首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-seven wheat cultivars originating from seven European countries were examined by using sequence tagged site (STS) markers for seven Lr (leaf rust = brown rust) resistance genes against the fungal pathogen of wheat Puccinia recondita f. sp. tritici (Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37). Additionally, 22 accessions with various Lr genes from two germplasm collections were tested. A Scar (sequence-characterized amplified region) marker for Lr24 and a CAPS (Cleaved Amplified Polymorphic Sequence) marker for Lr47 were also used to identify those genes in the wheat accessions. Each marker amplified one specific DNA fragment. Three Lr gene markers were identified in wheat cultivars (Lr10, Lr26 and Lr37). Another four markers (Lr9, Lr19, Lr24 and Lr47) were found in breeding lines carrying leaf rust resistance genes. The results were compared with leaf rust resistance gene postulations made in previous studies, based on multipathotype testing. Markers for Lr10, Lr26 and Lr37 may be useful in marker-assisted breeding.  相似文献   

2.
P L Dyck  E R Kerber  T Aung 《Génome》1994,37(4):556-559
'Thatcher' backcross lines RL6058 and RL6077 have adult-plant leaf rust resistance and were believed to have Lr34. However, genetic analysis revealed that the genes in the two lines were independent of each other. Previous work demonstrated that Lr34 is located on chromosome 7D. The leaf rust resistance gene in RL6058 must be on chromosome 7DS because no recombinants were observed between it and gene Lr29, known to be on chromosome 7DS. It was also linked with Rc3 (30.25 +/- 2.88%), a gene for purple coleoptile on chromosome 7DS. It was independent of Lr19 and NS1 (nonsuppressor mutant), which are located on 7DL. The leaf rust resistance gene in RL6077 was independent of genes Lr19 and Lr29. The presence of quadrivalents in pollen mother cells of the RL6058/RL6077 hybrid indicates that the Lr34 gene in RL6077 may have been translocated onto another chromosome. Lr34 from RL6058 and RL6077 may have been combined in four F3 lines derived from their intercross.  相似文献   

3.
A leaf rust resistance gene Lr19 on the chromosome 7DL of wheat derived from Agropyron elongatum was tagged with random amplified polymorphic DNA (RAPD) and microsatellite markers. The F2 population of 340 plants derived from a cross between the leaf rust resistant near-isogenic line (NIL) of Thatcher (Tc + Lr19) and leaf rust susceptible line Agra Local that segregated for dominant monogenic leaf rust resistance was utilized for generating the mapping population. The molecular markers were mapped in the F2 derived F3 homozygous population of 140 seedlings. Sixteen RAPD markers were identified as linked to the alien gene Lr19 among which eight were in a coupling phase linkage. Twelve RAPD markers co-segregated with Lr19 locus. Nine microsatellite markers located on the long arm of chromosome 7D were also mapped as linked to the gene Lr19, including 7 markers which co-segregated with Lr19 locus, thus generating a saturated region carrying 25 molecular markers linked to the gene Lr19 within 10.2 ± 0.062 cM on either side of the locus. Two RAPD markers S265512 and S253737 which flanked the locus Lr19 were converted to sequence characterized amplified region markers SCS265512 and SCS253736, respectively. The marker SCS265512 was linked with Lr19 in a coupling phase and the marker SCS253736 was linked in a repulsion phase, which when used together mimicked one co-dominant marker capable of distinguishing the heterozygous resistant seedlings from the homozygous resistant. The molecular markers were validated on NILs mostly in Thatcher background isogenic for 44 different Lr genes belonging to both native and alien origin. The validation for polymorphism in common leaf rust susceptible cultivars also confirmed the utility of these tightly linked markers to the gene Lr19 in marker-assisted selection.  相似文献   

