首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Multiple sclerosis (MS) is a severe neurological disorder, characterized by demyelination of the central nervous system (CNS), and with a prevalence of greater than 2 million people worldwide. In terms of research in MS pathology, the cuprizone toxicity model is widely used. Here we investigated the contribution of genetic differences in response to cuprizone-induced demyelination in two genetically different mouse strains: CD1 and C57BL/6.

Results

We demonstrate that exposure to a diet containing 0.2% cuprizone resulted in less severe demyelination in the midline of the corpus callosum over the fornix in CD1 mice than C57BL/6 mice. With continuous cuprizone feeding, demyelination in CD1 mice was not prominent until after 7 weeks, in contrast to C57BL/6 mice, which showed prominent demyelination after 4 weeks of exposure. Concomitantly, immunohistochemical analysis demonstrated more oligodendrocytes, as well as fewer oligodendrocyte progenitor cells, microglia and astrocytes in cuprizone treated CD1 mice. We also analyzed 4-weeks-cuprizone treated corpus callosum tissue samples and found that cuprizone treated CD1 mice showed a smaller reduction of myelin-associated glycoprotein (MAG) and a smaller increase of Iba1 and NG2.

Conclusions

These observations suggest that CD1 mice are less vulnerable to cuprizone-induced demyelination than C57BL/6 mice and thus genetic background factors appear to influence the susceptibility to cuprizone-induced demyelination.
  相似文献   

2.
In this study, we investigated the potential of minocycline to influence cuprizone induced demyelination in the grey and white matter. To induce demyelination C57BL/6 mice were fed with cuprizone for up to 6 weeks and were analysed at different timepoints (week 0, 4, 5, 6). Mice treated with minocycline had less demyelination of the cortex and corpus callosum compared with sham treated animals. In the cortex decreased numbers of activated and proliferating microglia were found after 6 weeks of cuprizone feeding, while there were no significant effects for microglial infiltration of the corpus callosum. In addition to the beneficial effects on demyelination, minocycline prevented from motor coordination disturbance as shown in the beam walking test. For astrogliosis and the numbers of OPC and oligodendrocytes no treatment effects were found. In summary, minocycline treatment diminished the course of demyelination in the grey and white matter and prevented disturbances in motor coordination.  相似文献   

3.
The copper chelator cuprizone (bis-cyclohexanone oxaldihydrazone) was established as a neurotoxin in rodents in 1966 by Carlton. During the following years the usefulness of cuprizone feeding in mice to induce oligodendrocyte death with secondary demyelination of the superior cerebellar peduncles was described by Blakemore. In 1998 the cuprizone model experienced a renaissance as the group of Matsushima described the effects of cuprizone on the white matter of the cerebrum and focussed on demyelination in the corpus callosum, where the extent of demyelination could be scored more easily and consistently. Since then the toxic cuprizone model has been widely used to study experimental de- and remyelination in the corpus callosum. Recently, we and others have extended these studies and have shown several new aspects characteristic for this model. Many lessons can be learned from these recent findings that have implications for the basic understanding of remyelination and the design of remyelinating and neuroprotective strategies in demyelinating diseases of the CNS. Although the model is often mentioned in the context of multiple sclerosis, it must always be kept in mind that this model has a fundamentally different induction of demyelination. We highlight the important findings delineated from this model and critically discuss both the advantages and the shortcomings of cuprizone induced demyelination.  相似文献   

