首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study reports on the development of a bioreactor for the production of alpha-keto acids from D,L- or D-amino acids using Rhodotorula gracilis D-amino acid oxidase. D-Amino acid oxidase was co-immobilized with catalase on Affi-Gel 10 matrix, and the reactor was operated as a continuous-stirred tank reactor (CSTR) or stirred tank with medium recycling conditions. The optimum substrate concentration and quantity of biocatalyst were determined (5 mM and 1.2 mg/L, respectively). Under optimum operating conditions, product formation was linearly related to both substrate and enzyme concentration, showing the system to be highly flexible. Under these conditions, in a stirred tank, over 90% conversion was achieved in 30 min with a maximum production of 0.23 g of pyruvic acid/day/enzyme units. Product was recovered by ion exchange chromatography. The operational stability of the reactor was high (up to 9.5 h of operation without loss of activity) and the inactivation half-life was not reached even after 18 h or 36 bioconversion cycles. This represents the first case of a reactor developed successfully with a D-amino acid oxidase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
After Wistar male rats had been fed on a diet containing 0.25% of ethyl p-chlorophenoxyisobutyrate (CPIB) for 28 days, changes in the enzyme activities and centrifugal behavior of rat liver peroxisomes were investigated. (1) Compared with control rats fed on the basal diet, the catalase [EC 1.11.1.6] activity of rat livers after the administration of CPIB increased about 2.5-fold, while urate oxidase [EC 1.7.3.3] activity did not change significantly. Though D-amino acid oxidase [EC 1.4.3.3] activity markedly decreased to approximately one-sixth of the control, the activity of L-alpha-hydroxy acid oxidase [EC 1.1.3.15], a flavin enzyme like D-amino acid oxidase, was not affected significnatly after the administration of CPIB. (2) When the hepatic cells of CPIB-treated rats were fractionated by differential centrifugation, most of the increase of catalase activity appeared in the supernatant fraction. A decrease in the hepatic D-amino acid oxidase activity of CPIB-treated rats was observed in all the fractions. As for the subcellular distribution of the particle-bound enzymes, the specific activities of both catalase and urate oxidase of CPIB-treated rat livers were higher in the light mitochondrial fraction than in other fractions. (3) Sedimentation patterns in a sucrose density gradient did not show any difference between normal peroxisomers, and CPIB-treated ones. (4) In the case of CPIB-treated rats, studies of their sedimentation patterns by Ficoll density gradient centrifugation showed two main particulate peaks containing both catalase and urate oxidase, although only a single peak was observed in the case of control rats.  相似文献   

3.
The fungus Fusarium oxysporum produced a D-amino acid oxidase (EC 1. 4.3.3) in a medium containing glucose as the carbon and energy source and ammonium sulfate as the nitrogen source. The specific D-amino acid oxidase activity was increased up to 12.5-fold with various D-amino acids or their corresponding derivatives as inducers. The best inducers were D-alanine (2.7 microkat/g of dry biomass) and D-3-aminobutyric acid (2.6 microkat/g of dry biomass). The addition of zinc ions was necessary to permit the induction of peroxisomal D-amino acid oxidase. Bioreactor cultivations were performed on a 50-liter scale, yielding a volumetric D-amino acid oxidase activity of 17 microkat liter(-1) with D-alanine as an inducer. Under oxygen limitation, the volumetric activity was increased threefold to 54 microkat liter(-1) (3,240 U liter(-1)).  相似文献   

