首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Live history evolution in Serpulimorph polychaetes: a phylogenetic analysis   总被引:1,自引:0,他引:1  
The widely accepted hypothesis of plesiomorphy of planktotrophic, and apomorphy of lecithotrophic, larval development in marine invertebrates has been recently challenged as a result of phylogenetic analyses of various taxa. Here the evolution of planktotrophy and lecithotrophy in Serpulimorph polychaetes (families Serpulidae and Spirorbidae) was studied using a hypothesis of phylogenetic relationships in this group. A phylogenetic (parsimony) analysis of 36 characters (34 morphological, 2 developmental) was performed for 12 selected serpulid and 6 spirorbid species with known reproductive/developmental strategies. Four species of Sabellidae were used in the outgroup. The analysis yielded 4 equally parsimonious trees of 78 steps, with a consistency index (CI) of 0.654 (CI excluding uninformative characters is 0.625). Under the assumption of unweighted parsimony analysis, planktotrophic larvae are apomorphic and non-feeding brooded embryos are plesiomorphic in serpulimorph polychaetes. The estimated polarity of life history transitions may be strengthened by further studies demonstrating an absence of a unidirectional bias in planktotrophy-lecithotrophy transition in polychaetes.  相似文献   

3.
The genus Cyclope Risso, 1826 (family Nassariidae) has appeared in the fossil record since the Pliocene. Although it is still found today, the teleoconch morphology has never undergone modification, despite the fact that the protoconch morphologies of fossils (multispiral) and living forms (paucispiral) are different. They vary in their embryological and larval development and, hence, are two different species: C. migliorinii (Bevilacqua, 1928), the fossil species, and C. neritea (Linnaeus, 1758), the living species. We discuss the morphologic modifications in the evolution of this genus: the speciation that leads to its appearance and the speciation driving the Pliocene species to the living one. The order and the direction of these changes are based on phylogenetic analysis. No intermediate forms have been found showing a gradual morphological change that could have been worked by natural selection. Our analysis takes as the origin of the morphological novelties the genetic modifications in the ontogenetic processes which resulted in rapid and important phenotypic changes. Both speciation processes are sympatric cladogenetic. The changes that determine the appearance of the genus affect only the teleoconch, not the larval development. The modifications that lead from one species to the other, within the genus Cycope, affect the larval development exclusively. This points to a certain disconnection between the development of the embryo-larval phase and the young-adult formation, such that evolutionary processes could have occurred independently in different ontogenetic stages. The influence of larval ecology in relation to extinction of the ancestor and persistence of the derived species is also analysed. We hypothesize that climatic fluctuations may have affected the planktonic larvae of the fossil species, driving it to extinction. The living species, developing without the planktonic phase, would have resisted these climatic changes. We consider that the mechanisms described as drivers of the evolution of this genus can be of more general validity in prosobranch gastropods.  相似文献   

4.
The reproductive modes of anurans (frogs and toads) are the most diverse of terrestrial vertebrates, and a major challenge is identifying selective factors that promote the evolution or retention of reproductive modes across clades. Terrestrialized anuran breeding strategies have evolved repeatedly from the plesiomorphic fully aquatic reproductive mode, a process thought to occur through intermediate reproductive stages. Several selective forces have been proposed for the evolution of terrestrialized reproductive traits, but factors such as water systems and co‐evolution with ecomorphologies have not been investigated. We examined these topics in a comparative phylogenetic framework using Afrobatrachian frogs, an ecologically and reproductively diverse clade representing more than half of the total frog diversity found in Africa (~400 species). We infer direct development has evolved twice independently from terrestrialized reproductive modes involving subterranean or terrestrial oviposition, supporting evolution through intermediate stages. We also detect associations between specific ecomorphologies and oviposition sites, and demonstrate arboreal species exhibit an overall shift toward using lentic water systems for breeding. These results indicate that changes in microhabitat use associated with ecomorphology, which allow access to novel sites for reproductive behavior, oviposition, or larval development, may also promote reproductive mode diversity in anurans.  相似文献   