4.
Exposure of mice to the copper chelator, cuprizone, results in CNS demyelination. There is remyelination after removal of the metabolic insult. We present brain regional studies identifying corpus callosum as particularly severely affected; 65% of cerebroside is lost after 6 weeks of exposure. We examined recovery of cerebroside and ability to synthesize cerebroside and cholesterol following removal of the toxicant. The temporal pattern for concentration of myelin basic protein resembled that of cerebroside. We applied Affymetrix GeneChip technology to corpus callosum to identify temporal changes in levels of mRNAs during demyelination and remyelination. Genes coding for myelin structural components were greatly down-regulated during demyelination and up-regulated during remyelination. Genes related to microglia/macrophages appeared in a time-course (peaking at 6 weeks) correlating with phagocytosis of myelin and repair of lesions. mRNAs coding for many cytokines had peak expression at 4 weeks, compatible with intercellular signaling roles. Of interest were other genes with temporal patterns correlating with one of the three above patterns, but of function not obviously related to demyelination/remyelination. The ability to correlate gene expression with known pathophysiological events should help in elucidating further function of such genes as related to demyelination/remyelination.  相似文献   

5.
Cuprizone, copper chelator, treatment of mouse is a toxic model of multiple sclerosis (MS) in which oligodendrocyte death, demyelination and remyelination can be observed. Understanding T and B cell subset as well as their cytokines involved in MS pathogenesis still requires further scrutiny to better understand immune component of MS. The study presented here, aimed to evaluate relevant cytokines, lymphocytes, and gene expressions profiles during demyelination and remyelination in the cuprizone mouse model of MS. Eighty male C57BL/6J mice fed with 0.2% cuprizone for eight weeks. Cuprizone has been removed from the diet in the following eight weeks. Cuprizone treated and control mice sacrificed biweekly, and corpus callosum of the brain was investigated by staining. Lymphocyte cells of mice analyzed by flow cytometry with CD3e, CD11b, CD19, CD80, CD86, CD4, CD25 and FOXP3 antibodies. IFN-gamma, IL-1alpha, IL-2, IL-5, IL-6, IL-10, IL-17, TNF-alpha cytokines were analyzed in plasma samples. Neuregulin 1 (Nrg1), ciliary neurotrophic factor (Cntf) and C-X-C chemokine receptor type 4 (Cxcr4) gene expressions in corpus callosum sections of the mice brain were quantified. Histochemistry analysis showed that demyelination began at the fourth week of cuprizone administration and total demyelination occurred at the twelfth week in chronic model. Remyelination occurred at the fourth week of following withdrawal of cuprizone from diet. The level of mature and activated T cells, regulatory T cells, T helper cells and mature B cells increased during demyelination and decreased when cuprizone removed from diet. Further, both type 1 and type 2 cytokines together with the proinflammatory cytokines increased. The level of oligodendrocyte maturation and survival genes showed differential gene expression in parallel to that of demyelination and remyelination. In conclusion, for the first-time, involvement of both cellular immune response and antibody response as well as oligodendrocyte maturation and survival factors having role in demyelination and remyelination of cuprizone mouse model of MS have been shown.  相似文献   

6.
Remyelination is disrupted in demyelinating diseases such as multiple sclerosis, but the underlying pathogenetic mechanisms are unclear. In this study, we employed the murine cuprizone model of demyelination, in which remyelination occurs after removal of the toxin from the diet, to examine the cellular and molecular changes during demyelination and remyelination. Microglia accumulated in the corpus callosum during weeks 2–4 of the cuprizone diet, and these cells remained activated 2 weeks after the change to the normal diet. To examine the role of microglia in remyelination, mice were treated with minocycline to inactivate these cells after cuprizone‐induced demyelination. Minocycline treatment reduced the number of CC1‐positive oligodendrocytes, as well as levels of myelin basic protein (MBP) and CNPase in the remyelination phase. The expression of CNTF mRNA in the corpus callosum increased after 4 weeks on the cuprizone diet and remained high 2 weeks after the change to the normal diet. Minocycline suppressed CNTF expression during the remyelination phase on the normal diet. Primary culture experiments showed that CNTF was produced by microglia in addition to astrocytes. In vitro, CNTF directly affected the differentiation of oligodendrocytic cells. These findings suggest that minocycline reduces remyelination by suppressing CNTF expression by microglia after cuprizone‐induced demyelination.  相似文献   

