequence at the C-terminus. We have disrupted the msp3 gene by homologous recombination, resulting in the expression of a truncated form of MSP3 that lacks the putative leucine zipper sequence but retains the glutamic acid-rich region and the heptad repeats. Here, we show that truncated MSP3, lacking the putative leucine zipper region, does not localize to the parasitophorous vacuole or interact with the merozoite surface. Furthermore, the acidic-basic repeat antigen (ABRA), which is present on the merozoite surface, also was not localized to the merozoite surface in parasites expressing the truncated form of MSP3. The P. falciparum merozoites lacking MSP3 and ABRA on the surface show reduced invasion into erythrocytes. These results suggest that MSP3 is not absolutely essential for blood stage growth and that the putative leucine zipper region is required for the trafficking of both MSP3 and ABRA to the parasitophorous vacuole.  相似文献   

12.
The first interaction between the malaria merozoite and the red blood cell it will invade is mediated by molecules on the surface of the two cells. The Plasmodium falciparum merozoite surface protein (MSP)1 complex that contains MSP1 and two other parasite proteins, MSP6 and MSP7, is likely to be an important component in this process. This article reviews the role of the MSP1 complex in the biology of the host parasite interface with a focus on MSP7 and related proteins that are coded by gene families in each of the different Plasmodium spp.  相似文献   

13.
Merozoite surface protein 3 of Plasmodium falciparum, a 40-kDa protein that also binds heme, has been biophysically characterized for its tendency to form highly elongated oligomers. This study aims to systematically analyze the regions in MSP3 sequence involved in oligomerization and correlate its aggregation tendency with its high affinity for binding with heme. Through size exclusion chromatography, dynamic light scattering, and transmission electron microscopy, we have found that MSP3, previously known to form elongated oligomers, actually forms self-assembled filamentous structures that possess amyloid-like characteristics. By expressing different regions of MSP3, we observed that the previously described leucine zipper region at the C terminus of MSP3 may not be the only structural element responsible for oligomerization and that other peptide segments like MSP3(192–196) (YILGW) may also be required. MSP3 aggregates on incubation were transformed to long unbranched amyloid fibrils. Using immunostaining methods, we found that 5–15-μm-long fibrillar structures stained by anti-MSP3 antibodies were attached to the merozoite surface and also associated with erythrocyte membrane. We also found MSP3 to bind several molecules of heme by UV spectrophotometry, HPLC, and electrophoresis. This study suggested that its ability to bind heme is somehow related to its inherent characteristics to form oligomers. Moreover, heme interaction with a surface protein like MSP3, which does not participate in hemozoin formation, may suggest a protective role against the heme released from unprocessed hemoglobin released after schizont egress. These studies point to the other roles that MSP3 may play during the blood stages of the parasite, in addition to be an important vaccine candidate.  相似文献   

14.
The evidence of protection afforded by red blood cell polymorphisms against either clinical malaria or Plasmodium falciparum blood levels varies with the study site and the type of malaria transmission. Nevertheless, no clear implication of an antibody-related effect has yet been established in the protection related to red blood cell polymorphisms. We performed a prospective study, where plasma IgG and IgG subclasses directed to recombinant proteins from the merozoite surface protein 2 (MSP2/3D7 and MSP2/FC27) and the ring-infected erythrocyte surface antigen (RESA) were determined in a cohort of 413 Senegalese children before the annual malaria transmission season. The antibody response was dependent on age, and to a lesser extent, on the village of residence. IgG3 responders to all proteins, IgG responders to RESA and MSP2/3D7, as well as IgG2 to RESA and IgG1 responders to MSP2/3D7, presented enhanced mean values of parasite density, as evaluated during an 18-month follow-up. The levels of IgG and IgG3 to MSP2/3D7 were negatively associated with the risk of occurrence of a malaria attack during the following transmission season. Compared to normal children, sickle cell trait carriers presented lower levels of IgG to MSP2/3D7. Similarly, G6PD A- girls had lower levels of IgG and IgG3 to MSP2/FC27 than did G6PD normal girls. The impact of these particular genetic polymorphisms on the modulation of the antibody response is discussed.  相似文献   

