首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many animals and plants that colonize hard surfaces in the sea are sessile and either bore into, or cement themselves permanently to the substrate surface. Because they retain their life positions after fossilization, these sclerobionts offer scope for studying biotic interactions in the fossil record. Encrusting sclerobionts compete actively for living space, with dominant competitors overgrowing the edges of subordinates. In addition to such marginal overgrowths, spatial competition may also occur through fouling in which larvae recruit directly onto the living surfaces of established sclerobionts. Spatial competition has been studied extensively in modern marine communities but there has been little research on competition between encrusters in ancient communities. This reflects poor knowledge of the taxonomy of the sclerobionts involved, as well as problems in distinguishing between overgrowth in vivo and post‐mortem. Nevertheless, if carefully interpreted, the fossil record of sclerobionts can provide an as yet largely unexploited resource for studying the long‐term ecological and evolutionary dynamics of competition.  相似文献   

2.
Nutrient enrichment bioassays, in conjunction with sampling and analysis of surface water chemistry, were conducted in freshwater lakes (kettle ponds) of Cape Cod National Seashore (Massachusetts, USA) to ascertain the importance of nitrogen (N) and phosphorus (P) in regulating the growth of periphyton. Arrays of nutrient diffusing substrata (NDS) were suspended 0.5 m below the water surface in a total of 12 ponds in July and August 2005. Algal biomass developing on each NDS after ~3 weeks of exposure in each month was assessed by quantifying chlorophyll a + phaeophyton pigments. In both July and August, strong responses to N + P and N enrichments were observed in the majority of ponds, while P had no stimulatory effect. These responses correspond well with low atomic ratios (1–18) of dissolved inorganic nitrogen (DIN) to total phosphorus (TP) in ambient surface waters. The results suggest that conditions in the kettle ponds develop whereby nitrogen is the primary limiting nutrient to periphyton growth. While this may be a seasonal phenomenon, it has implications for nutrient management in individual ponds and within the larger watershed.  相似文献   

3.
As nutrient diffusing substrates age, the availability of nutrients to periphyton may decline with time either because of diffusion or dilution of nutrients into the water column or because of the effects of grazing by herbivores. Typically, large amounts of nutrients are added to nutrient diffusing substrates (NDS) to insure continuous enrichment throughout experimental periods of 2 to 8 weeks. This study examined the release of phosphates and nitrates from NDS exposed to three different current velocities (0.07 m s–1, 0.11 m s–1, 0.20 m s–1) in recirculating laboratory flumes. Replicated agar samples from four treatments (control, nitrate (N), phosphate (P), and N+P) were sampled throughout 32 days (day 1, 2, 3, 6, 12, 18, 24, 32). Increasing concentrations of agar were required to solidify the P and N+P treatments.Nutrient release rates from NDS were independent of agar concentrations (with the exception of [PO4] in the medium velocity flume). Nutrient concentrations in the agar of spiked samples declined substantially within a week when exposed to flowing water. Nitrates were retained in agar to a greater extent than phosphates particularly when NDS were exposed to low or medium flows. Although floods physically remove or abrade periphyton in natural streams, findings from this laboratory study suggest that ambient flows deplete the availability of nutrient concentrations to potential periphyton colonizers within the first week of incubation. Because of the rapid decline of nutrients from NDS, short incubation periods in natural running waters seem warranted.  相似文献   

4.
Species-rich floating fen ecosystems in former turf ponds in the western part of The Netherlands are subject to nitrogen enrichment because of high atmospheric N deposition (50 kg ha–1,Y–1,). and supply of polluted river water in dry summer periods. Further, some fens have become more influenced by rain water because downward seepage to the groundwater has increased due to hydrological alterations. This paper describes changes in plant biomass production by comparing seasonal maximum biomass values for 15 fen sites determined with standard procedures in 1981 and 1988. Fen sites in different polders showed different species composition, which is related to differences in hydrology and history of fen management among the polders. The mid-succession fens (type 1) which are characteristically N-limited have shown a biomass increase in spite of the annual mowing regime, which shows that these fens are becoming enriched with nitrogen. There are indications that the role of phosphorus as a limiting factor increases in these fens, and that a shift of N-limited towards P-limited phanerogam growth occurs. This may bring these fens eventually in the late-succession stage, as presently found in Het Hol (type 2). The fens in this stage are P-limited and have a different species composition. It was concluded that the mesotrophic fens in the Vechtplassen area, characterized by a species-rich vegetation, can only persist in their eutrophicated environment if they are located in a groundwater discharge area and if they are annually harvested in the summer. If all fens in the area, will eventually become P-limited it is expected that the species composition will change to a more uniform late-succession vegetation type.  相似文献   