4.
Sulfite oxidase (sulfite:oxygen oxidoreductase, EC 1.8.3.1) was purified 482-fold from liver of the Pacific hake Merluccius productus. The molecular weight of the enzyme was found to be 120 000 by gel exclusion chromatography on Sephadex G-100. Electrophoretic analysis on sodium dodecyl sulfate (SDS)-polyacrylamide gel revealed that the enzyme was composed of two subunits whose molecular weight was estimated to be 60 000. The pH optimum of the enzyme was 8.7; Ks for sulfite, 2.5 x 10(-5) M; and that for cytochrome c, 3.6 x 10(-7) M. The enzyme elicited an EPR signal at g = 1.97 characteristic of pentavalent molybdenum. Colorimetric analysis also disclosed that the enzyme contained 2 mol each of heme and molybdenum per mol of protein. This fish liver homogenate in isotonic sucrose solution was fractionated by differential centrifugation into nuclei, mitochondria, microsomes and supernatant (100 000 X g). The major portion of sulfite oxidase activity was found in mitochondria. The sulfite oxidase activity was markedly high in liver and kidney, as compared with that in heart, spleen, muscle, gill and eye.  相似文献   

5.
A single proteolytic enzyme (EC 3.4.4.-) was isolated from culture supernatants of Pseudomonas fragi with 20% yielded and 60-fold purification by means of stepwise DEAE-Sephadex batch adsorption, ammonium sulfate precipitation, gel filtration and DEAE-cellulose chromatography. The enzyme was Zn-2+ activated and Ca-2+ stabilized, had optimum activity at pH 6.5--8.0 and 40 degrees C. The molecular weight range was 40 000--50 000 as determined by dodecylsulfate gel electrophoresis, gel filtration and Zn assay. This proteinase has properties similar to other extracellular bacterial neutral proteinases.  相似文献   

6.
A gene encoding a new thermostable D-stereospecific alanine amidase from the thermophile Brevibacillus borstelensis BCS-1 was cloned and sequenced. The molecular mass of the purified enzyme was estimated to be 199 kDa after gel filtration chromatography and about 30 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the enzyme could be composed of a hexamer with identical subunits. The purified enzyme exhibited strong amidase activity towards D-amino acid-containing aromatic, aliphatic, and branched amino acid amides yet exhibited no enzyme activity towards L-amino acid amides, D-amino acid-containing peptides, and NH(2)-terminally protected amino acid amides. The optimum temperature and pH for the enzyme activity were 85 degrees C and 9.0, respectively. The enzyme remained stable within a broad pH range from 7.0 to 10.0. The enzyme was inhibited by dithiothreitol, 2-mercaptoethanol, and EDTA yet was strongly activated by Co(2+) and Mn(2+). The k(cat)/K(m) for D-alaninamide was measured as 544.4 +/- 5.5 mM(-1) min(-1) at 50 degrees C with 1 mM Co(2+).  相似文献   

7.
The redox properties of D-amino acid oxidase (D-amino-acid: O2 oxidoreductase (deaminating) EC1.4.3.3) have been measured at 18 degrees C in 20 mM sodium pyrophosphate, pH 8.5, and in 50 mM sodium phosphate, pH 7.0. Over the entire pH range, 2 eq are required per mol of FAD in D-amino acid oxidase for reduction to the anion dihydroquinone. The red anion semiquinone is thermodynamically stable as indicated by the separation of the electron potentials and the quantitative formation of the semiquinone species. The first electron potential is pH-independent at -0.098 +/- 0.004 V versus SHE while the second electron potential is pH-dependent exhibiting a 0.060 mV/pH unit slope. The redox behavior of D-amino acid oxidase is consistent with that observed for other oxidase enzymes. On the other hand, the behavior of the benzoate-bound enzyme under the same conditions is in marked contrast to the thermodynamics of free D-amino acid oxidase. Spectroelectrochemical experiments performed on inhibitor-bound (benzoate) D-amino acid oxidase show that benzoate binding regulates the redox properties of the enzyme, causing the energy levels of the benzoate-bound enzyme to be consistent with the two-electron transfer catalytic function of the enzyme. Our data are consistent with benzoate binding at the enzyme active site destroying the inductive effect of the positively charged arginine residue. Others have postulated that this positively charged group near the N(1)C(2) = O position of the flavin controls the enzyme properties. The data presented here are the clearest examples yet of enzyme regulation by substrate which may be a general characteristic of all flavoprotein oxidases.  相似文献   