5.
Plethodontid salamanders capture prey with enhanced tongue protraction relative to other salamander taxa, yet metamorphosing plethodontids are hypothesized to be constrained relative to direct-developing plethodontids in their degree of tongue evolution (protraction length and velocity) by the presence of a larval stage in development. In this biphasic life history the hyobranchial apparatus serves the conflicting functions of larval suction feeding and adult tongue protraction. The deletion of the larval stage removes one of the conflicting functions and has thus permitted direct-developing plethodontids to circumvent this constraint and evolve extremely long tongues, which in some species can be projected to 80% of body length. To evaluate this constraint hypothesis and explore taxonomic diversity of feeding behaviours, we studied feeding in larvae, adults and metamorphosing individuals of seven species of metamorphosing plethodontids from the basal taxa Desmognathinae and Hemidactyliini using direct observations, high-speed videography and kinematic analysis. We found that larval plethodontids suction feed, but feeding is suspended entirely during metamorphosis, and aquatic adults do not suction feed. Adults have exapted the terrestrial modes of tongue and jaw prehension for aquatic prey capture. These findings substantiate the premise that suction feeding and tongue protraction are conflicting functions, and thus our results support the constraint hypothesis. Plethodontid adults have evolved their extreme tongue protraction ability at the expense of adult suction feeding. The rapid metamorphosis that characterizes plethodontids may be an adaptation that minimizes the non-feeding period imposed by the evolution of derived tongue protraction in adults. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 134 , 375–400.  相似文献   

6.
The Old World tree frogs (Anura: Rhacophoridae), with 387 species, display a remarkable diversity of reproductive modes – aquatic breeding, terrestrial gel nesting, terrestrial foam nesting and terrestrial direct development. The evolution of these modes has until now remained poorly studied in the context of recent phylogenies for the clade. Here, we use newly obtained DNA sequences from three nuclear and two mitochondrial gene fragments, together with previously published sequence data, to generate a well‐resolved phylogeny from which we determine major patterns of reproductive‐mode evolution. We show that basal rhacophorids have fully aquatic eggs and larvae. Bayesian ancestral‐state reconstructions suggest that terrestrial gel‐encapsulated eggs, with early stages of larval development completed within the egg outside of water, are an intermediate stage in the evolution of terrestrial direct development and foam nesting. The ancestral forms of almost all currently recognized genera (except the fully aquatic basal forms) have a high likelihood of being terrestrial gel nesters. Direct development and foam nesting each appear to have evolved at least twice within Rhacophoridae, suggesting that reproductive modes are labile and may arise multiple times independently. Evolution from a fully aquatic reproductive mode to more terrestrial modes (direct development and foam nesting) occurs through intermediate gel nesting ancestral forms. This suggests that gel nesting is not only a possible transitional state for the evolution of terrestriality, but also that it is a versatile reproductive mode that may give rise to other terrestrial reproductive modes. Evolution of foam nesting may have enabled rhacophorids to lay a larger number of eggs in more open and drier habitats, where protection from desiccation is important. Terrestrial direct development allows frogs to lay eggs independent of bodies of water, in a diversity of humid habitats, and may represent a key innovation that facilitated the evolution of nearly half of all known rhacophorid species.  相似文献   

7.
Development in marine invertebrate species can take place through a variety of modes and larval forms, but within a species, developmental mode is typically uniform. Poecilogony refers to the presence of more than one mode of development within a single species. True poecilogony is rare, however, and in some cases, apparent poecilogony is actually the result of variation in development mode among recently diverged cryptic species. We used a phylogenetic approach to examine whether poecilogony in the marine polychaete worm, Pygospio elegans, is the result of cryptic speciation. Populations of worms identified as P. elegansooded, and intermediate larvae; these modes are found both within and among populations. We examined sequence variation among partial mitochondrial cytochrome c oxidase subunit I sequences obtained for 279 individual worms sampled across broad geographic and environmental scales. Despite a large number of unique haplotypes (121 haplotypes from 279 individuals), sequence divergence among European samples was low (1.7%) with most of the sequence variation observed within populations, relative to the variation among regions. More importantly, we observed common haplotypes that were widespread among the populations we sampled, and the two most common haplotypes were shared between populations differing in developmental mode. Thus, our results support an earlier conclusion of poecilogony in P elegans. In addition, predominantly planktonic populations had a larger number of population-specific low-frequency haplotypes. This finding is largely consistent with interspecies comparisons showing high diversity for species with planktonic developmental modes in contrast to low diversity in species with brooded developmental modes.  相似文献   