5.
Chlorella kessleri was cultivated in artificial wastewater using diurnal illumination of 12 h light/12 h dark (L/D) cycles. The inoculum density was 105 cells/mL and the irradiance in light cycle was 45 μmol m2 s−1 at the culture surface. As a control culture, another set of flasks was cultivated under continuous illumination. Regardless of the illumination scheme, the total organic carbon (TOC) and chemical oxygen demand (COD) was reduced below 20% of the initial concentration within a day. However, cell concentration under the L/D lighting scheme was lower than that under the continuous illuminating scheme. Thus the specific removal rate of organic carbon under L/D cycles was higher than that under continuous illumination. This result suggested thatC. kessleri grew chemoorganotrophically in the dark periods. After 3 days, nitrate was reduced to 136.5 and 154.1 mg NO3 -N/L from 168.1 mg NO3 -N/L under continuous illumination and under diurnal cycles, respectively. These results indicate nitrate removal efficiency under continuous light was better than that under diurnal cycles. High-density algal cultures using optimized photobioreactors with diurnal cycles will save energy and improve organic carbon sources removal.  相似文献   

6.
Railkin  A. I. 《Hydrobiologia》1998,385(1-3):47-57
The recovery of microbial communities removed from hard substrates was studied in the laboratory and on microepiphyton in the White Sea, in St. Petersburg, and in Karelija. The removal of these communities from hard substrates destroyed their spatial structure. Recovery was allowed to proceed from the suspension on a horizontal substrate in stagnant water at low temperature. The sequence of colonization in the laboratory was the same as that in the field. Laboratory recovery was complete in 12–24 h and did not depend on the age of the natural community. From the comparison between laboratory and field data on such mechanical disturbance, a pattern of recovery, termed ‘self-assembly’, is proposed. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

7.
Barbiero  Richard P. 《Hydrobiologia》2000,438(1-3):157-170
In a multi-season, multi-lake study of epilithic diatom communities, glass slide artificial substrate samplers provided poor representation of communities on natural substrates. Percent similarities between the two communities averaged only 37 over the course of the study. Overall, natural substrates exhibited greater species richness than artificial samplers, particularly during the summer, although this difference was slight. Patterns of selection and inhibition by artificial substrates of individual diatom species varied by both season and lake. Members of the genus Cymbella, particularly C. microcephala, appeared to be the most consistently inhibited, while Achnanthes minutissima was often selected for. In spite of the great differences between the two substrate types, replicability of artificial substrates was very high, and could prove to be a more important quality in monitoring applications than accurate representation of the natural community.  相似文献   

8.
Three field experiments were performed in Lake Lacawac, PA to determine the importance of potentially limiting nutrients relative to other factors (grazing, depth) in structuring shallow water algal periphyton communities. All three experiments measured periphyton growth (as chlorophyll-a, AFDM or biovolumes of the algal taxa) on artificial clay flower pot substrates which released specified nutrients to their outer surfaces.Control of standing crop by nutrient supply rate vs. grazing was examined in Expt. I. Substrates releasing excess N and P, together with one of 4 levels of C (as bicarbonate) were placed either inside or outside exclosures designed to reduce grazer densities. Chlorophyll-a rose from 1.1–25.6 µg.cm–2, and some dominant taxa (e.g., Oedogonium, Nostoc, Anacystis) were replaced by others (e.g., Scenedesmus, Cryptomonas) as bicarbonate supply increased. Reductions in invertebrate density did not significantly affect chlorophyll-a at any of the nutrient levels.Reasons for the species shift were further evaluated in Expt. II, using a minielectrode to measure the elevation of pH within the periphyton mat through photosynthetic utilization of bicarbonate. The pH adjacent to pots diffusing N, P and large quantities of bicarbonate, and supporting high chlorophyll-a densities of 32 µg cm–2, averaged 10.0 compared to 6.3 in the water column. Pots diffusing only N and P supported 0.7 µg chlorophyll-a cm–2 and elevated pH to 8.2. We suspect that bicarbonate addition favored efficient bicarbonate users (e.g., Scenedesmus), while inhibiting other taxa (e.g., Oedogonium) because of the attendant high pH.Expt. III was designed to test effects of depth (0.1 m vs. 0.5 m) and N (NH4 + vs. NO3 ) upon the growth response to bicarbonate observed in Expts. I and II. Similar standing crop and species composition were noted on pots at 0.1 m vs. 0.5 m. Enrichment with NH4 + vs. NO3 also appeared to have little effect upon the periphyton community.Shallow water periphyton communities in Lake Lacawac, when supplied with sufficient N and P, appear to show a distinctive response to increasing bicarbonate concentration and pH which is robust to moderate variation in grazer densities, distance from the water surface, and the form of N enrichment.  相似文献   