4.
本研究旨在明确小麦农家品种中可能含有的抗叶锈病基因,为抗源的选择和利用提供理论依据。以15个小麦农家品种、感病对照品种郑州5389和36个含有已知抗叶锈病基因的载体品种为材料,苗期接种19个具有鉴别力的叶锈菌生理小种进行基因推导,同时利用12个与抗叶锈病基因紧密连锁的分子标记进行分析。为明确其成株期抗性,分别于2016-2017年和2017-2018年在河北保定对小麦农家品种、感病对照品种郑州5389与慢锈品种SAAR进行田间接种,调查并记录田间严重度及普遍率。基因推导和分子标记检测结果显示,在15个小麦农家品种中共检测到7个抗叶锈病基因,其中部分品种还有多个抗性基因,如红狗豆含有Lr1和Lr46;黄花麦含有Lr13和Lr34;大白麦含有Lr14b和Lr26;洋麦含有Lr37和Lr46;成都光头含有Lr34和Lr46;墨脱麦和西山扁穗含有Lr26和Lr46。部分品种含有1个成株期慢叶锈病抗性基因,如同家坝小麦、武都白茧儿、边巴春麦-6、白花麦含有Lr34;红抢麦、白扁穗和白火麦含有Lr46。这些携带有效抗叶锈病基因的农家品种,可为小麦抗叶锈病育种提供抗源。  相似文献   

5.
The objective of this study was to identify molecular markers linked to the wheat leaf rust resistance gene Lr24 derived from Agropyron elongatum (3DL/3Ag translocation). Two near isogenic lines (NILs), ‘Arina’ and Lr24/7 * “Arina”, were screened for polymorphism at the DNA level with 115 RFLP probes. Twenty-one of these probes map to the homoeologous group 3. In addition, 360 RAPD primers were tested on the NILs. Six RFLP probes showed polymorphism between the NILs, and 11 RAPD primers detected one additional band in the resistant NIL. The genetic linkage of the polymorphic markers with Lr24 was tested on a segregating F2 population (150 plants) derived from a cross between the leaf rust resistant Lr24/7 * “Arina” and the susceptible spelt (Triticum spelta) variety ‘Oberkulmer’. All 6 RFLP markers were completely linked to Lr24: one was inherited as a codominant marker (PSR1205), one was in coupling phase (PSR1203) and 4 were in repulsion phase (PSR388, PSR904, PSR931, PSR1067) with Lr24. The localization of these probes on chromosome 3D was confirmed by nulli-tetrasomic analysis. Distorted genotypic segregation was found for the Codominant RFLP marker PSR1205. This distortion can be explained by the occurrence of hemizygous plants. One of the 11 RAPD markers (OPJ-09) also showed complete linkage to theLr24 resistance gene. The polymorphic RAPD fragment was cloned and sequenced. Specific primers were synthesized, and they produced an amplification product only in the resistant plants. This specific marker allows a reliable and rapid screening of a large number of genotypes in practical breeding. Analysis of 6 additional lines containing Lr24 revealed that 3 lines have a smaller chromosomal segment of A. elongatum than lines derived from ‘Agent’, a commonly used gene donor for the Lr24 resistance gene.  相似文献   

6.
Near-isolines carrying four different genes for resistance to leaf rust were used to find linked molecular markers for these genes. Clones used to detect polymorphism were selected on the basis of the reported chromosomal location of the resistance genes. Both Lophopyron-derived resistance genes, Lr19 and Lr24, cosegregated with eight molecular markers assigned to chromosomes 7DL and 3DL, respectively. One clone cosegregated with Lr9 and two closely linked RFLP markers were found for Lr32, mapping at 3.3 +/- 2.6 and 6.9 +/- 3.6 cM from the resistance gene. The Lophopyron-chromatin segment in isolines carrying chromosomes 7E (Lr19) and 3E (Lr24) replaced a large portion of chromosome 7D and the distal portion of chromosome 3D, respectively. Clones assigned to these chromosomes on the basis of aneuploid analysis hybridized to 7E and 3E segments, thus confirming cytological results that these introgressed segments represent homoeologous chromosomes. The linked RFLP markers could be used to identify the resistance genes and generate new combinations in breeding populations, especially in the absence of disease in the environment or when virulence is lacking.  相似文献   

