首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein is the homolog of the herpes simplex virus type 1 (HSV-1) protein VP16. These are two virion tegument proteins that have extensive amino acid sequence identity in their amino-terminal and middle domains. ORF10, however, lacks the acidic carboxy terminus which is critical for transactivation by VP16. Earlier studies showed that VZV ORF10 does not form a tertiary complex with the TAATGARAT regulatory element (where R is a purine) with which HSV-1 VP16 interacts, suggesting that ORF10 may not have transactivating ability. Using transient-expression assays, we show that VZV ORF10 is able to transactivate VZV immediate-early (IE) gene (ORF62) and HSV-1 IE gene (ICP4 and ICP0) promoters. Furthermore, cell lines stably expressing ORF10 complement the HSV-1 mutant in1814, which lacks the transactivating function of VP16, and enhance the de novo synthesis of infectious virus following transfection of HSV-1 virion DNA. These results indicate that ORF10, like its HSV-1 homolog VP16, is a transactivating protein despite the absence of sequences similar to the VP16 carboxy-terminal domain. The transactivating function of the VZV ORF10 tegument protein may be critical for efficient initiation of viral infection.  相似文献   

3.
To minimize the contribution of residual activity associated with the temperature-sensitive (ts) form of ICP8 specified by available ts mutants, deletion mutations in this gene were constructed. Cells permissive for the generation and propagation of ICP8 deletion mutants were first obtained. Vero cells were cotransfected with pKEF-P4, which contains the gene for ICP8, and pSV2neo or a hybrid plasmid containing the G418 resistance gene linked to pKEF-P4. Of the 48 G418-resistant cell lines, 21 complemented ICP8 ts mutants in plaque assays at the nonpermissive temperature. Four of these were examined by Southern blot analysis and shown to contain 1 to 3 copies of the ICP8 gene per haploid genome equivalent. Cell line U-47 was used as the permissive host for construction of ICP8 deletion mutants. In addition to cell lines which complemented ts mutants, two lines, U-27 and U-35, significantly inhibited plaque formation by wild-type virus, contained 30 and 100 copies of the ICP8 gene per haploid genome equivalent, respectively, and expressed large amounts of ICP8 after infection with wild-type virus. At low but not high multiplicities of infection, this inhibition was accompanied by underproduction of viral polypeptides of the early, delayed-early, and late kinetic classes. For construction of deletion mutants, a 780-base-pair XhoI fragment was deleted from pSG18-SalIA, a plasmid which contains the gene for ICP8, to yield pDX. U-47 cells were then cotransfected with pDX and infectious wild-type DNA. Mutant d61, isolated from the progeny of cotransfection, was found to contain both the engineered deletion in the ICP8 gene and an oriL-associated deletion of approximately 55 base pairs. Because d61 contained two mutations, a second mutant, d21, which carried the engineered ICP8 deletion but an intact oriL, was constructed by cotransfection of U-47 cells with wild-type DNA and an SalI-KpnI fragment purified from pDX. Phenotypic analysis of d21 and d61 revealed that they were similar in all properties examined: both exhibited efficient growth in U-47 cells but not in Vero cells; both induced the synthesis of an ICP8 polypeptide which was smaller than the wild-type form of the protein and which, unlike the wild-type protein, was found in the cytoplasm and not the nucleus of infected Vero cells; and nonpermissive Vero cells infected with either mutant failed to express late viral polypeptides.  相似文献   