9.
Substrate inhibition is one of the major problems preventing high cell densities of microalgae in heterotrophic culture, so the possibility of overcoming the problem by various culture techniques was examined. It was found that perfusion culture may be the most appropriate technique for high cell densities in heterotrophic culture using inhibitory substrates. An experimental example in which a hollow fibre cell recycle system (HFCRS) was employed to achieve high cell densities of Chlamydomonas reinhardtii on acetate under heterotrophic conditions of growth was demonstrated. The cell density in the HFCRS was much higher than that reported in the literature for this species.  相似文献   

10.
Receiving coastal waters and estuaries are among the most nutrient‐enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast‐growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth‐limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low‐ to high‐nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high δ15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.  相似文献   

11.
Anthropogenic nitrogen (N) deposition affects unproductive remote alpine and circumpolar ecosystems, which are often considered sentinels of global change. Human activities and forest fires can also elevate phosphorus (P) deposition, possibly compounding the ecological effects of increased N deposition given the ubiquity of nutrient co‐limitation of primary producers. Low N : P ratios coupled with evidence of NP‐limitation from bioassays led us to hypothesize that P indirectly stimulates phytoplankton by amplifying the direct positive effect of N (i.e. serial N‐limitation) in alpine ponds. We tested the hypothesis using the first replicated N × P enrichment experiment conducted at the whole‐ecosystem level, which involved 12 alpine ponds located in the low N deposition backcountry of the eastern Front Range of the Canadian Rockies. Although applications of N and P elevated ambient N and P concentrations by 2–5×, seston and plankton remained relatively unaffected in the amended ponds. However, additions of ammonium nitrate elevated the δ15N signals of both primary producers and herbivores (fairy shrimp; Anostraca), attesting to trophic transfer of N deposition to consumers. Further, in situ bioassays revealed that grazing by high ambient densities of fairy shrimp together with potential competition from algae lining the pond bottoms suppressed the otherwise serially N‐limited response by phytoplankton. Our findings highlight how indirect effects of biotic interactions rather the often implicit direct effects of chemical changes can regulate the sensitivities of extreme ecosystems to nutrient deposition.  相似文献   