8.
In free-spawning marine invertebrates, larval development typically proceeds by one of two modes: planktotrophy (obligate larval feeding) from small eggs or lecithotrophy (obligate non-feeding) from relatively large eggs. In a rare third developmental mode, facultative planktotrophy, larvae can feed, but do not require particulate food to complete metamorphosis. Facultative planktotrophy is thought to be an intermediate condition that results from an evolutionary increase in energy content in the small eggs of a planktotrophic ancestor. We tested whether an experimental reduction in egg size is sufficient to restore obligate planktotrophy from facultative planktotrophy and whether the two sources of larval nutrition (feeding and energy in the egg) differentially influence larval survival and juvenile quality. We predicted, based on its large egg size, that a reduction in egg size in the echinoid echinoderm Clypeaster rosaceus would affect juvenile size but not time to metamorphosis. We reduced the effective size of whole (W) zygotes by separating blastomeres at the two- or four-cell stages to create half- (H) or quarter-size (Q) “zygotes” and reared larvae to metamorphosis, both with and without particulate food. Larvae metamorphosed at approximately the same time regardless of food or egg size treatment. In contrast, juveniles that developed from W zygotes were significantly larger, had higher organic content and had longer and more numerous spines than juveniles from H or Q zygotes. Larvae from W, H and Q zygotes were able to reach metamorphosis without feeding, suggesting that the evolution of facultative planktotrophy in C. rosaceus was accompanied by more than a simple increase in egg size. In addition, our results suggest that resources lost by halving egg size have a larger effect on larval survival and juvenile quality than those lost by withholding particulate food.  相似文献   

9.
The planktonic larvae of marine invertebrates are diverse in their nutritional modes, suggesting that evolutionary transitions in larval nutritional mode have been frequent. One approach to identifying the developmental changes that play important roles in such transitions is to compare "intermediate" larval forms to closely related larvae representative of their common ancestor. Here we make such a comparison between obligately planktotrophic and facultatively feeding larvae of the poecilogonous polychaete annelid Streblospio benedicti. We used feeding experiments to show that the derived, facultatively feeding larvae of this species develop the ability to feed at a later developmental stage (five muscle bands) than planktotrophic larvae (two to three muscle bands). This delay in the onset of feeding ability does not appear to be caused by delay in the formation of particle capture structures, but instead by delay in the development of a continuous, functional gut. These observations are consistent with the hypothesis that evolutionary increases in egg size in annelids lead predictably to heterochronic delays in gut development, and hence to transitions in larval nutritional mode.  相似文献   

10.
Despite strong selective pressure to optimize larval life history in marine environments, there is a wide diversity with regard to developmental mode, size, and time larvae spend in the plankton. In the present study, we assessed if adaptive hypotheses explain the distribution of the larval life history of thoracican barnacles within a strict phylogenetic framework. We collected environmental and larval trait data for 170 species from the literature, and utilized a complete thoracican synthesis tree to account for phylogenetic nonindependence. In accordance with Thorson's rule, the fraction of species with planktonic‐feeding larvae declined with water depth and increased with water temperature, while the fraction of brooding species exhibited the reverse pattern. Species with planktonic‐nonfeeding larvae were overall rare, following no apparent trend. In agreement with the “size advantage” hypothesis proposed by Strathmann in 1977, egg and larval size were closely correlated. Settlement‐competent cypris larvae were larger in cold water, indicative of advantages for large juveniles when growth is slowed. Planktonic larval duration, on the other hand, was uncorrelated to environmental variables. We conclude that different selective pressures appear to shape the evolution of larval life history in barnacles.  相似文献   