7.
Cuprizone administration in mice provides a reproducible model of demyelination and spontaneous remyelination, and has been useful in understanding important aspects of human disease, including multiple sclerosis. In this study, we apply high spatial resolution quantitative MRI techniques to establish the spatio-temporal patterns of acute demyelination in C57BL/6 mice after 6 weeks of cuprizone administration, and subsequent remyelination after 6 weeks of post-cuprizone recovery. MRI measurements were complemented with Black Gold II stain for myelin and immunohistochemical stains for associated tissue changes. Gene expression was evaluated using the Allen Gene Expression Atlas. Twenty-five C57BL/6 male mice were split into control and cuprizone groups; MRI data were obtained at baseline, after 6 weeks of cuprizone, and 6 weeks post-cuprizone. High-resolution (100μm isotropic) whole-brain coverage magnetization transfer ratio (MTR) parametric maps demonstrated concurrent caudal-to-rostral and medial-to-lateral gradients of MTR decrease within corpus callosum (CC) that correlated well with demyelination assessed histologically. Our results show that demyelination was not limited to the midsagittal line of the corpus callosum, and also that opposing gradients of demyelination occur in the lateral and medial CC. T2-weighted MRI gray/white matter contrast was strong at baseline, weak after 6 weeks of cuprizone treatment, and returned to a limited extent after recovery. MTR decreases during demyelination were observed throughout the brain, most clearly in callosal white matter. Myelin damage and repair appear to be influenced by proximity to oligodendrocyte progenitor cell populations and exhibit an inverse correlation with myelin basic protein gene expression. These findings suggest that susceptibility to injury and ability to repair vary across the brain, and whole-brain analysis is necessary to accurately characterize this model. Whole-brain parametric mapping across time is essential for gaining a real understanding of disease processes in-vivo. MTR increases in healthy mice throughout adolescence and adulthood were observed, illustrating the need for appropriate age-matched controls. Elucidating the unique and site-specific demyelination in the cuprizone model may offer new insights into in mechanisms of both damage and repair in human demyelinating diseases.  相似文献   

8.
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Increased expression of 5-lipoxygenase (5-LO), a key enzyme in the biosynthesis of leukotrienes (LTs), has been reported in MS lesions and LT levels are elevated in the cerebrospinal fluid of MS patients. To determine whether pharmacological inhibition of 5-LO attenuates demyelination, MK886, a 5-LO inhibitor, was given to mice fed with cuprizone. Gene and protein expression of 5-LO were increased at the peak of cuprizone-induced demyelination. Although MK886 did not attenuate cuprizone-induced demyelination in the corpus callosum or in the cortex, it attenuated cuprizone-induced axonal damage and motor deficits and reduced microglial activation and IL-6 production. These data suggest that during cuprizone-induced demyelination, the 5-LO pathway contributes to microglial activation and neuroinflammation and to axonal damage resulting in motor dysfunction. Thus, 5-LO inhibition may be a useful therapeutic treatment in demyelinating diseases of the CNS.  相似文献   

9.
In multiple sclerosis (MS), the correlation between lesion load on conventional magnetic resonance imaging (MRI) and clinical disability is weak. This clinico-radiological paradox might partly be due to the low sensitivity of conventional MRI to detect gray matter demyelination. Magnetization transfer ratio (MTR) has previously been shown to detect white matter demyelination in mice. In this study, we investigated whether MTR can detect gray matter demyelination in cuprizone exposed mice. A total of 54 female C57BL/6 mice were split into one control group () and eight cuprizone exposed groups (). The mice were exposed to (w/w) cuprizone for up to six weeks. MTR images were obtained at a 7 Tesla Bruker MR-scanner before cuprizone exposure, weekly for six weeks during cuprizone exposure, and once two weeks after termination of cuprizone exposure. Immunohistochemistry staining for myelin (anti-Proteolopid Protein) and oligodendrocytes (anti-Neurite Outgrowth Inhibitor Protein A) was obtained after each weekly scanning. Rates of MTR change and correlations between MTR values and histological findings were calculated in five brain regions. In the corpus callosum and the deep gray matter a significant rate of MTR value decrease was found, per week () and per week () respectively. The MTR values correlated to myelin loss as evaluated by immunohistochemistry (Corpus callosum: . Deep gray matter: ), but did not correlate to oligodendrocyte density. Significant results were not found in the cerebellum, the olfactory bulb or the cerebral cortex. This study shows that MTR can be used to detect demyelination in the deep gray matter, which is of particular interest for imaging of patients with MS, as deep gray matter demyelination is common in MS, and is not easily detected on conventional clinical MRI.  相似文献   