7.
This study was conducted to identify microsatellite markers (SSR) linked to the adult-plant leaf rust resistance gene Lr22a and examine their cross-applicability for marker-assisted selection in different genetic backgrounds. Lr22a was previously introgressed from Aegilops tauschii Coss. to wheat (Triticum aestivum L.) and located to chromosome 2DS. Comparing SSR alleles from the donor of Lr22a to two backcross lines and their recurrent parents showed that between two and five SSR markers were co-introgressed with Lr22a and the size range of the Ae. tauschii introgression was 9-20 cM. An F(2) population from the cross of 98B34-T4B x 98B26-N1C01 confirmed linkage between the introgressed markers and Lr22a on chromosome 2DS. The closest marker, GWM296, was 2.9 cM from Lr22a. One hundred and eighteen cultivars and breeding lines of different geographical origins were tested with GWM296. In total 14 alleles were amplified, however, only those lines predicted or known to carry Lr22a had the unique Ae. tauschii allele at GWM296 with fragments of 121 and 131 bp. Thus, GWM296 is useful for selecting Lr22a in diverse genetic backgrounds. Genotypes carrying Lr22a showed strong resistance to leaf rust in the field from 2002 to 2006. Lr22a is an ideal candidate to be included in a stack of leaf rust resistance genes because of its strong adult-plant resistance, low frequency of commercial deployment, and the availability of a unique marker.  相似文献   

8.
The effectiveness of molecular markers for the identification of leaf rust resistance genes Lr28, Lr35 and Lr47 transferred to common wheat from Ae. speltoides was assessed using samples of Triticum spp. and Aegilops spp. The markers Sr39F2/R3, BCD260F1/35R2 of the gene Lr35 and PS10 of the Lr47 gene were characterized by high efficiency and were revealed in the lines of common wheat containing these genes, and samples of Ae. speltoides species, the donor of these genes. The marker SCS421 of the Lr28 gene and the markers Sr39#22r, Sr39#50s, BE500705 of the Lr35/Sr39 genes turned out to be less specific. The marker SCS421 was amplified in the samples of the T. timopheevii species, line KS90WRC010 (Lr41), the cultivar of common wheat Pamyati Maystrenko, obtained using synthetic hexaploid T. timopheevii × Ae. tauschii and introgressive lines obtained using Ae. speltoides. The marker BE500705, which indicates the absence of the Lr35/Sr39 genes, was not revealed in the lines TcLr35 and MqSr39, in Ae. speltoides, Ae. tauschii and T. boeoticum (kk-61034, 61038). Analysis of the nucleotide sequences of amplification products obtained with the markers SCS421 and Sr39#22r indicated their low homology with TcLr28 and TcLr35. Using molecular markers, a different distribution of the Lr28 (77%), Lr35 (100%) and Lr47 (15%) genes in 13 studied samples of Ae. speltoides was shown. In introgressive lines derived from Ae. speltoides, contemporary Russian cultivars of common wheat and triticale the Lr28, Lr35, Lr47 genes were not revealed.  相似文献   

9.
We recently showed that the Lr10 wheat leaf rust resistance gene cosegregated with the candidate resistance gene Lrk10 which encodes a putative receptor-like kinase. The aim of this study was to develop Lrk10-derived molecular markers for the detection of the Lr10 gene in breeding material. Different subfragments of Lrk10 were tested as RFLP markers for the Lr10 resistance gene. The most specific fragment (Lrk10-6) was converted into the PCR-based STS marker STSLrk10-6. Both the RFLP and the STS marker did not give a signal with near isogenic lines containing a different Lr gene. The applicability of these markers for the detection of Lr10 in genetically diverse material was tested with 62 wheat and spelt breeding lines, mostly from European breeding programmes. Twelve varieties known to have Lr10 showed the same alleles as the originally characterized line ThatcherLr10. Most of the lines with unknown composition at the Lr10 locus had a null allele with both the RFLP marker Lrk10-6 and the marker STSLrk10-6 whereas 20% of the lines had a different allele. For six lines, including a traditional spelt variety derived from a landrace, both markers showed the same allele as Thatcher Lr10. Artificial infections of these lines with an isolate avirulent on Lr10 resulted in a hypersensitive reaction of all these lines, indicating also the presence of the Lr10 resistance gene. These data demonstrate that the markers derived from sequences of Lrk10 are highly specific for the Lr10 gene in breeding material of very diverse genetic origin. The markers will allow the defined deployment of Lr10 in wheat breeding programmes and will contribute to the elucidation of the role of Lr10 in polygenic resistances against leaf rust.  相似文献   