11.
Life history diversity and evolution in the Asterinidae   总被引:3,自引:1,他引:2  
Asterinid sea stars have the greatest range of life historiesknown for the Asteroidea. Larval form in these sea stars hasbeen modified in association with selection for planktonic,benthic, or intergonadal developmental habitats. Life historydata are available for 31 species and molecular data for 28of these. These data were used to assess life history evolutionand relationships among asterinid clades. Lecithotrophy is prevalentin Asterinidae, with at least 6 independent origins of thisdevelopmental mode. Morphological differences in the attachmentcomplex of brachiolaria larvae were evident among species withplanktonic lecithotrophy. Some features are clade specific whileothers are variable within clades. Benthic brachiolariae aresimilar in Aquilonastra and Parvulastra with tripod-shaped larvae,while the bilobed sole-shaped larvae of Asterina species appearunique to this genus. Multiple transitions and pathways havebeen involved in the evolution of lecithotropy in the Asterinidae.Although several genera have a species with a planktonic feedinglarva in a basal phylogenetic position, relative to specieswith planktonic or benthic lecithotrophy, there is little evidencefor the expected life history transformation series from planktonicfeeding, to planktonic non-feeding, to benthic non-feeding development.Intragonadal development, a life history pattern unique to theAsterinidae, arose three times through ancestors with benthicor pelagic lecithotrophy. Evolution of lecithotrophy appearsmore prevalent in the Asterinidae than other asteroid families.As diverse modes of development are discerned in cryptic speciescomplexes, new insights into life history evolution in the Asterinidaeare being generated.  相似文献   

12.
Terrestrialization, the evolution of non-aquatic oviposition, and miniaturization, the evolution of tiny adult body size, are recurring trends in amphibian evolution, but the relationships among the traits that characterize these phenomena are not well understood. Furthermore, these traits have been identified as possible "key innovations" that are predicted to increase rates of speciation in those lineages in which they evolve. We examine terrestrialization and miniaturization in sub-Saharan puddle frogs (Phrynobatrachidae) in a phylogenetic context to investigate the relationship between adaptation and diversification through time. We use relative dating techniques to ascertain if character trait shifts are associated with increased diversification rates, and we evaluate the likelihood that a single temporal event can explain the evolution of those traits. Results indicate alternate reproductive modes evolved independently in Phrynobatrachus at least seven times, including terrestrial deposition of eggs and terrestrial, non-feeding larvae. These shifts towards alternate reproductive modes are not linked to a common temporal event. Contrary to the "key innovations" hypothesis, clades that exhibit alternate reproductive modes have lower diversification rates than those that deposit eggs aquatically. Adult habitat, pedal webbing and body size have no effect on diversification rates. Though these traits putatively identified as key innovations for Phrynobatrachus do not seem to be associated with increased speciation rates, they may still provide opportunities to extend into new niches, thus increasing overall diversity.  相似文献   

13.
14.
The relationship between duration in the fossil record and larval ecology, based on the protoconch morphology, has been analysed for 40 species of Nassarius Duméril, 1806. The lifespan of species with planktotrophic larval development is significantly longer than for those with nonplanktotrophic development. Many species, representing both forms of larval ecology, cluster around certain values of longevity. This macroevolutionary tendency does not correspond to a phylogenetic pattern, nor does it depend on the ecology of the adult forms. The results are explained by means of a hypothesis on dispersion capacity of the larvae, taking into account the particular geological history of the Mediterranean and eastern Atlantic regions during the Neogene. Additional hypotheses, relating to, e.g., ecological tolerance or trophism, are rejected as being unnecessary in this case. □ Longevity, larval ecology, gastropods, Nassariidae, Neogene, Mediterranean, Atlantic.  相似文献   