4.
The herpes simplex virus type 1 (HSV-1) immediate-early (IE) regulatory protein infected-cell protein 0 (ICP0) is a strong and global transactivator of both viral and cellular genes. In a previous study, we reported that ICP0 is highly phosphorylated and contains at least seven distinct phosphorylation signals as determined by phosphotryptic peptide mapping (D. J. Davido et al., J. Virol. 76:1077-1088, 2002). Since phosphorylation affects the activities of many viral regulatory proteins, we sought to determine whether the phosphorylation of ICP0 affects its functions. To address this question, it was first necessary to identify the regions of ICP0 that are phosphorylated. For this purpose, ICP0 was partially purified, and phosphorylation sites were mapped by microcapillary high-pressure liquid chromatography tandem mass spectrometry. Three phosphorylated regions containing 11 putative phosphorylation sites, all within or adjacent to domains important for the transactivating activity of ICP0, were identified. The 11 sites were mutated to alanine as clusters in each of the three regions by site-directed mutagenesis, generating plasmids expressing mutant forms of ICP0: Phos 1 (four mutated sites), Phos 2 (three mutated sites), and Phos 3 (four mutated sites). One-dimensional phosphotryptic peptide analysis confirmed that the phosphorylation state of each Phos mutant form of ICP0 is altered relative to that of wild-type ICP0. In functional assays, the ICP0 phosphorylation site mutations affected the subcellular and subnuclear localization of ICP0, its ability to alter the staining pattern of the nuclear domain 10 (ND10)-associated protein PML, and/or its transactivating activity in Vero cells. Only mutations in Phos 1, however, impaired the ability of ICP0 to complement the replication of an ICP0 null mutant in Vero cells. This study thus suggests that phosphorylation is an important regulator of ICP0 function.  相似文献   

5.
The major DNA-binding protein, ICP8, encoded by herpes simplex virus is localized to the infected cell nucleus where it plays a role in viral DNA replication and control of viral gene expression. To identify the parts of the ICP8 protein that are important for its localization and functions, we have developed a system to test the ability of recombinant plasmids to express functional ICP8. A recombinant plasmid containing the wild-type ICP8 gene was transfected into cells. The cells were later infected with a temperature-sensitive ICP8 mutant virus at the nonpermissive temperature. Sufficient wild-type ICP8 was expressed from the transfected plasmid to complement the replication of the mutant virus. This provides a genetic system to test the properties of ICP8 expressed from mutagenized plasmids without the establishment of a stable cell line or the reintroduction of the ICP8 gene into the herpes simplex virus genome.  相似文献   

6.
ICP27 is an essential herpes simplex virus type 1 (HSV-1) alpha protein that is required for the transition from the beta to the gamma phase of infection. To identify functional regions of ICP27, we constructed 16 plasmids that contain nucleotide substitution mutations in the ICP27 gene. The mutations created XhoI restriction sites, altered one or two codons, and were spaced at semiregular intervals throughout the coding region. Three mutations completely inactivated an essential function of ICP27, as demonstrated by the inability of the transfected plasmids to complement the growth of an HSV-1 ICP27 deletion mutant. These mutations, M11, M15, and M16, mapped in the carboxyl-terminal one-third of ICP27 at residues 340 and 341, 465 and 466, and 488, respectively. In cotransfection assays, all three defective-plasmid mutants retained the transrepression function of ICP27 but were defective at transactivation. To define the lytic functions that are mediated by the transactivation activity of ICP27, we engineered HSV-1 recombinants containing the M11, M15, or M16 mutation. All three viral mutants failed to grow in Vero cells and possessed similar phenotypes. The viral mutants replicated their DNA similarly to the wild-type virus but showed several defects in viral gene expression. These were a failure to down-regulate alpha and beta genes at late times after infection and an inability to induce certain gamma-2 genes. Our results demonstrate that the transactivation function of ICP27 (as it is defined in cotransfection assays) mediates an essential gene regulation function during the HSV-1 infection. This activity is not required for ICP27-dependent enhancement of viral DNA replication. Our work supports and extends previous studies which suggest that ICP27 carries out two distinct regulatory activities during the HSV-1 infection.  相似文献   