12.
From 1979 to 1991 the species composition of communities living on hard substrata (hardsub) in the Oosterschelde has been studied — in both the littoral and sublittoral zones. From 1984 onwards, biomass was also measured. This paper deals mainly with the distribution and the development of biomass on sublittoral hardsub in the Oosterschelde. Analysis has shown that the most important abiotic factors regulating the flora and fauna are: quantity and nature of the substrate; sedimentation; exposure to water movement (mainly currents); and light. The construction of the storm-surge barrier has influenced those factors. The main consequences for the flora and fauna on sublittoral hard substrata have been through the increased amount of available hard substratum by about 10% until 1984 and a further 20% from 1984 to 1987, the main barrier construction period). Within the same period (until 1987) the biomass per square metre also increased. This caused a net increase of hardsub biomass — in the sublittoral — of about 35%.After the barrier was completed sedimentation increased; in some parts of the basin hardsub organisms were covered by sediment and have not recovered; the total quantity of available hard substratum decreased by an amount yet to be established. For the purpose of this paper it is tentatively estimated at 20%, but the process is still going on.Tidal current velocities are smaller in the post-barrier situation, which caused a shift from more passive suspension feeders to more actively filtering species. The relative importance of suspension feeders on hard substrata has decreased by about 20% after the building of the storm-surge barrier. In 1990 and 1991 it increased again.Overall water transparency increased, but the lower limit of macroalgal growth has not gone deeper, as nearshore turbulence and turbidity did not change significantly.Effects on hardsub were small in the beginning. During the construction period (1985–1987) no clear effects were registered. After the completion of the barrier total species diversity increased at first, followed by a decrease from the second half of 1988 onwards. Biomass increased rather sharply, at first, but decreased very sharply in 1989. In 1990 a recovery in biomass became apparent. Developments in biomass and species composition differed per sampling location. An attempt is made to explain some of those developments, in relation to the abiotic changes brought about by the storm-surge barrier. This appeared difficult, because climatic influences obscured the effects of the barrier. The most explicit of those masking effects was brought about by a temporary, huge increase of the brittlestar (Ophiothrix fragilis). This animal covered the substratum in relatively thick layers (up to 5 cm) and more or less suffocated the other fauna. It was therefore difficult to quantify the effect of increased sedimentation on the fauna. The increase of Ophiothrix is probably not caused by the storm-surge barrier, but by a succession of several mild winters.It is clear that a new equilibrium in the basin is still to be reached. Total effects in terms of species richness and of biomass will continue to be monitored, and the results used to advise the water authorities as to management and nature friendly dike building methods.  相似文献   

13.
1. Responses of zooplankton to nutrient enrichment and fish predation were studied in 1998 and 1999 by carrying out parallel mesocosm experiments in six lakes across Europe. 2. Zooplankton community structure, biomass and responses to nutrient and fish manipulation showed geographical and year‐to‐year differences. Fish had a greater influence than nutrients in regulating zooplankton biomass and especially the relative abundances of different functional groups of zooplankton. When fish reduced the biomass of large crustaceans, there was a complementary increase in the biomasses of smaller crustacean species and rotifers. 3. High abundance of submerged macrophytes provided refuge for zooplankton against fish predation but this refuge effect differed notably in magnitude among sites. 4. Large crustacean grazers (Daphnia, Diaphanosoma, Sida and Simocephalus) were crucial in controlling algal biomass, while smaller crustacean grazers and rotifers were of minor importance. Large grazers were able to control phytoplankton biomass even under hypereutrophic conditions (up to 1600 μg TP L?1) when grazer biomass was high (>80–90 μg dry mass L?1) or accounted for >30% of the grazer community. 5. The littoral zooplankton community was less resistant to change following nutrient enrichment in southern Spain, at high temperatures (close to 30 °C), than at lower temperatures (17–23 °C) characterising the other sites. This lower resistance was because of a greater importance of nutrients than zooplankton in controlling algal biomass. 6. Apart from the reduced role of large crustacean grazers at the lowest latitude, no consistent geographical patterns were observed in the responses of zooplankton communities to nutrient and fish manipulation.  相似文献   

14.
One of the most ubiquitous patterns in plant ecology is species loss following nutrient enrichment. A common explanation for this universal pattern is an increase in the size asymmetry of light partitioning (the degree to which large plants receive more light per unit biomass than smaller plants), which accelerates the rates of competitive exclusions. This ‘light asymmetry hypothesis’ has been confirmed by mathematical models, but has never been tested in natural communities due to the lack of appropriate methodology for measuring the size asymmetry of light partitioning in natural communities. Here, we use a novel approach for quantifying the asymmetry of light competition which is based on measurements of the vertical distribution of light below the canopy. Using our approach, we demonstrate that an increase in light asymmetry is the main mechanism behind the negative effect of nutrient enrichment on species richness. Our results provide a possible explanation for one of the main sources of contemporary species loss in terrestrial plant communities.  相似文献   