10.
5R618是高抗叶锈病小麦品系。为了确定该品系所携带的抗叶锈基因,以5R618与感病小麦品种郑州5389杂交获得F1,自交获得F2分离群体以及F2∶3家系,用叶锈菌生理小种THJP对亲本、F2分离群体以及F2∶3家系进行叶锈抗性鉴定,然后进行分子标记分析。结果显示,5R618对生理小种THJP的抗病性由1对显性基因控制,该基因暂命名为Lr5R。经过亲本和抗感池间分子标记筛选以及F2∶3家系的标记检测,Lr5R定位于染色体3DL上,barc71和STS24-16是Lr5R最近的2个标记,遗传距离分别为0.9 c M和2.1 c M。  相似文献   

11.
An Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, was tagged with 3 random amplified polymorphic DNA (RAPD) markers, which mapped within 1.8 cM of gene Lr9 located on chromosome 6BL of wheat. The markers were identified in an F2 population segregating for leaf-rust resistance, which was generated from a cross between 2 near-isogenic lines that differed in the alien gene Lr9 in a widely adopted agronomic background of cultivar 'HD 2329'. Disease phenotyping was done in controlled environmental conditions by inoculating the population with the most virulent pathotype, 121 R63-1 of Puccinia triticina. One RAPD marker, S5550, located at a distance of 0.8+/-0.008 cM from the Lr9 locus, was converted to sequence-characterized amplified region (SCAR) marker SCS5550. The SCAR marker was validated for its specificity to gene Lr9 against 44 of the 50 known Lr genes and 10 wheat cultivars possessing the gene Lr9. Marker SCS5550 was used with another SCAR marker, SCS73719, previously identified as being linked to gene Lr24 on a segregating F2 population to select for genes Lr9 and Lr24, respectively, demonstrating the utility of the 2 markers in marker-assisted gene pyramiding for leaf-rust resistance in wheat.  相似文献   

12.
Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat   总被引:1,自引:0,他引:1  
Summary Leaf rust resistance gene Lr34 is present in many wheat cultivars throughout the world that have shown durable resistance to leaf rust. Fourteen pair-wise combinations of Lr34 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests homozygous paired combinations of specific resistance genes with Lr34 had enhanced resistance relative to either parent to different numbers of isolates that were avirulent to the additional resistance genes. The TcLr34, 18 line also expressed enhanced resistance to specific isolates virulent to Lr18 in seedling and adult plant stages. In rust nursery tests, homozygous lines were more resistant than either parent, if the additional leaf rust gene conditioned an effective of resistance when present singly. The ability of Lr34 to interact with other genes conditioning effective resistance may contribute to the durability of leaf rust resistance in cultivars with Lr34. Contribution 1453 Agriculture Canada  相似文献   

13.
The Lr20-Sr15-Pm1 resistance locus in hexaploid wheat confers resistance to three different fungal wheat pathogens (leaf rust, stem rust, and powdery mildew). It was previously localized in the distal region of chromosome arm 7AL. As a first step towards the isolation of this complex locus, we performed molecular mapping of the Lr20 and Pm1 genes in three F2 populations. In two populations, a cluster of 8 and 12 markers, respectively, cosegregated with the resistance genes. In a third population based on a cross between a susceptible lr20 mutant and a resistant cultivar, all clustered markers were monomorphic. However, in this population the recombination frequency proximal to the Lr20 gene was up to 60 times higher, indicating that the complete genetic linkage of the clustered markers is not due to a close physical linkage of the probes but is caused by suppressed recombination. This was supported by the analysis of Triticum monococcum BAC clones where no physical linkage between cosegregating probes was observed. Suppressed recombination at the Lr20-Pm1 locus is likely the result of an alien introgression of chromatin from an unidentified wild relative species or is due to chromosomal rearrangements.  相似文献   