7.
The phenotypic properties of ICP27 temperature-sensitive and deletion mutants and the results of transient expression assays have demonstrated that ICP27 has a modulatory effect on viral gene expression induced by ICPs 0 and 4. In order to identify the regions of the ICP27 molecule that are responsible for its enhancing and repressing activities, 10 nonsense and 3 in-frame deletion mutations were introduced into the coding sequence of the cloned ICP27 gene. These mutant genes were tested in transient expression assays for their ability to complement an ICP27 null mutant and to enhance and repress expression from a spectrum of herpes simplex virus type 1 promoters in reporter CAT genes when expression was induced by ICP0 or ICP4. The results of assays with cloned mutant genes demonstrate that the ICP27 polypeptide contains two regions, located between amino acid residues 327 and 407 and residues 465 and 511, that contribute to its repressing activity. The amino acid region located between the two repressing regions (residues 407 to 465) is able to interfere with ICP27 repressing activity. None of the mutant genes exhibited efficient enhancing activity for any of the herpes simplex type 1 promoters tested, demonstrating that amino acids comprising the carboxy-terminal half of the ICP27 molecule, including the terminal phenylalanine residue, are required for wild-type enhancement as well as for efficient complementation of an ICP27 null mutant. Phenotypic characterization of an in-frame deletion mutant, vd3, and a previously isolated null mutant, 5dl 1.2 (A. M. McCarthy, L. and P. A. Schaffer, J. Virol. 63:18-27, 1989), demonstrated that ICP27 is required to induce the expression of all classes of viral genes very early in infection and confirmed the requirement for ICP27 later in infection (i) to repress early gene expression, (ii) to induce wild-type levels of delayed-early or gamma 1 gene expression, and (iii) to induce true late or gamma 2 gene expression. The vd3 mutant, which specifies an ICP27 peptide lacking the repressing region between residues 327 and 407, is able to (i) repress early gene expression, consistent with the repressing ability of the d3 mutation in transient expression assays, (ii) induce the synthesis of significant but reduced levels of delayed-early (gamma 1) proteins and no gamma 2 proteins (thus vd3 exhibits a late protein phenotype intermediate between that of the wild-type virus and 5dl 1.2), and (iii) confer altered electrophoretic mobility on ICP4, demonstrating a role for ICP27 in the posttranslational modification of this essential regulatory protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The major DNA-binding protein, or infected-cell protein 8 (ICP8), of herpes simplex virus is required for viral DNA synthesis and normal regulation of viral gene expression. Previous genetic analysis has indicated that the carboxyl-terminal 28 residues are the only portion of ICP8 capable of acting independently as a nuclear localization signal. In this study, we constructed a mutant virus (n11SV) in which the carboxyl-terminal 28 residues of ICP8 were replaced by the simian virus 40 large-T-antigen nuclear localization signal. The n11SV ICP8 localized into the nucleus and bound to single-stranded DNA in vitro as tightly as wild-type ICP8 did but was defective for viral DNA synthesis and viral growth in Vero cells. Two mutant ICP8 proteins (TL4 and TL5) containing amino-terminal alterations could complement the n11SV mutant but not ICP8 gene deletion mutants. Cell lines expressing TL4 and TL5 ICP8 were isolated, and in these cells, complementation of n11SV was observed at the levels of both viral DNA replication and viral growth. Therefore, complementation between n11SV ICP8 and TL4 or TL5 ICP8 reconstituted wild-type ICP8 functions. Our results demonstrate that (i) the carboxyl-terminal 28 residues of ICP8 are required for a function(s) involved in viral DNA replication, (ii) this function can be supplied in trans by another mutant ICP8, and (iii) ICP8 has multiple domains possessing different functions, and at least some of these functions can complement in trans.  相似文献   

9.
Su YH  Zhang X  Wang X  Fraser NW  Block TM 《Journal of virology》2006,80(23):11589-11597
Following infection, the physical state of linear herpes simplex virus (HSV) genomes may change into an "endless" or circular form. In this study, using Southern blot analysis of the HSV genome, we provide evidence that immediate-early protein ICP4 is involved in the process of converting the linear HSV-1 ICP4-deleted mutant strain d120 genome into its endless form. Under conditions where de novo viral DNA synthesis was inhibited, the genome of the ICP4 deletion mutant d120 failed to assume an endless conformation following infection of Vero cells (compared with the ability of wild-type strain KOS). This defect was reversed in the Vero-derived cell line E5, which produces the ICP4 protein, suggesting that ICP4 is necessary and sufficient to complement the d120 defect. When ICP4 protein was provided by the replication-defective DNA polymerase mutant HP66, the genomes of mutant d120 could assume an endless conformation in Vero cells. Western blot analysis using antibody specific to the ICP4 protein showed that although the d120 virions contained ICP4 protein, the majority of that ICP4 protein was in a 40-kDa truncated form, with only a small fraction present as a full-length 175-kDa protein. When expression of ICP4 protein from E5 cells was inhibited by cycloheximide, the d120 virion-associated ICP4 protein was unable to mediate endless formation after infection of E5 cells. Collectively, these data suggest that ICP4 protein has an important role in mediating the endless formation of the HSV-1 genome upon infection and that this function can be provided in trans.  相似文献   