10.
Erythropoietin (EPO) reduces symptoms of experimental autoimmune encephalomyelitis in rodents and shows neuroregenerative effects in chronic progressive multiple sclerosis. The mechanisms of action of EPO in these conditions with shared immunological etiology are still unclear. Therefore, we used a model of toxic demyelination allowing exclusion of T cell-mediated inflammation. In a double-blind (for food/injections), placebo-controlled, longitudinal four-arm design, 8-wk-old C57BL/6 mice (n = 26/group) were assigned to cuprizone-containing (0.2%) or regular food (ground chow) for 6 wks. After 3 wks, mice were injected every other day with placebo or EPO (5,000 IU/kg intraperitoneally) until the end of cuprizone feeding. Half of the mice were exposed to behavioral testing, magnetic resonance imaging (MRI) and histology immediately after treatment cessation, whereas the other half were allowed a 3-wk treatment-free recovery. Immediately after termination of cuprizone feeding, all toxin-exposed mice were compromised regarding vestibulomotor function/coordination, with EPO-treated animals performing better than placebo. Likewise, ventricular enlargement after cuprizone, as documented by MRI, was less pronounced upon EPO. After a 3-wk recovery, remarkable spontaneous improvement was observed in all mice with no measurable further benefit in the EPO group ("ceiling effect"). Histological analysis of the corpus callosum revealed attenuation by EPO of the cuprizone-induced increase in microglial numbers and amyloid precursor protein accumulations as a readout of inflammation and axonal degeneration. To conclude, EPO ameliorates neurological symptoms in the cuprizone model of demyelination, possibly by reduction of inflammation-associated axonal degeneration in white matter tracts. These findings underscore the value of future therapeutic strategies for multiple sclerosis based on EPO or EPO variants.  相似文献   

11.
Demyelination is the cause of disability in various neurological disorders. It is therefore crucial to understand the molecular regulation of oligodendrocytes, the myelin forming cells in the CNS. Growth factors are known to be essential for the development and maintenance of oligodendrocytes and are involved in the regulation of glial responses in various pathological conditions. We employed the well established murine cuprizone model of toxic demyelination to analyze the expression of 13 growth factors in the CNS during de- and remyelination. The temporal mRNA expression profile during demyelination and the subsequent remyelination were analyzed separately in the corpus callosum and cerebral cortex using laser microdissection and real-time PCR techniques. During demyelination a similar pattern of growth factor mRNA expression was observed in both areas with a strong up-regulation of NRG1 and GDNF and a slight increase of CNTF in the first week of cuprizone treatment. HGF, FGF-2, LIF, IGF-I, and TGF-ß1 were up-regulated mainly during peak demyelination. In contrast, during remyelination there were regional differences in growth factor mRNA expression levels. GDNF, CNTF, HGF, FGF-2, and BDNF were elevated in the corpus callosum but not in the cortex, suggesting tissue differences in the molecular regulation of remyelination in the white and grey matter. To clarify the cellular source we isolated microglia from the cuprizone lesions. GDNF, IGF-1, and FGF mRNA were detected in the microglial fraction with a temporal pattern corresponding to that from whole tissue PCR. In addition, immunohistochemical analysis revealed IGF-1 protein expression also in the reactive astrocytes. CNTF was located in astrocytes. This study identified seven different temporal expression patterns for growth factors in white and grey matter and demonstrated the importance of early tissue priming and exact orchestration of different steps during callosal and cortical de- and remyelination.  相似文献   