8.
In vitro synthesis of D-amino acid oxidase [D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3], one of the peroxisomal flavin enzymes, was performed using a rabbit reticulocyte lysate system in order to elucidate the biosynthetic pathway of the enzyme. The apparent molecular weight of the synthesized enzyme protein was the same as that of D-amino acid oxidase purified from pig kidney. On the other hand, the enzyme protein was not detectable when a wheat germ lysate system was used for the translation. Denaturation of pig kidney poly(A)+ RNA with methylmercury hydroxide prior to the translation was found to enhance the synthesis of the enzyme protein. These results suggest a tight conformational structure of the mRNA used.  相似文献   

9.
D-氨基酸氧化酶(D-amino acid oxidase:oxidoreductase, DAAO, EC 1.4.3.3)是一种以黄素腺嘌呤(FAD)为辅基的典型黄素蛋白酶类,可氧化D-氨基酸的氨基生成相应的酮酸和氨。在体内D-氨基酸的代谢中起着重要作用。主要介绍了D-氨基酸氧化酶的生理功能和应用、表达条件优化及通过定点突变对酶学性质的研究。  相似文献   

10.
The peroxisomal core from the liver of rats was purified 450-fold as a marker of urate oxidase [EC 1.7.3.3.] activity. This preparation has a high specific activity of urate oxidase but not of other peroxisomal enzymes: D-amino acid oxidase [EC 1.4.3.3.], L-alpha-hydroxy acid oxidase [EC 1.1.3.15], or catalase [EC 1.11.1.6]. No activity of marker enzymes for other subcellular particles; cytochrome c oxidase [EC1.9.3.1] (mitochondria), acid phosphatase [EC 3.1.3.2] (lysosomes), or glucose-6-phosphatase [EC 3.1.3.9] (microsomes), was detected in this preparation. The core obtained showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the position of the band was found to correspond to a molecular weight 35,000. When the peroxisomal core was subjected to treatment at various pH's with 0.1 M carbonate buffer, urate oxidase was almost completely solubulized at pH 11.0, although approximately 35% of the core protein still remained in the pellet After solubilization of the core at pH 11.0, the specific activity of urate oxidase in the supernatant increased about 1.6 times; the density of the insoluble protein remaining in the pellet was identical with the that of the original core on sucrose density gradient centrifugation.  相似文献   

11.
Two highly purified proteins with quite different properties capable of oxaloacetate keto-enol-tautomerase activity (oxaloacetate keto-enol-isomerase, EC 5.3.2.2) were isolated from the bovine heart mitochondrial matrix. The first protein has an apparent molecular mass of 37 kDa as determined by SDS-gel electrophoresis and Sephacryl SF-200 gel filtration. It is quite stable upon storage at 40 degrees C and reaches the maximal catalytic activity at pH 8.5 with a half-maximal activity at pH 7.0. The enzyme is specifically inhibited by oxalate and diethyloxaloacetate. When assayed in the enol----ketone direction at 25 degrees C (pH 9.0), the enzyme obeys a simple substrate saturation kinetics with Km and Vmax values of 45 microM and 74 units per mg of protein, respectively; the latter value corresponds to the turnover number of 2700 min-1. The second protein has an apparent molecular mass of 80 kDa as determined by SDS-gel electrophoresis and Sephacryl SF-300 gel filtration. The enzyme is rapidly inactivated at 40 degrees C and shows a sharp pH optimum of activity at pH 9.0. The enzyme can be completely protected from thermal inactivation by oxaloacetate and dithiothreitol. The kinetic parameters of the enzyme as assayed in the enol----ketone direction at 25 degrees C (pH 9.0) are: Km = 220 microM and Vmax = 20 units per mg of protein; the latter corresponds to the turnover number of 1600 min-1. The enzyme activity is specifically inhibited by maleate and pyrophosphate. About 30% of the total oxaloacetate tautomerase activity in crude mitochondrial matrix is represented by the 37 kDa enzyme and about 70% by the 80 kDa protein.  相似文献   