15.
We investigated the independent and interactive effects of nutrient enrichment and snail grazing on structuring periphyton communities in a northern temperate lake. Nutrient releasing substrates and grazer enclosures were used to simultaneously manipulate nutrient availability and herbivory. Periphyton was allowed 18 days to accrue before grazers (Elimia livescens = Goniobasis livescens) were introduced.Addition of nitrogen and phosphorus caused a significant increase in biovolume (p < 0.001), whereas grazing had no significant effect on biovolume but resulted in a shift in species composition. Four taxa were largely responsible for the increase in biovolume on the nutrient enriched substrates: Oedogonium sp, Stigeoclonium tenue, Navicula radiosa var. radiosa and Navicula radiosa var. tenella. By the 28th day, nutrient enrichment caused a shift from a community dominated by diatoms (Bacillariophyceae) to a community dominated by green algae (Chlorophyceae). Blue green algae (Myxophyceae) maintained an equal proportion in high and low-nutrient regimes.Grazing had a more pronounced effect on altering community composition on the nutrient enriched substrates than on the unenriched substrates. Grazing caused a decrease in diversity and an increase in dominance by green algae on the nutrient enriched substrates. The relative biovolume of green algae increased from 64% to 93% on grazed substrates, due to the significant increase in relative abundance of Stigeoclonium tenue. This taxon has both prostate basal cells and erect filamentous cells. The ratio of basal: filamentous cells increased from 4.7 to 5.2 with grazing, suggesting that the heretotrichous growth form of Stigeoclonium tenue is adapted to grazing by virtue of the basal cells which are able to adhere to the substratum and resist being grazed.  相似文献   

16.
Anthropogenic nitrogen (N) emissions to atmosphere have increased dramatically in China since 1980s, and this increase has aroused great concerns on its ecological impacts on terrestrial ecosystems. Previous studies have showed that terrestrial ecosystems in China are acting as a large carbon (C) sink, but its potential in the future remains largely uncertain. So far little work on the impacts of the N deposition on C sequestration in China's terrestrial ecosystems has been assessed at a national scale. Aiming to assess and predict how ecological processes especially the C cycling respond to the increasing N deposition in China's forests, recently researchers from Peking University and their partners have established a manipulation experimental network on the ecological effects of the N deposition: Nutrient Enrichment Experiments in China's Forests Project (NEECF). The NEECF comprises 10 experiments at 7 sites located from north to south China, covering major zonal forest vegetation in eastern China from boreal forest in Greater Khingan Mountains to tropical forests in Hainan Island. This paper introduces the framework of the NEECF project and its potential policy implications.  相似文献   

17.
1. High water column NO3? concentrations, low light availability and anoxic, muddy sediments are hypothesised to be key factors hampering growth of rooted submerged plants in shallow, eutrophic fresh water systems. In this study, the relative roles and interacting effects of these potential stressors on survival, growth, allocation of biomass and foliar nutrient concentrations of Potamogeton alpinus were determined in a mesocosm experiment using contrasting values of each factor (500 versus 0 μmol L?1 NO3?; low irradiance, corresponding to the eutrophic environment, versus ambient irradiance; and muddy versus sandy sediment). 2. Low irradiance, high NO3? and sandy sediment led to reduced growth. In a muddy sediment, plants had lower root : shoot ratios than in a sandy sediment. 3. Growth at high NO3? and on the sandy sediment resulted in lower foliar N and C concentrations than in the contrasting treatments. The C : N ratio was higher at high NO3? and on the sandy sediment. Foliar P was higher on the muddy than on the sandy sediment but was not affected by irradiance or NO3?. The N : P ratio was lowest at high NO3? on the sandy sediment. 4. Total foliar free amino acid concentration was lowest on sand, low irradiance and high NO3?. Total free amino acid concentration and growth were not correlated. 5. Turbidity and ortho‐PO43? concentration of the water layer were lower at high water column NO3? indicating that the growth reduction was not associated with increased algal growth but that physiological mechanisms were involved. 6. We conclude that high water column NO3? concentrations can significantly reduce the growth of ammonium preferring rooted submerged species such as P. alpinus, particularly on sediments with a relatively low nutrient availability. Further experiments are needed to assess potential negative effects on other species and to further elucidate the underlying physiological mechanisms.  相似文献   

