首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
1. N-acetyltransferase was present in pineal glands of 14-day-old chick embryos though no rhythm either in LL, DD or LD 12:12 was observed in this age. 2. Daily rhythm in pineal NAT activity was found in 18-day-old embryos incubated under LD 12:12 and LD 16:8 but no NAT rhythm was detected in DD or LL. 3. NAT rhythm persists for 2 days in constant darkness and it may be circadian in nature. 4. Presence of melatonin (85 +/- 8 pg/mg tissue) was detected in pineals of 18-day-old chick embryos.  相似文献   

2.
Egg to eclosion development time and survivorship were assayed on four laboratory populations of Drosophila melanogaster that had been reared for over 600 generations in continuous light (LL) and constant temperature. The assays were performed in three environments: continuous light (LL), periodically varying light/dark cycles (LD 12:12 hr), and continuous darkness (DD). Development time in LL was significantly less than that in LD, which, in turn, was significantly less than that in DD, whereas survivorship did not differ significantly among the three treatments. The results indicate that individuals from Drosophila populations routinely maintained in LL do not suffer any deleterious effects of LL treatment on pre-adult fitness. Other studies on these populations have shown that free-running period (t) of the eclosion rhythm in DD is greater than that in LD. Our results are, thus, also consistent with the notion that development time may be a function of the free-running period.  相似文献   

3.
Egg to eclosion development time and survivorship were assayed on four laboratory populations of Drosophila melanogaster that had been reared for over 600 generations in continuous light (LL) and constant temperature. The assays were performed in three environments: continuous light (LL), periodically varying light/dark cycles (LD 12:12 hr), and continuous darkness (DD). Development time in LL was significantly less than that in LD, which, in turn, was significantly less than that in DD, whereas survivorship did not differ significantly among the three treatments. The results indicate that individuals from Drosophila populations routinely maintained in LL do not suffer any deleterious effects of LL treatment on pre-adult fitness. Other studies on these populations have shown that free-running period (t) of the eclosion rhythm in DD is greater than that in LD. Our results are, thus, also consistent with the notion that development time may be a function of the free-running period.  相似文献   

4.
In previous experiments, we found that rats raised in constant light (LL) manifested a more robust circadian rhythm of motor activity in LL and showed longer phase shifts after a light pulse in constant darkness (DD) than those raised under constant darkness. In addition, we observed that the effects produced by constant light differed depending on the time of postnatal development in which it was given. These results suggest that both sensitivity to light and the functioning of the circadian pacemaker of the rat could be affected by the environmental conditions experienced during postembryonic development. Thus, the present experiment aimed to study whether postnatal exposure to light could also affect the circadian system of the mouse. Three groups of mice were formed: One group was raised under constant darkness during lactation (DD group), the second under constant light (LL group), and the third under light-dark cycles (LD group). After lactation, the three groups were submitted first to constant light of high intensity, then to LD cycles, and finally to constant darkness. In the DD stage, a light pulse was given. Finally, mice were submitted to constant light of low intensity. We observed that the circadian rhythm of the DD group was more disturbed under constant light than the rhythm of the LL group, and that, when light intensity increased, the period of the rhythm of the DD group lengthened more than that of the LL group. No significant differences among the groups were found in the phase shift induced by the light pulse. Therefore, it appears that DD mice are more sensitive to light than their LL counterparts. However, at present there is no evidence to affirm that the light environment experienced by the mouse during postnatal development affects the circadian pacemaker. (Chronobiology International, 18(4), 683-696, 2001)  相似文献   