12.
For studies of remyelination in demyelinating diseases, the cuprizone model of CC (corpus callosum) demyelination has experimental advantages that include overall size, proximity to neural stem cells of the subventricular zone, and correlation with a lesion predilection site in multiple sclerosis. In addition, cuprizone treatment can be ended to allow more direct analysis of remyelination than with viral or autoimmune models. However, CC demyelination lacks a useful functional correlate in rodents for longitudinal analysis throughout the course of demyelination and remyelination. In the present study, we tested two distinct behavioural measurements in mice fed 0.2% cuprizone. Running on a ‘complex'' wheel with varied rung intervals requires integration between cerebral hemispheres for rapid bilateral sensorimotor coordination. Maximum running velocity on the ‘complex'' wheel decreased during acute (6 week) and chronic (12 week) cuprizone demyelination. Running velocity on the complex wheel distinguished treated (for 6 weeks) from non-treated mice, even after a 6-week recovery period for spontaneous remyelination. A second behavioural assessment was a resident–intruder test of social interaction. The frequency of interactive behaviours increased among resident mice after acute or chronic demyelination. Differences in both sensorimotor coordination and social interaction correlated with demonstrated CC demyelination. The wheel assay is applicable for longitudinal studies. The resident–intruder assay provides a complementary assessment of a distinct modality at a specific time point. These behavioural measurements are sufficiently robust for small cohorts as a non-invasive assessment of demyelination to facilitate analysis of subsequent remyelination. These measurements may also identify CC involvement in other mouse models of central nervous system injuries and disorders.  相似文献   

13.
目的探讨Olig2在cuprizone诱导的急性脱髓鞘动物模型中的表达变化规律。方法应用含0.2%cuprizone饲料饲育小鼠,通过调控饲育时间,造成神经脱髓鞘及髓鞘再生,使用免疫荧光染色和实时定量PCR(qRT-PCR)的方法,观察模型髓鞘脱失后及髓鞘再生2周后Olig2、少突胶质细胞碱性髓鞘蛋白(MBP)及星形胶质细胞神经胶质酸性蛋白(GFAP)的表达变化。结果 Cuprizone饲育6周后,动物胼胝体白质内髓鞘脱失严重,在恢复正常饲料后,髓鞘逐渐恢复正常结构。正常小鼠大脑Olig2低水平表达。髓鞘脱失后Olig2、GFAP表达增高,并可见Olig2+/GFAP+细胞,MBP表达明显降低。髓鞘再生2周后Olig2表达降低,MBP、GFAP表达增高。结论 Olig2基因在cuprizone诱导的脱髓鞘模型中的表达变化,提示Olig2可能参与祖细胞向有活性的星形胶质细胞的分化过程,并与胶质瘢痕的形成有关。  相似文献   

14.
Multiple sclerosis (MS) is a chronic degenerative disease of the central nervous system that is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation. The factors triggering gliosis and demyelination are currently not well characterized. New findings suggest an important role of the innate immune response in the initiation and progression of active demyelinating lesions. Especially during progressive disease, aberrant glia activation rather than the invasion of peripheral immune cells is accountable for progressive neuronal injury. The innate immune response can be induced by pathogen-associated or danger-associated molecular patterns, which are identified by pattern recognition receptors (PRRs), including the Toll-like receptors (TLRs). In this study, we used the cuprizone model in mice to investigate the expression of TLR2 during the course of cuprizone-induced demyelination. In addition, we used TLR2-deficient mice to analyze the functional role of TLR2 activation during cuprizone-induced demyelination and reactive gliosis. We show a significantly increased expression of TLR2 in the corpus callosum and hippocampus of cuprizone-intoxicated mice. The absence of receptor signaling in TLR2-deficient mice resulted in less severe reactive astrogliosis in the corpus callosum and cortex. In addition, microglia activation was ameliorated in the corpus callosum of TLR2-deficient mice, but augmented in the cortex compared to wild-type littermates. Extent of demyelination and loss of mature oligodendrocytes was comparable in both genotypes. These results suggest that the TLR2 orchestrates glia activation during gray and white matter demyelination in the presence of an intact blood-brain barrier. Future studies now have to address the underlying mechanisms of the region-specific TLR2-mediated glia activation.  相似文献   