18.
The trophic state of many streams is likely to deteriorate in the future due to the continuing increase in human‐induced nutrient availability. Therefore, it is of fundamental importance to understand how nutrient enrichment affects plant litter decomposition, a key ecosystem‐level process in forest streams. Here, we present a meta‐analysis of 99 studies published between 1970 and 2012 that reported the effects of nutrient enrichment on litter decomposition in running waters. When considering the entire database, which consisted of 840 case studies, nutrient enrichment stimulated litter decomposition rate by approximately 50%. The stimulation was higher when the background nutrient concentrations were low and the magnitude of the nutrient enrichment was high, suggesting that oligotrophic streams are most vulnerable to nutrient enrichment. The magnitude of the nutrient‐enrichment effect on litter decomposition was higher in the laboratory than in the field experiments, suggesting that laboratory experiments overestimate the effect and their results should be interpreted with caution. Among field experiments, effects of nutrient enrichment were smaller in the correlative than in the manipulative experiments since in the former the effects of nutrient enrichment on litter decomposition were likely confounded by other environmental factors, e.g. pollutants other than nutrients commonly found in streams impacted by human activity. However, primary studies addressing the effect of multiple stressors on litter decomposition are still few and thus it was not possible to consider the interaction between factors in this review. In field manipulative experiments, the effect of nutrient enrichment on litter decomposition depended on the scale at which the nutrients were added: stream reach > streamside channel > litter bag. This may have resulted from a more uniform and continuous exposure of microbes and detritivores to nutrient enrichment at the stream‐reach scale. By contrast, nutrient enrichment at the litter‐bag scale, often by using diffusing substrates, does not provide uniform controllable nutrient release at either temporal or spatial scales, suggesting that this approach should be abandoned. In field manipulative experiments, the addition of both nitrogen (N) and phosphorus (P) resulted in stronger stimulation of litter decomposition than the addition of N or P alone, suggesting that there might be nutrient co‐limitation of decomposition in streams. The magnitude of the nutrient‐enrichment effect on litter decomposition was higher for wood than for leaves, and for low‐quality than for high‐quality leaves. The effect of nutrient enrichment on litter decomposition may also depend on climate. The tendency for larger effect size in colder regions suggests that patterns of biogeography of invertebrate decomposers may be modulating the effect of nutrient enrichment on litter decomposition. Although studies in temperate environments were overrepresented in our database, our meta‐analysis suggests that the effect of nutrient enrichment might be strongest in cold oligotrophic streams that depend on low‐quality plant litter inputs.  相似文献   

19.
水体富营养化是一个全球性的问题,中国也面临严重威胁.目前,中国的水体富营养化研究主要集中在湖泊和水库,对河流的研究极少.根据大型底栖无脊椎动物的群落结构对营养盐胁迫的响应,运用非参数转变点分析方法计算西苕溪上游营养盐浓度突变点.结果表明:总氮和总磷的突变点分别为1.409mg·mL-1和0.033~0.035mg·mL-1.参照点的总氮和总磷浓度基本都低于阈值,城市干扰点则全部高于阈值,而当总氮和总磷超过各自阈值时会导致大型底栖无脊椎动物群落结构的严重退化.通过建立与水生生物群落结构有关的水体营养盐标准,可充分发挥生物监测在水环境管理中的作用,为计算水体中总氮和总磷的最大日负荷总量提供科学数据.  相似文献   

20.
Mark D. Morgan 《Hydrobiologia》1987,144(3):233-241
The impact of residential and agricultural development on stream periphyton communities in the New Jersey Pine Barrens was examined by comparison with communities in undeveloped areas. Watershed disturbance resulted in stream water primarily characterized by greatly elevated pH levels and nitrate concentrations. A total of 53 periphyton species were encountered in bimonthly samples over a one year period in the three disturbed and three undisturbed study streams. Species richness was significantly greater in the disturbed streams based on three criteria: the average number of species per stream on each sampling occasion (disturbed = 6.3; undisturbed = 4.9), the average number of species per stream for the entire year (disturbed = 19.3; undisturbed = 16.0), and the total number of species found in streams within a type (disturbed = 40; undisturbed = 31). Species composition also changed significantly as the result of disturbance. There appeared to be replacement of species characteristic of undisturbed Pine Barrens streams with species peripheral to the region. The expected effects of both elevated pH and nitrate were consistent with these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号