5.
The morphology of the retinal epithelium (RPE), choriocapillaris and Bruch's membrane (complexus basalis) has been investigated by light and electron microscopy in an elasmobranch, the southern fiddler ray or guitarfish (Trygonorhina fasciata). The RPE consists of a single layer of cuboidal cells which display basal (scleral) infoldings as well as numerous apical (vitreal) finger-like processes which interdigitate with the photoreceptor outer segments. The lateral cell borders are relatively smooth and are joined in the mid-region by a series of tight junctions. Internally the RPE nucleus is large, vesicular and centrally located. Smooth endoplasmic reticulum (SER) is abundant while rough endoplasmic reticulum (RER) is scarce. Polysomes are however widespread and mitochondria are plentiful. Two unusual organelles are also noted. One consists of a membrane bound array of tubules while the other is a membrane bound structure consisting of a granular matrix with again an internal tubular array. This species possesses a choroidally located tapetum lucidum in the superior fundus and over this tapetal area, melanosomes are absent from the RPE cells. In non-tapetal locations a few melanosomes are present that do not appear to undergo photomechanical movements. Bruch's membrane is a pentalaminate structure with an almost continuous central elastic layer (lamina densa). The choriocapillaris forms a single layer of capillaries with a thin but only minimally fenestrated endothelium facing Bruch's membrane.  相似文献   

6.
Cells of an unusual Paramecium bursaria stock (Sj2) expressed rhythmic mating reactivity in a light/dark cycle (LD) and under continuous illumination (LL). When placed in continuous darkness (DD), did not show rhythmicity but rather demonstrated a continuous high mating reactivity. However, mating reactivity was reduced following exposure to a 6-h light pulse interrupting the DD, and then recovered to its former condition. Genetic analysis showed the arrhythmicity in DD to be a dominant character inherited in a Mendelian ratio. On the other hand, a clone (MCIw) that did not show the rhythmicity in either DD or LL was isolated from the parent stock Sj2w following a 5-h treatment with 2 μg/ml nitrosoguanidine (MNNG). The MCIw cells expressed weak rhythmicity in LD, but were insensitive to a 6-h light pulse in DD. The arrhythmicity in LL was inherited cytoplasmically. In addition to this, rhythmicity in LL could be recovered by injection of cytoplasm from the wild-type cell when the recipient cell was homozygous for the wild-type nuclear gene (+/+). The cytoplasmic components or factors are assumed to control the functional circadian system and genetically determine the rhythmicity of mating reactivity.  相似文献   

7.
Summary Myeloid bodies (MBs) occur in the newt (Notophthalmus viridescens) retinal pigment epithelium (RPE) and are similar to areas of specialized endoplasmic reticulum found in a variety of other cell types. The function of these structures is unknown, although a role in lipid metabolism has been strongly suggested. Random samples from conventionally-fixed and sectioned newt RPE, obtained over a 24-hr cycle (LD 1212), were examined by electron microscopy. Myeloid bodies appear as stacks of flattened endoplasmic reticulum-associated saccules which increase in length and number as the RPE accumulates shed outer segment material, prior to increase in the amount of stored lipid. Associations of MBs with the nuclear envelope can be related to this increased length. Myeloid bodies decrease numerically in the cell as phagosomes are removed from the cytoplasm, but a decrease in mean sectional MB area, seen in the light phase, is counteracted in darkness where individual MBs are larger than those found in the light. The total sectional area of MBs within a cell and their mean length varied depending on the lighting condition; differences were also found between eyes after extended periods of continuous light and dark. Ribosomes were found in association with the surfaces of both flattened and circular MBs, but they were consistently more densely associated with the shorter concave surfaces of curved regions. A new hypothesis for MB function is presented, which is concerned with their role in isolating toxic lipids such as retinoids, which are accumulated during phagocytosis of shed outer segment tips, and which are capable of disrupting membrane-bound systems necessary for their eventual metabolism and safe storage.  相似文献   