12.
从荧光假单胞菌TM5-2中得到一个含丙氨酸消旋酶基因的DNA片段(8.8kb),相邻的一个开读框(ORF)与甘氨酸/D-型氨基酸氧化酶基因相似。该ORF经过克隆、表达,并没有检测到甘氨酸/D-型氨基酸氧化酶的活性,推导而得的氨基酸序列与D-型氨基酸脱氢酶序列比较发现,ORF含有D-型氨基酸脱氢酶的所有重要的保守序列。经TTC培养基鉴定,其具有D-型氨基酸脱氢酶的活性,并对一系列D-型氨基酸有作用,最佳作用底物是D-组氨酸。  相似文献   

13.
R Hadar  A Slonim    J Kuhn 《Journal of bacteriology》1976,125(3):1096-1104
Mutants of Escherichia coli K-12 that require L-tryptophan (trp) are normally unable to utilize D-tryptophan to fulfill their requirement. However, secondary mutations (dadR) that confer this ability can be isolated. In such strains two distinct enzymes are found to be produced at high levels: D-amino acid oxidase (EC 1.4.3.3) and D-tryptophan oxidase. A convenient assay procedure for D-tryptophan oxidase is described. The two enzymes could be distinguished on the basis of their sensitivity to inhibition by L-phenylalanine and L-tyrosine. Strains that were trp dadR could not grow with D-tryptophan in the presence of L-phenylalanine, but further mutations, Fyo, could be isolated that allowed growth under these conditions. Some of them were characterized by further increases in the level of D-tryptophan oxidase activity and a sharp decrease in D-amino acid oxidase. These kinds of Fyo mutations lay in or near the dadR gene. The substrate specificity of the two enzymes toward a large number of compounds was examined. The transamination of aromatic keto acids was investigated. In the wild-type strain only a single enzyme, transaminase A (EC 2.6.1.5), was found, and it was irreversibly activated when subjected to elevated temperatures. The present state of our knowledge on D-amino acid utilization in E. coli is summarized.  相似文献   

14.
Chlorogenic acid oxidase was extensively purified to homogeneity from apple flesh (Malus pumila cv. Fuji). The enzyme was purified 470-fold, with a total yield close to 70% from the plastid fraction by ammonium sulfate precipitation, gel filtration and ion-exchange chromatography. The molecular weight was determined to be 65,000 by both SDS-PAGE and gel filtration chromatography. The optimum pH for the enzyme activity was around 4.0, and the enzyme was stable in the range of pH 6-8. The pI obtained by isoelectrofocusing was 5.4, and the N-terminal amino acid sequence was N-Asp-Pro-Leu-Ala-Pro-Pro-. The reaction rate of the purified enzyme was much larger for chlorogenic acid than for other o-diphenols such as (+)-catechin, (-)-epicatechin and 4-methylcatechol, and the enzyme lacked both cresolase activity and p-diphenol oxidase activity. The Km value for the enzyme was found to be 122 microM toward chlorogenic acid. The purified enzyme had far less thermal stability than the enzyme of the plastid fraction. Diethyl-dithiocarbamate, sodium azide, o-phenanthroline and sodium fluoride markedly inhibited the enzyme activity.  相似文献   