15.
Species with large eggs and nonfeeding larvae have evolved many times from ancestors with smaller eggs and feeding larvae in numerous groups of aquatic invertebrates and amphibians. This change in reproductive allocation and larval form is often accompanied by dramatic changes in development. Little is known of this transformation because the intermediate form (a facultatively feeding larva) is rare. Knowledge of facultatively feeding larvae may help explain the conditions under which nonfeeding larvae evolve. Two hypotheses concerning the evolutionary loss of larval feeding are as follows: (1) large eggs evolve before modifications in larval development, and (2) the intermediate form (facultatively feeding larva) is evolutionarily short-lived. I show that larvae of a heart urchin, Brisaster latifrons, are capable of feeding but do not require food to complete larval development. Food for larvae appears to have little effect on larval growth and development. The development, form, and suspension feeding mechanism of these larvae are similar to those of obligate-feeding larvae of other echinoids. Feeding rates of Brisaster larvae are similar to cooccurring, obligate-feeding echinoid larvae but are low relative to the large size of Brisaster larvae. The comparison shows that in Brisaster large egg size, independence from larval food, and relatively low feeding rate have evolved before the heterochronies and modified developmental mechanisms common in nonfeeding echinoid larvae. If it is general, the result suggests that hypotheses concerning the origin of nonfeeding larval development should be based on ecological factors that affect natural selection for large eggs, rather than on the evolution of heterochronies and developmental novelties in particular clades. I also discuss alternative hypotheses concerning the evolutionary persistence of facultative larval feeding as a reproductive strategy. These hypotheses could be tested against a phylogenetic hypothesis.  相似文献   

16.
Asexual reproduction, a rare trait among cestodes in general, occurs in the “larval” (metacestode) stage of species of the family Taeniidae. The distribution of this trait among taeniid species is not consistent with an ecological hypothesis of current environmental predictability. We therefore chose a subset of the family and studied their phylogenetic relationships by Wagner parsimony analysis as a test of historical influences on asexual reproduction. We produced a consensus tree based on four 50-step trees with consistency indices of 0.38. Given these hypothetical relationships, we found that asexual reproduction either arose or was lost multiple times. Moreover, this consensus tree is incongruent with both definitive and intermediate host phylogenies, and asexual reproduction does not correlate with host transfers inferred from these phylogenies. Developmental and phylogenetic constraints on asexual reproduction therefore appear to have been minimal. Given current information, neither historical constraint nor explanations invoking adaptation based on environmental predictability can account for life-history variation in these cestodes.  相似文献   

17.
Loss of larval parasitism in parasitengonine mites   总被引:1,自引:0,他引:1  
Larval Parasitengona are typically parasites, yet at least 29 species of water mites and one species of Trombidiidae forgo larval feeding and any association with a host. Species with non-feeding larvae are isolated cases within species groups or genera where the remaining species have parasitic larvae. Species without larval parasitism occur in at least 14 genera, eight families and four superfamilies of water mites; the loss of larval parasitism is presumably polyphyletic, having occurred at least 21 times. Lineages of water mites with non-feeding larvae frequently exist in parallel with almost identical populations or species that have parasitic larvae. Thus, there is tremendous potential for studies comparing the relative merits of the two life history strategies. Comparisons indicate that adults from lineages with non-parasitic larvae produce smaller numbers of larger eggs; the extra nutrition included in larger eggs permits the larvae to forgo feeding. Non-feeding larvae frequently have wider dorsal plates but reduced leg length, setal length and sclerotization when compared to parasitic larvae from sister lineages. The adults of lineages with non-feeding larvae are frequently smaller in comparison to adults of sister lineages with parasitic larvae. There is no apparent pattern in relation to habitat: lineages lacking larval parasitism occur in streams, temporary ponds and the littoral and planktonic regions of permanent lakes. © Rapid Science Ltd. 1998  相似文献   