15.
16.
The C-terminal region of the merozoite surface protein 1 (MSP1_(19)) is one of the mostpromising vaccine candidates against the erythrocytic forms of malaria.In the present study,a gene encodingPlasmodium falciparum MSP1_(19) was expressed in yeast Pichia pastoris.A non-glycosylated form of therecombinant protein MSP1_(19) was purified from culture medium.This recombinant protein maintains itsantigenicity.Significant immune responses were seen in C57BL/6 mice after the second immunization.Moreover,the specific antibodies recognized the native antigens of P.falciparum,The prevailing isotypesof immunoglobulin (Ig)G associated with immunization were IgG1,IgG2a and IgG2b.The antibodiesisolated from mouse sera immunized with MSP1_(19) can inhibit parasite growth in vitro.Based on theseimmunological studies,we concluded that MSP1_(19) deserves further evaluation in pre-clinical immunizationsagainst P.falciparum.  相似文献   

17.
Malaria parasites induce complex cellular and clinical phenotypes, including anemia, cerebral malaria and death in a wide range of mammalian hosts. Host genes and parasite 'toxins' have been implicated in malarial disease, but the contribution of parasite genes remains to be fully defined. Here we assess disease in BALB/c mice and Wistar rats infected by the rodent malaria parasite Plasmodium berghei with a gene knock out for merozoite surface protein (MSP) 7. MSP7 is not essential for infection but in P. falciparum, it enhances erythrocyte invasion by 20%. In vivo, as compared to wild type, the P. berghei Δmsp7 mutant is associated with an abrogation of death and a decrease from 3% to 2% in peak, circulating parasitemia. The Δmsp7 mutant is also associated with less anemia and modest increase in the size of follicles in the spleen. Together these data show that deletion of a single parasite invasion ligand modulates blood stage disease, as measured by death and anemia. This work is the first to assess the contribution of a gene present in all plasmodial species in severe disease.  相似文献   

18.
Erythrocyte invasion by malaria parasites requires multiple protein interactions. Our earlier studies showed that erythrocyte band 3 is an invasion receptor binding Plasmodium falciparum merozoite surface protein 1 and 9 (MSP1, MSP9) existing as a co-ligand complex. In this study, we have used biochemical approaches to identify the binding sites within MSP1 and MSP9 involved in the co-ligand complex formation. A major MSP9-binding site is located within the 19kDa C-terminal domain of MSP1 (MSP1(19)). Two specific regions of MSP9 defined as Delta1a and Delta2 interacted with native MSP1(19). The 42 kDa domain of MSP1 (MSP1(42)) bearing MSP1(19) in the C-terminus bound directly to both MSP9/Delta1a and Delta2. Thus, the regions of MSP1 and MSP9 interacting with the erythrocyte band 3 receptor are also responsible for assembling the co-ligand complex. Our evidence suggests a ternary complex is formed between MSP1, MSP9, and band 3 during erythrocyte invasion by P. falciparum.  相似文献   

19.
20.
Merozoite surface protein 1 (MSP1) has been identified as a target antigen for protective immune responses against asexual blood stage malaria, but effective vaccines based on MSP1 have not been developed so far. We have modified the sequence of Plasmodium yoelii MSP119 (the C-terminal region of the molecule) and examined the ability of the variant proteins to bind protective monoclonal antibodies and to induce protection by immunization. In parallel, we examined the structure of the protein and the consequences of the amino acid changes. Naturally occurring sequence polymorphisms reduced the binding of individual protective antibodies, indicating that they contribute to immune evasion, but immunization with these variant proteins still provided protective immunity. One variant that resulted in the localized distortion of a loop close to the N-terminus of MSP119 almost completely ablated protection by immunization, indicating the importance of this region of MSP119 as a target for protective immunity and in vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号