15.
The effect of thyroid hormone on peroxisomal enzyme activity was studied in thyroidectomized- and T4-administered-thyroidectomized rats. In liver, the activities of isozyme A of L-alpha-hydroxyacid oxidase, D-amino acid oxidase, urate oxidase and catalase were decreased by thyroidectomy, and the diminished enzyme activities were restored by T4 administration to rats. These modifications induced by thyroidectomy or by T4 administration, however, were prominent only in immature animals (20-day-old rats). Although the changes in-alpha-hydroxyacid oxidase and D-amino acid oxidase activities, induced by thyroidectomy or by T4 administration, were also observed in 40-day-old rats, those in urate oxidase and catalase activities were not significant in 40-day-old rats. Acyl CoA oxidase activity was not affected by thyroidectomy or by T4 administration in either 20- or 40-day-old rats. In the kidney, isozyme B of L-alpha-hydroxyacid oxidase activity was reduced by thyroidectomy and the diminished enzyme activity was restored by T4 administration in both 20- and 40-day-old rats. D-Amino acid oxidase and catalase activities in kidney, however, were not significantly modified by thyroidectomy or by T4 administration in either 20- or 40-day-old rats. The results suggest that thyroid hormone can modify the peroxisomal enzyme activity, which is prominent in immature animals.  相似文献   

16.
In order to screen for new microbial D-amino acid oxidase activities a selective and sensitive peroxidase/o-dianisidine assay, detecting the formation of hydrogen peroxide was developed. Catalase, which coexists with oxidases in the peroxisomes or the microsomes and, which competes with peroxidase for hydrogen peroxide, was completely inhibited by o-dianisidine up to a catalase activity of 500 nkat ml(-)(1). Thus, using the peroxidase/o-dianisidine assay and employing crude extracts of microorganisms in a microplate reader, a detection sensitivity for oxidase activity of 0.6 nkat ml(-)(1) was obtained.Wild type colonies which were grown on a selective medium containing D-alanine as carbon, energy and nitrogen source were examined for D-amino acid oxidase activity by the peroxidase/o-dianisidine assay. The oxidase positive colonies possessing an apparent oxidase activity > 2 nkat g dry biomass(-)(1) were isolated. Among them three new D-amino acid oxidase-producers were found and identified as Fusarium oxysporum, Verticilium lutealbum and Candida parapsilosis. The best new D-amino oxidase producer was the fungus F. oxysporum with a D-amino acid oxidase activity of about 900 nkat g dry biomass(-)(1) or 21 nkat mg protein(-)(1). With regard to the use as a biocatalytic tool in biotechnology the substrate specificities of the three new D-amino acid oxidases were compared with those of the known D-amino acid oxidases from Trigonopsis variabilis, Rhodotorula gracilis and pig kidney under the same conditions. All six D-amino acid oxidases accepted the D-enantiomers of alanine, valine, leucine, proline, phenylalanine, serine and glutamine as substrates and, except for the D-amino acid oxidase from V. luteoalbum, D-tryptophane, D-tyrosine, D-arginine and D-histidine were accepted as well. The relative highest activities (>95%) were measured versus D-alanine (C. parapsilosis, F. oxysporum, T. variabilis), D-methionine (V. luteoalbum, R. gracilis), D-valine (T. variabilis, R. gracilis) and D-proline (pig kidney). The D-amino oxidases from F. oxysporum and V. luteoalbum were able to react with the industrially important substrate cephalosporin C although the D-amino acid oxidase from T. variabilis was at least about 20-fold more active with this substrate.As the results of our studies, a reliable oxidase assay was developed, allowing high throughput screening in a microplate reader. Furthermore, three new microbial D-amino acid oxidase-producers with interesting broad substrate specificities were introduced in the field of biotechnology.  相似文献   

17.
A procedure has been developed for the partial purification from Chlorella vulgaris of an enzyme which catalyzes the formation of HCN from D-histidine when supplemented with peroxidase of a metal with redox properties. Some properties of the enzyme are described. Evidence is presented that the catalytic activity for HCN formation is associated with a capacity for catalyzing the oxidation of a wide variety of D-amino acids. With D-leucine, the best substrate for O2 consumption, 1 mol of ammonia is formed for half a mol of O2 consumed in the presence of catalase. An inactive apoenzyme can be obtained by acid ammonium sulfate precipitation, and reactivated by added FAD. On the basis of these criteria, the Chlorella enzyme can be classified as a D-amino acid oxidase (EC 1.4.3.3). Kidney D-amino acid oxidase and snake venom L-amino acid oxidase, which likewise form HCN from histidine on supplementation with peroxidase, have been compared with the Chlorella D-amino acid oxidase. The capacity of these enzymes for causing HCN formation from histidine is about proportional to their ability to catalyze the oxidation of histidine.  相似文献   