8.
In previous experiments, we found that rats raised in constant light (LL) manifested a more robust circadian rhythm of motor activity in LL and showed longer phase shifts after a light pulse in constant darkness (DD) than those raised under constant darkness. In addition, we observed that the effects produced by constant light differed depending on the time of postnatal development in which it was given. These results suggest that both sensitivity to light and the functioning of the circadian pacemaker of the rat could be affected by the environmental conditions experienced during postembryonic development. Thus, the present experiment aimed to study whether postnatal exposure to light could also affect the circadian system of the mouse. Three groups of mice were formed: One group was raised under constant darkness during lactation (DD group), the second under constant light (LL group), and the third under light-dark cycles (LD group). After lactation, the three groups were submitted first to constant light of high intensity, then to LD cycles, and finally to constant darkness. In the DD stage, a light pulse was given. Finally, mice were submitted to constant light of low intensity. We observed that the circadian rhythm of the DD group was more disturbed under constant light than the rhythm of the LL group, and that, when light intensity increased, the period of the rhythm of the DD group lengthened more than that of the LL group. No significant differences among the groups were found in the phase shift induced by the light pulse. Therefore, it appears that DD mice are more sensitive to light than their LL counterparts. However, at present there is no evidence to affirm that the light environment experienced by the mouse during postnatal development affects the circadian pacemaker. (Chronobiology International, 18(4), 683–696, 2001)  相似文献   

9.
Arctic and subarctic environments are exposed to extreme light: dark (LD) regimes, including periods of constant light (LL) and constant dark (DD) and large daily changes in day length, but very little is known about circadian rhythms of mammals at high latitudes. The authors investigated the circadian rhythms of a subarctic population of northern red-backed voles (Clethrionomys rutilus). Both wild-caught and third-generation laboratory-bred animals showed predominantly nocturnal patterns of wheel running when exposed to a 16:8 LD cycle. In LL and DD conditions, animals displayed large phenotypic variation in circadian rhythms. Compared to wheel-running rhythms under a 16:8 LD cycle, the robustness of circadian activity rhythms decreased among all animals tested in LL and DD (i.e., decreased chi-squared periodogram waveform amplitude). A large segment of the population became noncircadian (60% in DD, 72% in LL) within 8 weeks of exposure to constant lighting conditions, of which the majority became ultradian, with a few individuals becoming arrhythmic, indicating highly labile circadian organization. Wild-caught and laboratory-bred animals that remained circadian in wheel running displayed free-running periods between 23.3 and 24.8 h. A phase-response curve to light pulses in DD showed significant phase delays at circadian times 12 and 15, indicating the capacity to entrain to rapidly changing day lengths at high latitudes. Whether this phenotypic variation in circadian organization, with circadian, ultradian, and arrhythmic wheel-running activity patterns in constant lighting conditions, is a novel adaptation to life in the arctic remains to be elucidated.  相似文献   

10.
Cell populations of Paramecium bursaria show arhythmic mating reactivity after exposure to constant light (LL) for more than 2 wk. After this arhythmic population is exposed to darkness for 9 h, the mating reactivity rhythm of the cell population reappears. The phases of rhythms in individual cells are synchronized to each other. When the arhythmic population in constant light is exposed to dark pulses of various durations, the first peak of the recovered mating reactivity rhythm appears 6 h after the end of the dark pulse. Thus, in the case of dark pulses to cells in LL, the transition from dark to light sets the phase of the subsequent mating reactivity rhythm. When an arhythmic population in LL is transferred to constant darkness (DD), a rhythm of mating reactivity also appears and, in this case, the first peak of the rhythm occurs 18 h after the LL to DD transition. Therefore, arhythmic populations of cells in LL can be synchronized by either a dark pulse or by transition to continuous darkness. When the arhythmic populations in LL were transferred to various light/dark (LD) cycles, the mating reactivity rhythms entrained to LD cycles of 18 to 30 h in duration. Finally, mating rhythms can also be synchronized by treatment with puromycin (400 μg/ml for 6–18 h).  相似文献   

11.
Summary Adult newts,Notophthalmus viridescens, were maintained for 8 days at a constant temperature of 11.0±0.5 °C. In one series, the control animals were kept in constant darkness (DD), while the experimental newts were exposed to alternating 12-hour periods of light and dark (LD). In a second series, controlNotophthalmus lived in DD, and experimental animals lived in constant light (LL). In both series, the newts were sacrificed on the ninth day when blood smears were prepared. Differential counts of the leukocytes of animals that lived under the LD regimen were the same as those of controlNotophthalmus (Table 1). However, in newts that were maintained in LL, the neutrophils increased and the lymphocytes decreased relative to those types of cells in the controls (Table 1). Those changes indicate that continuous light constitutes stress for this species.Supported in part by a grant from the Committee on Research, Travel and Sabbatical Leaves, Colby College  相似文献   