18.
The evolution of lecithotrophic (non-feeding) development in sea urchins is associated with reduction or loss of structures found in the planktotrophic (feeding) echinopluteus larvae. Reductions or losses of larval feeding structures include pluteal arms, their supporting skeleton and the ciliated band that borders them. The barrel-shaped lecithotrophic larva of Heliocidaris erythrogramma has, at its posterior end, two or three ciliated band segments comprised of densely packed, elongate cilia. These cilia may be expressions of the epaulettes that would have been present in an ancestral larval form, represented today by the feeding echinopluteus of H. tuberculata . We compared the development and cellular organization of the larval ciliary structures of both Heliocidaris species to assess whether the ciliary bands of H. erythrogramma are expressions of the feeding ciliated band or epaulettes of an echinopluteus. Epaulette development in feeding larvae of H. tuberculata involves separation of specific parts of the ciliated band from the rest of the feeding ciliated band, hyperplastic addition of ciliated cells and hypertrophic growth of the cilia. Like epaulettes, the ciliated bands of H. erythrogramma are composed of long spindle-shaped cells arranged in a cup-shaped collection that bulges into the blastocoel; and these cells have elongated cilia. In their developmental origin and topological arrangement however, the ciliated bands of H. erythrogramma correspond more closely with parts of the pluteal feeding ciliated band than with epaulettes. The larvae of this echinoid appear to develop epaulette-like bands from parts of the original (but reduced) feeding ciliated band. The evolution of development in H. erythrogramma has thus involved both conservation and change in echinopluteal ciliary structures.  相似文献   

19.

Background

Archaeologists and anthropologists have long recognized that different cultural complexes may have distinct descent histories, but they have lacked analytical techniques capable of easily identifying such incongruence. Here, we show how Bayesian phylogenetic analysis can be used to identify incongruent cultural histories. We employ the approach to investigate Iranian tribal textile traditions.

Methods

We used Bayes factor comparisons in a phylogenetic framework to test two models of cultural evolution: the hierarchically integrated system hypothesis and the multiple coherent units hypothesis. In the hierarchically integrated system hypothesis, a core tradition of characters evolves through descent with modification and characters peripheral to the core are exchanged among contemporaneous populations. In the multiple coherent units hypothesis, a core tradition does not exist. Rather, there are several cultural units consisting of sets of characters that have different histories of descent.

Results

For the Iranian textiles, the Bayesian phylogenetic analyses supported the multiple coherent units hypothesis over the hierarchically integrated system hypothesis. Our analyses suggest that pile-weave designs represent a distinct cultural unit that has a different phylogenetic history compared to other textile characters.

Conclusions

The results from the Iranian textiles are consistent with the available ethnographic evidence, which suggests that the commercial rug market has influenced pile-rug designs but not the techniques or designs incorporated in the other textiles produced by the tribes. We anticipate that Bayesian phylogenetic tests for inferring cultural units will be of great value for researchers interested in studying the evolution of cultural traits including language, behavior, and material culture.  相似文献   

20.
Evolution of echinoderm development from a feeding to a non-feeding mode can be examined by studying non-feeding larvae with structures that appear to be vestiges derived from a feeding ancestral state. The lecithotrophic larvae of the Australian brittle star Ophionereis schayeri possess such features, and the early development of this species was documented by light and scanning electron microscopy. The embryos undergo irregular cleavage, resulting in the formation of different sized blastomeres, with subsequent development through a wrinkled blastula stage. The lecithotrophic larva of O. schayeri possesses several vestigial ophiopluteal structures, including a continuous ciliated band, a larval gut, and a larval skeleton. The ciliated band is a reduced expression of the continuous ciliated band typical of ophioplutei. The larval gut is a transiently complete system, but an esophageal plug and rapid closure of the blastopore renders it nonfunctional. The larval skeleton, though reduced, consists of four rods corresponding to the body, posterolateral, anterolateral, and postoral rods characteristic of an ophiopluteus. Due to a heterochrony in larval skeletogenesis, the postoral rods develop early and simultaneously with the other rods. Compared with the larvae of other lecithotrophic ophiuroids, the larva of O. schayeri is one of the most reduced ophiopluteal forms reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号