14.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

15.
8个小麦育种亲本抗叶锈基因分析   总被引:1,自引:0,他引:1  
选取19个小麦叶锈菌生理小种对8个小麦育种亲本进行成株期和苗期抗叶锈病鉴定及基因推导,同时利用与24个抗叶锈基因紧密连锁或共分离的31个分子标记进行分子检测。推测出L83#-5与L83#-6含有Lr1,可能含有Lr2c和Lr42;L/PL2003-1含有Lr1,可能含有Lr2c、Lr28和Lr42;贵农13号可能含有Lr28;92R137可能含有Lr2c和Lr28;L201含有Lr1,可能含有Lr2c、Lr16和Lr28;TM可能含有Lr41和其他抗叶锈基因。研究结果表明,测试的8个小麦育种亲本中TM的抗叶锈性最好,具有很好的抗叶锈病应用潜力,可作为小麦抗叶锈病育种的重要抗源。  相似文献   

16.
Leaf rust resistance gene Lr34 is likely the most important leaf rust gene characterized to date. It has been characterized as an adult plant resistance gene and is known to enhance the resistance of other leaf rust resistance genes and to condition resistance to a number of other diseases. Located on chromosome 7D, this gene was identified to be one of six co-located genes of which, an ABC transporter was shown to be the only valid candidate. Ten new molecular markers were developed spanning the Lr34 locus, including six novel microsatellite markers (cam), one insertion site-based polymorphism marker (caISBP), two single nucleotide polymorphisms (caSNP), and one gene-specific marker (caIND). Using these new markers and others that were previously published, a comparative fine map of the locus was constructed from five segregating populations representing 1,742 lines. Identification of a susceptible line with a recombination in the 4.9 kb interval between caSNP4 located in the ABC transporter gene and cam8 located just upstream of this gene provided further evidence to support the identity of the ABC transporter as Lr34 by ruling out four of the adjacent genes. Originally, three mutations forming two haplotypes had been described for the ABC transporter gene. A third combination of the three mutations and an additional rare mutation in exon 22 were subsequently described. We identified an additional novel mutation in exon 10 that would cause a frameshift and is likely non-functional. This mutation was only found in Lr34? lines and constituted a novel molecular haplotype. Characterization of two germplasm collections of 700 Triticum aestivum lines permitted us to gain an understanding of the frequency of the ABC haplotypes characterized to date and their distribution in germplasm from and around the world. In addition to the four haplotypes previously described, a fifth haplotype was found in two of the 700 lines from the germplasm collections. These lines displayed the deletion in indel 11 characteristic of Lr34+ lines, but are likely susceptible to leaf rust. Mapping and haplotyping data suggest that of all the markers described herein, marker caIND11 is the best diagnostic marker for marker-assisted selection of Lr34 because it is co-dominant, robust and with the exception of 2/700 lines, it is highly diagnostic. Other markers are also described to provide alternatives for laboratories with different technologies.  相似文献   

17.
Hypersensitive adult plant resistance genes Lr48 and Lr49 were named based on their genetic independence of the known adult plant resistance genes. This study was planned to determine genomic locations of these genes. Recombinant inbred line populations derived from crosses involving CSP44 and VL404, sources of Lr48 and Lr49, respectively, and the susceptible parent WL711, were used to determine the genomic locations of these genes. Bulked segregant analyses were performed using multiplex-ready PCR technology. Lr48 in genotype CSP44 was mapped on chromosome arm 2BS flanked by marker loci Xgwm429b (6.1 cM) and Xbarc7 (7.3 cM) distally and proximally, respectively. Leaf rust resistance gene Lr13, carried by the alternate parent WL711, was proximal to Lr48 and was flanked by Xksm58 (5.1 cM) and Xstm773-2 (8.7 cM). Lr49 was flanked by Xbarc163 (8.1 cM) and Xwmc349 (10.1 cM) on chromosome arm 4BL. The likely presence of the durable leaf rust resistance gene Lr34 in both CSP44 and VL404 was confirmed using the tightly linked marker csLV34. Near-isogenic lines for Lr48 and Lr49 were developed in cultivar Lal Bahadur. Genotypes combining Lr13 and/or Lr34 with Lr48 or Lr49 were identified as potential donor sources for cultivar development programs.  相似文献   