12.
The comparison was made of the effect of LL and DD with LD 14:10 photoperiods on the 24-h secretion cycle of serotonin secretion and the activity patterns of Leiobunum longipes from Southwestern Michigan. LL and DD altered the normal activity patterns but did not change the pattern of serotonin secretion. The activity pattern in normal photoperiod (LD 14:10) produced a 12-h cosinor pattern, resulting in a 24-h biphasic activity peak model. The activity peaked in both scotophase and photophase . The altered patterns in LL and DD were different. In LL a rhythmic component could not be statistically determined. A high, irregular level of activity was seen, higher than the mean level in LD. In DD a combined 24 and 48 h cosinor pattern best fit the observed data. The major peaks occurred in nature during every other photophase and alternate scotophase time in the constant photoperiod conditions. Serotonin secretion patterns in LD, LL, and DD statistically fitted a 24-h cosinor model. Peak secretion times occurred in mid photophase for LD and LL. A later photophase peak was seen in DD. LL animals showed a mean level of serotonin and secretion pattern which was not statistically different from LD. The hypothesis that LD photoperiods direct a peak of serotonin secretion which initiated the activity pattern could not be accepted.  相似文献   

13.
Summary The retinal pigment epithelium (RPE) of the newt (Notophthalmus viridescens) was examined ultrastructurally under both in-vivo and in-vitro conditions. Five distinct conformations of smooth endoplasmic reticulum (SER), two lamellar and three tubular, were observed. The two lamellar conformations included myeloid bodies, which have previously been described (Yorke and Dickson 1984), and fenestrated SER. The latter appeared as layers of flattened or curved cisternae which were penetrated by fenestrations. Fenestrated SER became indistinguishable from the highly branched and convoluted random-tubular SER through the formation of an intermediate configuration (tubular sheets). The remaining tubular SER conformations appeared to arise from random-tubular SER through a progressive reduction in branching and a straightening of individual tubules. Fascicular SER was represented by the hexagonal organization of straight, unbranched tubules into bundles (fascicles). Spiral SER consisted of a similar hexagonal arrangement, but the unbranched tubules spiralled about one another. Neighbouring tubules in areas of spiral SER were also joined together by pairs of electrondense bars. Although lamellar (especially myeloid bodies) and random-tubular configurations of the SER were common features in vivo, fascicular and spiral SER were primarily conformations encountered in vitro. Conditions favouring bilayer lipid phases also appear to facilitate the formation of both myeloid bodies and fascicular SER. These conditions included increased duration of incubation, low (<20° C) incubation temperatures, and Ca2+-free incubations with EGTA. Random-tubular SER was most prevalent in media supplemented with fetal calf serum and also after warmer (30° C) incubation temperatures. We speculate that the different conformations of SER observed in the newt RPE may be due, in part, to lipid phase transitions within the membranes of this organelle. However, the specific formation of fascicular and spiral SER may also involve some additional factor, possibly a protein.Supported by grant # MT-5039 from the Medical Research Council of Canada to DHD  相似文献   

14.
L C Zoller 《Acta anatomica》1984,118(4):218-223
The ultrastructure of the membrana granulosa (MG) of rat preovulatory follicles was examined using stereological techniques. Organelles studied were nuclei, mitochondria, lipid droplets (LD), lysosomes, and smooth and rough endoplasmic reticulum (SER, RER). The peripheral region of the MG contained the greatest volume of mitochondria, LD and SER, organelles associated with steroidogenesis. The volume of RER, an organelle associated with protein production, was greatest in the cumulus oophorus. These results corroborate previous analyses and demonstrate that the rat MG is composed of discrete subregions.  相似文献   