10.
S A Rice  V Lam    D M Knipe 《Journal of virology》1993,67(4):1778-1787
The herpes simplex virus type 1 (HSV-1) alpha protein ICP27 regulates the transition between the delayed-early and late phases of the viral infection. Previous genetic analyses have suggested that the important functional domains of ICP27 map to its carboxyl-terminal half. One striking feature of the primary sequence of ICP27, however, is an extremely acidic region near its amino terminus. To determine whether this region is required for ICP27 function, we deleted the sequences in the ICP27 gene which encode it (codons 12 through 63). In transient expression assays, the deletion mutant was unable to efficiently repress the expression of a cotransfected reporter gene or to efficiently complement the growth of d27-1, an HSV-1 ICP27 null mutant. These results suggested that the acidic region of ICP27 is involved in a regulatory function required for lytic growth. To test this possibility further, we introduced the mutant allele into the HSV-1 genome by marker transfer. Two independently derived isolates of the mutant virus, designated d1-2a and d1-2b, were recovered and analyzed. Both isolates were defective for growth in Vero cells, exhibiting a 100-fold reduction in virus yield compared with the wild-type infection. Vero cells infected with the d1-2 isolates showed a three- to eightfold reduction in viral DNA replication, a moderate reduction in the expression of viral gamma genes, and a delay in the repression of beta genes. The phenotype of the d1-2 isolates differs substantially from the phenotypes of previously isolated ICP27 mutants, which show much more severe defects in viral gene expression. Our results demonstrate that the amino-terminal half of ICP27 participates in its regulatory activities in both infected and transfected cells.  相似文献   

11.
To evaluate the possibility of producing transducible replication-defective hepadnaviruses, cloned mutant duck hepatitis B virus genomes were tested both for virus antigen production and viral DNA synthesis following transfection into the human hepatoma cell line HuH7. Deletion of a cis-acting 12-nucleotide sequence implicated in viral DNA synthesis, direct repeat 1 (DR1), resulted in the loss of ability to synthesize both mature viral DNA and infectious virus. The delta DR1 mutant, however, produced envelope and core antigens and was shown to provide trans-acting functions required for the assembly of infection-competent particles. Thus, mutants with mutations in viral genes could be rescued as DNA-containing viral particles after cotransfection with delta DR1. The efficiency of rescue was influenced by the site of mutation. A mutant DNA encoding truncated core and envelope proteins not only was poorly rescued but also was able to suppress the production from a wild-type DNA of infectious virus.  相似文献   

12.
13.
Herpes simplex virus (HSV) encodes a ribonucleotide reductase consisting of two subunits (140 and 38 kilodaltons) whose genes map to coordinates 0.56 to 0.60 on the viral genome. Host cell lines containing the HpaI F fragment which includes the reductase subunit genes of HSV type 1 strain KOS (coordinates 0.535 to 0.620) were generated. Transfection of these cells with a plasmid containing the immediate-early ICP0 gene resulted in the expression of ICP6; interestingly, ICP4 plasmids failed to induce expression, indicating an unusual pattern of ICP6 regulation. One such cell line (D14) was used to isolate a mutant with the structural gene of lacZ inserted into the ICP6 gene such that the lacZ gene is read in frame with the N-terminal region of ICP6. This mutant generated a protein containing 434 amino acids (38%) of the N terminus of ICP6 fused to beta-galactosidase under control of the endogenous ICP6 promoter. Screening for virus recombinants was greatly facilitated by staining virus plaques with 5-bromo-4-chloro-3-indoyl-beta-D-galactoside (X-gal). Enzyme assays of infected BHK cells indicated that the mutant is incapable of inducing viral ribonucleotide reductase activity. Surprisingly, although plaque size was greatly reduced, mutant virus yield was reduced only four- to fivefold compared with that of the wild type grown in exponentially growing Vero cells. Mutant virus plaque size, yields, and ability to synthesize viral DNA were more severely compromised in serum-starved cells as compared with the wild type grown under the same condition. Although our evidence suggests that the HSV type 1 ribonucleotide reductase is not required for virus growth and DNA replication in dividing cells, it may be required for growth in nondividing cells.  相似文献   