15.
In multiple sclerosis, microglia/macrophage activation and astrocyte reactivity are important components of the lesion environment that can impact remyelination. The current study characterizes these glial populations relative to expression of candidate regulatory molecules in cuprizone demyelinated corpus callosum. Importantly, periods of recovery after acute or chronic cuprizone demyelination are examined to compare conditions of efficient versus limited remyelination, respectively. Microglial activation attenuates after early demyelination. In contrast, astrocyte reactivity persists throughout demyelination and a 6-week recovery period following either acute or chronic demyelination. This astrocyte reaction is characterized by (a) early proliferation, (b) increased expression of GFAP (glial fibrillary acidic protein), Vim (vimentin), Fn1 (fibronectin) and CSPGs (chondroitin sulphate proteoglycans) and (c) elaboration of a dense network of processes. Glial processes elongated in the axonal plane persist throughout lesion areas during both the robust remyelination that follows acute demyelination and the partial remyelination that follows chronic demyelination. However, prolonged astrocyte reactivity with chronic cuprizone treatment does not progress to barrier formation, i.e. dense compaction of astrocyte processes to wall off the lesion area. Multiple candidate growth factors and inflammatory signals in the lesion environment show strong correlations with GFAP across the acute cuprizone demyelination and recovery time course, yet there is more divergence across the progression of chronic cuprizone demyelination and recovery. However, differential glial scar formation does not appear to be responsible for differential remyelination during recovery in the cuprizone model. The astrocyte phenotype and lesion characteristics in this demyelination model inform studies to identify triggers of non-remyelinating sclerosis in chronic multiple sclerosis lesions.  相似文献   

16.
17.
High-dose gp96 has been shown to inhibit experimental autoimmune disease by a mechanism that appears to involve immunoregulatory CD4+ T cells. This study tested the hypothesis that high-dose gp96 administration modifies allograft rejection and associated inflammatory events. Wistar cardiac allografts were transplanted into Lewis recipient rats and graft function was monitored daily by palpation. Intradermal administration of gp96 purified from Wistar rat livers (100 microg) at the time of transplantation and 3 days later significantly prolonged allograft survival (14 vs 8 days in phosphate-buffered saline [PBS]-treated recipients; P = 0.009). Rejected allografts from gp96-treated animals were significantly less enlarged than allografts from their PBS-treated counterparts (2.8 vs 4.3 g; P < 0.004). Gp96 was also effective when administered on days 1 and 8 (13 vs 7 days), but not if it was derived from recipient (Lewis) liver tissue or administered on days 0, 3, and 6. In parallel studies, CD3+ T cells from gp96-treated untransplanted animals secreted less interleukin (IL)-4, IL-10, and interferon (IFN)-gamma after in vitro polyclonal stimulation than CD3+ T cells from PBS-treated animals. Gp96 administration might therefore influence the induction of immunity to coencountered antigenic challenges and inflammatory events by inducing what appears to be a state of peripheral T-cell hyporesponsiveness.  相似文献   