15.
Long-term recordings of locomotor activity were obtained from intact freshwater crabs, Pseudothelphusa americana in constant darkness (DD), constant light (LL) and different light-dark (LD) protocols. Bimodal rhythms were typically observed in this crab when subjected to DD or LD, with bouts of activity anticipating lights-on and lights-off, respectively. Freerunning circadian rhythms were expressed in both DD and LL for longer than 30 days. In DD, we observed that some animals presented different period lengths for each activity component. During LL, activity was primarily unimodal, however spontaneous splitting of the rhythms were observed in some animals. When activity was recorded under artificial long days, the morning bouts maintained their phase relationship but the evening bouts changed their phase relationship with the Zeitgeber. Our results indicate that, bimodal locomotor activity rhythm in the crab Pseudothelphusa americana is variable among organisms. The characteristics of phase relationship with LD and responses to LL for morning and evening bouts, suggest that, locomotor activity could be driven by multiple oscillators, and that coupling between these oscillators may be regulated by light.  相似文献   

16.
Long-term recordings of locomotor activity were obtained from intact freshwater crabs, Pseudothelphusa americana in constant darkness (DD), constant light (LL) and different light-dark (LD) protocols. Bimodal rhythms were typically observed in this crab when subjected to DD or LD, with bouts of activity anticipating lights-on and lights-off, respectively. Freerunning circadian rhythms were expressed in both DD and LL for longer than 30 days. In DD, we observed that some animals presented different period lengths for each activity component. During LL, activity was primarily unimodal, however spontaneous splitting of the rhythms were observed in some animals. When activity was recorded under artificial long days, the morning bouts maintained their phase relationship but the evening bouts changed their phase relationship with the Zeitgeber. Our results indicate that, bimodal locomotor activity rhythm in the crab Pseudothelphusa americana is variable among organisms. The characteristics of phase relationship with LD and responses to LL for morning and evening bouts, suggest that, locomotor activity could be driven by multiple oscillators, and that coupling between these oscillators may be regulated by light.  相似文献   

17.
《Chronobiology international》2012,29(12):1638-1645
ABSTRACT

The effect of constant light and constant darkness on intraocular pressure (IOP) in goats has not been investigated. We hypothesized that IOP variations would differ between goats kept under a cycle of 12 hours of light and 12 hours of darkness (LD), constant darkness (DD), and constant light (LL). To test this hypothesis, goats were exposed to these conditions for five days (LD, 30 goats; DD, 10 goats; LL, 10 goats). IOP was measured by applanation tonometry at 9 a.m. (beginning of photophase in LD) and 9 p.m. (beginning of scotophase in LD) on the fourth and fifth days of exposure. We found that changes in mean IOP from 9 a.m. to 9 p.m. differed significantly between groups (χ2(2) = 23.04, p < .0001). Most goats in LD showed a regular pattern of higher IOP in the morning and lower IOP in the evening, whereas those in DD and LL did not follow this pattern. In LD conditions, mean IOP was 2.4 mm Hg lower at 9 p.m. than at 9 a.m. (95% confidence interval for the difference (CI): ?2.8 to ?1.9 mm Hg, p < .0001). In DD conditions, mean IOP did not differ between 9 p.m. and 9 a.m. (CI: ?0.9 to 0.8 mm Hg, p = .90). In LL conditions, it was 0.6 mm Hg lower at 9 p.m. (CI: ?1.5 to 0.2 mm Hg, p = .12). Our results indicate that IOP in goats kept in LD is higher in the morning than in the evening, and that IOP variations are reduced in goats kept in DD and LL. These results suggest that exposure to alternating periods of light and darkness is important for maintaining rhythmic variations in IOP in this species.  相似文献   