14.
Earlier studies have shown that wild-type infected-cell protein 0 (ICP0), a key herpes simplex virus regulatory protein, translocates from the nucleus to the cytoplasm of human embryonic lung (HEL) fibroblasts within several hours after infection (Y. Kawaguchi, R. Bruni, and B. Roizman, J. Virol. 71:1019-1024, 1997). Translocation of ICP0 was also observed in cells infected with the d120 mutant, in which both copies of the gene encoding ICP4, the major regulatory protein, had been deleted (V. Galvan, R. Brandimarti, J. Munger, and B. Roizman, J. Virol. 74:1931-1938, 2000). Furthermore, a mutant (R7914) carrying the D199A substitution in ICP0 does not bind or stabilize cyclin D3 and is retained in the nucleus (C. Van Sant, P. Lopez, S. J. Advani, and B. Roizman, J. Virol. 75:1888-1898, 2001). Studies designed to elucidate the requirements for the translocation of ICP0 between cellular compartments revealed the following. (i) Translocation of ICP0 to the cytoplasm in productive infection maps to the D199 amino acid, inasmuch as wild-type ICP0 delivered in trans to cells infected with an ICP0 null mutant was translocated to the cytoplasm whereas the D199A-substituted mutant ICP0 was not. (ii) Translocation of wild-type ICP0 requires a function expressed late in infection, inasmuch as phosphonoacetate blocked the translocation of ICP0 in wild-type virus-infected cells but not in d120 mutant-infected cells. Moreover, whereas in d120 mutant-infected cells ICP0 was translocated rapidly from the cytoplasm to the nucleus at approximately 5 h after infection, the translocation of ICP0 in wild-type virus-infected cells extended from 5 to at least 9 h after infection. (iii) In wild-type virus-infected cells, the MG132 proteasomal inhibitor blocked the translocation of ICP0 to the cytoplasm early in infection, but when added late in infection, it caused ICP0 to be relocated back to the nucleus from the cytoplasm. (iv) MG132 blocked the translocation of ICP0 in d120 mutant-infected cells early in infection but had no effect on the ICP0 aggregated in vesicle-like structures late in infection. However, in d120 mutant-infected cells treated with MG132 at late times, proteasomes formed a shell-like structure around the aggregated ICP0. These structures were not seen in wild-type virus or R7914 mutant-infected cells. The results indicate the following. (i) In the absence of beta or gamma protein synthesis, ICP0 dynamically associates with proteasomes and is translocated to the cytoplasm. (ii) In cells productively infected beyond alpha gene expression, ICP0 is retained in the nucleus until after the onset of viral DNA synthesis and the synthesis of gamma2 proteins. (iii) Late in infection, ICP0 is actively sequestered in the cytoplasm by a process mediated by proteasomes, inasmuch as interference with proteasomal function causes rapid relocation of ICP0 to the nucleus.  相似文献   

15.
16.
17.
18.
19.
20.
We examined the expression and localization of herpesvirus proteins in monkey cells transfected with recombinant plasmids containing herpes simplex virus (HSV) DNA sequences. Low levels of expression of the major HSV DNA-binding protein ICP8 were observed when ICP8-encoding plasmids were introduced into cells alone. ICP8 expression was greatly increased when a recombinant plasmid encoding the HSV alpha (immediate-early) ICP4 and ICP0 genes was transfected with the ICP8 gene. Deletion and subcloning analysis indicated that two separate functions capable of stimulating ICP8 expression were encoded on the alpha gene plasmid. One mapped in or near the ICP4 gene, and one mapped in or near the ICP0 gene. Their stimulatory effects were synergistic when introduced on two separate plasmids. Thus, two separate viral functions can activate herpesvirus early gene expression in transfected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号