18.
The histochemical method for the demonstration of D-amino acid oxidase activity in rat liver, based on the use of cerium ions and the diaminobenzidine-cobalt-hydrogen peroxide procedure, was improved by the application of unfixed cryostat sections and a semipermeable membrane interposed between section and gelled incubation medium. The amount of final reaction product precipitated in a granular form was about four times higher with this technique in comparison with conventional procedures using fixed sections and aqueous incubation media. The specificity of the reaction was proven by the 70% reduction of the amount of final reaction product when incubating in the presence of substrate and D,L-beta-hydroxybutyrate, a specific inhibitor of D-amino acid oxidase activity. Cytophotometric analysis of liver sections revealed that the specific test minus control reaction was linear with incubation time and section thickness. The Km value of the enzyme of 10.3 +/- 2.7 mM, as determined in periportal areas, is about five times the value found with biochemical methods in liver cell homogenates. The enzyme activity in periportal areas is about five times the activity in pericentral areas. Fasting (24 and 48 hr) induced a significant decrease in D-amino acid activity in periportal and pericentral areas. The possible physiological role of the enzyme in liver is discussed.  相似文献   

19.
A high-molecular-weight (250 000) bile salt hydrolase (cholylglycine hydrolase, EC 3.5.-.-) was isolated and purified 128-fold from the "spheroplast lysate" fraction prepared from Bacteroids fragilis subsp. fragilis ATCC 25285. The intact enzyme had a molecular weight of approx. 250 000 as determined by gel infiltration chromatography. One major protein band, corresponding to a molecular weight of 32 500, was observed on 7% sodium dodecyl sulfate polyacrylamide gel electrophoresis of pooled fractions from DEAE-cellulose column chromatography (128-fold purified). The pH optimum for the 64-fold purified enzyme isolated from Bio-Gel A 1.5 M chromatography was 4.2 and bile salt hydrolase activity measured in intact cell suspensions had a pH optimum of 4.5. Substrate specificity studies indicated that taurine and glycine conjugates of cholic acid, chenodeoxycholic acid and deoxycholic acid were readily hydrolyzed; however, lithocholic acid conjugates were not hydrolyzed. Substrate saturation kinetics were biphasic with an intermediate plateau (0.2--0.3 mM) and a complete loss of enzymatic activity was observed at high concentration for certain substrates. The presence or absence of 7-alpha-hydroxysteroid dehydrogenase was absolutely correlated with that of bile salt hydrolase activity in six to ten strains and subspecies of B. fragilis.  相似文献   

20.
The molecular weight of fumarylacetoacetate fumarylhydrolase (EC 3.7.1.2) is 86 000 +/- 10 000, as determined by gel filtration. The enzyme appears to be a dimer with a monomer molecular weight of 38 000 - 43 000, as determined by gel electrophoresis, gel filtration in guanidine-hydrochloride, and ultracentrifugation. The subunits appear to be identical, as only one band is seen in gel electrophoresis, only one protein peak is detected in gel filtration in guanidine-hydrochloride, and only one amino-terminal amino acid (proline) is detected. Three free sulfhydryl groups per denatured monomer are detected by reaction with 5,5'-dithiobis(2-nitrobenzoic acid), while for the active enzyme only two sulfhydryl groups react with this reagent, The extinction coefficients at 260 and 280 nm, the amino acid composition, and the isoelectric point (6.7) of the enzyme are also reported. The enzyme catalyzes the hydrolysis of six 2,4-diketo acids and three 3,5-diketo acids tested. The Km of the substrates is similar but V varies by a factor of 120. The pH optimum is 7.3. The enzyme did not catalyze the hydrolysis of a number of esters tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号