18.
The development of the retinal tapetum lucidum within the cells of the retinal pigment epithelium (RPE) has been investigated by both light and electron microscopy in the walleye (Stizostedion vitreum vitreum) in specimens ranging in total length from 25-140 mm. In addition changes in the arrangement of the photoreceptors (both rods and cones) in both light and dark-adaptation have also been studied. At 25 mm no evidence of a tapetum is present. At about 30 mm it makes its initial appearance as granular bodies formed within the apical smooth endoplasmic reticulum (SER) cisternae of the RPE cells in the superior temporal fundus. The developing tapetum then spreads peripherally and continues to thicken in existing areas. By 90 mm it is well established throughout the fundus but always appears better developed in the superior fundus. By 125-140 mm it is essentially adult in appearance. At 60-70 mm the rods and cones begin to form bundles producing macroreceptors of 20-30 photoreceptors. In dark-adaptation the rod bundles are retracted and have one or more cone cells centrally located in each bundle, with the bundles separated from one another by melanosomes. Initially when no tapetal material is present, post-larval walleye are positively phototactic and feed on zooplankton. In the adult condition when a tapetum lucidum and large macroreceptors are present, the walleye is negatively phototactic and feeds almost exclusively on larger organisms such as other fish.  相似文献   

19.
Dynamics of rhythmic oscillations in the activity of arylalkylamine N-acetyltransferase (AA-NAT, the penultimate and key regulatory enzyme in melatonin biosynthesis) were examined in the retina and pineal gland of turkeys maintained for 7 days in the environment without daily light-dark (LD) changes, namely constant darkness (DD) or continuous light (LL). The two tissues differentially responded to constant environment. In the retina, a circadian AA-NAT activity rhythm disappeared after 5 days of DD, while in the pineal gland it persisted for the whole experiment. No circadian rhythm was observed in the retinas of turkeys exposed to LL, although rhythmic oscillations in both AA-NAT and melatonin content were found in the pineal glands. Both tissues required one or two cycles of the re-installed LD for the full recovery of the high-amplitude AA-NAT rhythm suppressed under constant conditions. It is suggested that the retina of turkey is less able to maintain rhythmicity in constant environment and is more sensitive to changes in the environmental lighting conditions than the pineal gland. Our results indicate that, in contrast to mammals, pineal glands of light-exposed galliformes maintain the limited capacity to rhythmically produce melatonin.  相似文献   

20.
The relationship between circadian rhythms in the blood plasma concentrations of melatonin and rhythms in locomotor activity was studied in adult male sheep (Soay rams) exposed to 16-week periods of short days (8 hr of light and 16 hr of darkness; LD 8:16) or long days (LD 16:8) followed by 16-week periods of constant darkness (dim red light; DD) or constant light (LL). Under both LD 8:16 and LD 16:8, there was a clearly defined 24-hr rhythm in plasma concentrations of melatonin, with high levels throughout the dark phase. Periodogram analysis revealed a 24-hr rhythm in locomotor activity under LD 8:16 and LD 16:8. The main bouts of activity occurred during the light phase. A change from LD 8:16 to LD 16:8 resulted in a decrease in the duration of elevated melatonin secretion (melatonin peak) and an increase in the duration of activity corresponding to the changes in the ratio of light to darkness. In all rams, a significant circadian rhythm of activity persisted over the first 2 weeks following transfer from an entraining photoperiod to DD, with a mean period of 23.77 hr. However, the activity rhythms subsequently became disorganized, as did the 24-hr melatonin rhythms. The introduction of a 1-hr light pulse every 24 hr (LD 1:23) for 2 weeks after 8 weeks under DD reinduced a rhythm in both melatonin secretion and activity: the end of the 1-hr light period acted as the dusk signal, producing a normal temporal association of the two rhythms. Under LL, the 24-hr melatonin rhythms were disrupted, though several rams still showed periods of elevated melatonin secretion. Significant activity rhythms were either absent or a weak component occurred with a period of 24 hr. The introduction of a 1-hr dark period every 24 hr for 2 weeks after 8 weeks under LL (LD 23:1) failed to induce or entrain rhythms in either of the parameters. The occurrence of 24-hr activity rhythm in some rams under LL may indicate nonphotoperiodic entrainment signals in our experimental facility. Reproductive responses to the changes in photoperiod were also monitored. After pretreatment with LD 8:16, the rams were sexually active; exposure to LD 16:8, DD, or LL resulted in a decline in all measures of reproductive function. The decline was slower under DD than LD 16:8 or LL.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号