18.
The type of immune response required to protect mice against clinical disease during acute Neospora caninum challenge was investigated in BALB/c mice. Groups of female BALB/c mice were infected i.p. with N. caninum tachyzoites concomitant with either: (1) antibody to interferon-gamma; (2) recombinant murine interleukin-12; or (3) recombinant murine interleukin-12 plus antibody to interferon-gamma. Mice treated with anti-interferon-gamma alone had increased morbidity/mortality, decreased body weight, increased foci of liver necrosis and increased numbers of N. caninum tachyzoites in the lung by 7 days p.i. compared with controls. Increased disease and parasite load in the anti-interferon-gamma-treated mice was associated with antigen-specific antibody IgG1 > IgG2a and a three-fold decreased ratio of antigen-specific interferon-gamma:interleukin-4. Mice treated with recombinant murine interleukin-12 had decreased encephalitis and brain parasite load at 3 weeks p.i. compared with control mice treated with PBS. In recombinant murine interleukin-12-treated mice, decreased brain lesions and parasite load were associated with antigen-specific antibody IgG2a > IgG1 and a three-fold increased ratio of antigen-specific interferon-gamma:interleukin-4 from splenocytes; the interleukin-12 effect was dependent upon interferon-gamma, as indicated by concomitant in vivo interferon-gamma neutralisation. By 6 weeks p.i. with N. caninum, there were no differences in brain lesions and parasite load between interleukin-12- and PBS-treated groups, indicating that the effects of interleukin-12 on driving a protective type 1 response were transient. These data indicate a role for interferon-gamma, interleukin-12 and type 1 immune responses in control of acute neosporosis in mice.  相似文献   

19.
目的:探讨双环己酮草酰二腙(cuprizone)诱导大鼠脑白质脱髓鞘及其病因,证实双环己酮草酰二腙引起脑白质脱髓鞘与细胞凋亡有关。方法:用环己酮草酰二腙制备大鼠脑白质脱髓鞘模型(酮腙组),与安定(安定组)、苯巴比妥(苯巴比妥组)、生理盐水对照组(对照组)比较,应用电镜技术及caspase3免疫组化染色,观察各组第14天、28天、42天时脑组织结构变化及细胞凋亡的信号传导通路。结果:电镜显示,安定组、苯巴比妥组、酮腙14天组和对照组白质结构完整致密,无脱髓鞘现象;酮腙28天组可见髓鞘排列较紊乱,部分结构松解变性,但无典型脱髓鞘改变;酮腙42天组胼胝体压部可见髓鞘肿胀,多部位髓鞘被涡轮状空泡所裂解。caspase3染色:酮腙28天、42天组可见皮层下白质、胼胝体、脑干及小脑白质caspase3阳性染色,与安定组、苯巴比妥组、对照组和酮腙14天组比较差异具有统计学意义(P<0.05);酮腙42天组caspase3阳性染色明显多于28天组,差异具有统计学意义(P<0.05)。结论:环己酮草酰二腙可诱导大鼠脑白质脱髓鞘、空泡样变;病变白质区存在大量caspase3阳性染色,且早于脱髓鞘。提示:caspase蛋白酶级联反应参与了环己酮草酰二腙诱导脑白质脱髓鞘的过程,进一步说明细胞凋亡可能是脑白质脱髓鞘原因之一。  相似文献   

20.
[目的]通过建立的小鼠呼吸道感染模型评价重组百日咳杆菌黏附素蛋白(GST-PRN)对小鼠的免疫保护效力.[方法和结果]在主动免疫保护试验中,GST-PRN免疫组小鼠能产生较高的PRN抗体水平,在使用3xLD50的支气管败血波氏杆菌HH0809株进行呼吸道气雾攻毒后,其保护率为100%(20/20),但载体蛋白GST和PBS对照组小鼠的存活率仅为15%(3/20)和20%(4/20).在被动免疫保护试验中,腹腔免疫GST-PRN兔抗血清能100%(10/10)保护小鼠抵抗10×LD50的HH0809株的腹腔攻击,但GST兔抗血清和PBS免疫组小鼠的存活率均为0(0/10和0/9).[结论]研究结表明重组PRN蛋白具有良好的免疫学活性,可作为亚单位疫苗或疫苗添加成分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号