18.
Leaf rust is a widespread and commonly occurring rust disease of wheat. Genetic resistance is the most economical method of reducing losses due to leaf rust. Lr15 has been shown to be present on wheat chromosome 2D and is reported to be a seedling resistance gene. However, tightly linked markers associated with Lr15 have not been reported to date. To identify molecular markers linked to Lr15, an F2 mapping population of Thatcher × Thatcher-Lr15 was generated. Available wheat simple sequence repeat markers were utilized in parental screening and polymorphic markers were used to analyze the entire population of 221 plants. Phenotypic evaluations of the F2-derived F3 progenies with Puccinia triticina Eriks. pathotype 162A (93R15) confirmed the monogenic inheritance of Lr15. The linkage group representing chromosome 2DS was constructed at LOD 4.0 which revealed the closest flanking markers Xgwm4562 and Xgwm102 at a distance of 3.1 and 9.3 cM, respectively. Furthermore, utilization of these flanking markers in combination has successfully identified wheat lines with or without Lr15. These markers could potentially be useful in gene pyramiding with other genes to enhance rust resistance in wheat.  相似文献   

19.
The rust resistance genes Lr53 and Yr35, transferred to common wheat from Triticum dicoccoides, were reported previously to be completely linked on chromosome 6B. Four F 3 families were produced from a cross between a line carrying Lr53 and Yr35 (98M71) and the leaf rust and stripe rust susceptible genotype Avocet “S” and were rust tested using Puccinina triticina pathotype 53-1,(6),(7),10,11 and Puccinia striiformis f. sp. tritici pathotype 110 E143 A+. The homozygous resistant lines produced infection types of “;1−” and “;N” to these pathotypes, respectively. The Chi-squared tests indicated goodness-of-fit of the data for one leaf rust gene and one stripe rust gene segregation. Linkage analysis using this population demonstrated recombination of 3% between the genes. Microsatellite markers located on the short arm of chromosome 6B were used to map the genes, with the markers cfd1 and gwm508 being mapped approximately 1.1 and 4.5 cM, respectively, proximal to Lr53. Additional studies of the relationship between Lr36, also located on the short arm of chromosome 6B, and Lr53 indicated that the two genes were independent.  相似文献   

20.
Leaf rust, caused by Puccinia triticina Eriks., is an important foliar disease of common wheat (Triticum aestivum L.) worldwide. Pyramiding several major rust-resistance genes into one adapted cultivar is one strategy for obtaining more durable resistance. Molecular markers linked to these genes are essential tools for gene pyramiding. The rust-resistance gene Lr41 from T. tauschii has been introgressed into chromosome 2D of several wheat cultivars that are currently under commercial production. To discover molecular markers closely linked to Lr41, a set of near-isogenic lines (NILs) of the hard winter wheat cultivar Century were developed through backcrossing. A population of 95 BC3F2:6 NILs were evaluated for leaf rust resistance at both seedling and adult plant stages and analyzed with simple sequence repeat (SSR) markers using bulked segregant analysis. Four markers closely linked to Lr41 were identified on chromosome 2DS; the closest marker, Xbarc124, was about 1 cM from Lr41. Physical mapping using Chinese Spring nullitetrasomic and ditelosomic genetic stocks confirmed that markers linked to Lr41 were on chromosome arm 2DS. Marker analysis in a diverse set of wheat germplasm indicated that primers BARC124, GWM210, and GDM35 amplified polymorphic bands between most resistant and susceptible accessions and can be used for marker-assisted selection in breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号