首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type 1 diabetes is an autoimmune disease caused by the immune‐mediated destruction of insulin‐producing pancreatic β cells. In recent years, the incidence of type 1 diabetes continues to increase. It is supposed that genetic, environmental and immune factors participate in the damage of pancreatic β cells. Both the immune regulation and the immune response are involved in the pathogenesis of type 1 diabetes, in which cellular immunity plays a significant role. For the infiltration of CD4+ and CD8+ T lymphocyte, B lymphocytes, natural killer cells, dendritic cells and other immune cells take part in the damage of pancreatic β cells, which ultimately lead to type 1 diabetes. This review outlines the cellular immunological mechanism of type 1 diabetes, with a particular emphasis to T lymphocyte and natural killer cells, and provides the effective immune therapy in T1D, which is approached at three stages. However, future studies will be directed at searching for an effective, safe and long‐lasting strategy to enhance the regulation of a diabetogenic immune system with limited toxicity and without global immunosuppression.  相似文献   

2.
An increase in IL-17-producing CD8(+) T (Tc17) cells has been reported in the peripheral blood of children with recent onset type 1 diabetes (T1D), but their contribution to disease pathogenesis is still unknown. To directly study the pathogenic potential of β cell-specific Tc17 cells, we used an experimental model of T1D based on the expression of the neo-self Ag hemagglutinin (HA) in the β cells of the pancreas. When transferred alone, the IL-17-producing HA-specific CD8(+) T cells homed to the pancreatic lymph nodes without causing any pancreatic infiltration or tissue destruction. When transferred together with small numbers of diabetogenic HA-specific CD4(+) T cells, a strikingly different phenotype developed. Under these conditions, Tc17 cells sustained disease progression, driving the destruction of β-islet cells, causing hyperglycemia and ultimately death. Disease progression did not correlate with functional or numerical alterations among the HA-specific CD4(+) T cells. Rather, the transferred CD8(+) T cells accumulated in the pancreatic islets and a considerable fraction converted, under the control of IL-12, to an IFN-γ-producing phenotype. Our data indicate that Tc17 cells are not diabetogenic but can potentiate a Th1-mediated disease. Plasticity of the Tc17 lineage is associated with transition to overt disease in this experimental model of T1D.  相似文献   

3.
Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia following the destruction of the insulin-producing beta cells of the pancreatic islets of Langerhans by the body's own immune system. Although routine insulin injections can provide diabetic patients with their daily insulin requirements, this treatment is not always effective in maintaining normal glucose levels. A true "cure" is considered possible only through replacement of the beta cell mass, by pancreas transplantation, islet implantation, or implantation of nonendocrine cells modified to secrete insulin. With the recent success of islet implantation to reverse T1D, this procedure has become a welcome therapy for T1D patients. Unfortunately, this procedure is hampered by the limited number of transplantation quality pancreata available for the harvesting of islets. This shortage has sparked great interest in finding a replacement for organ donation, primarily the possible use of stem cell-derived islets starting with stem cells, or alternatively the harvesting of nonhuman islets. This review focuses on progress with growing islets in the laboratory from stem cells and a comparison between this developing technology and the current use of islets harvested from nonhuman sources.  相似文献   

4.
Type 1 diabetes (T1D) is a disease caused by the destruction of the beta cells of the pancreas by activated T cells. Dendritic cells (DC) are the APC that initiate the T cell response that triggers T1D. However, DC also participate in T cell tolerance, and genetic engineering of DC to modulate T cell immunity is an area of active research. Galectin-1 (gal-1) is an endogenous lectin with regulatory effects on activated T cells including induction of apoptosis and down-regulation of the Th1 response, characteristics that make gal-1 an ideal transgene to transduce DC to treat T1D. We engineered bone marrow-derived DC to synthesize transgenic gal-1 (gal-1-DC) and tested their potential to prevent T1D through their regulatory effects on activated T cells. NOD-derived gal-1-DC triggered rapid apoptosis of diabetogenic BDC2.5 TCR-transgenic CD4+ T cells by TCR-dependent and -independent mechanisms. Intravenously administered gal-1-DC trafficked to pancreatic lymph nodes and spleen and delayed onset of diabetes and insulitis in the NODrag1(-/-) lymphocyte adoptive transfer model. The therapeutic effect of gal-1-DC was accompanied by increased percentage of apoptotic T cells and reduced number of IFN-gamma-secreting CD4+ T cells in pancreatic lymph nodes. Treatment with gal-1-DC inhibited proliferation and secretion of IFN-gamma of T cells in response to beta cell Ag. Unlike other DC-based approaches to modulate T cell immunity, the use of the regulatory properties of gal-1-DC on activated T cells might help to delete beta cell-reactive T cells at early stages of the disease when the diabetogenic T cells are already activated.  相似文献   

5.
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which insulin-producing beta cells of the pancreatic islets of Langerhans are destroyed. The nonobese diabetic (NOD) mouse is one of the rare spontaneous models that enable the study of prediabetic pancreatic events. The etiology of the autoimmune attack in human and animal T1D is still unknown, but genetic and environmental factors are involved in both cases. Although several autoantigens have been identified and defective immune-system regulation is implicated, this information does not satisfactorily explain the generally accepted beta-cell specificity of the disease or how so many and diverse environmental factors intervene in its pathogenesis. Based on data obtained from evaluating glucose homeostasis in a variety of situations, particularly stress and cytokine administration, in young prediabetic NOD mice, the author hypothesizes that the islet of Langerhans is a major actor, and its altered regulation through environmentally induced insulin resistance might reveal latent T1D. It is also postulated that T1D pathogenesis might be linked to abnormal pancreas development, probably due to disturbances of glutamic acid decarboxylase (GAD)+ innervation phagocytosis by defective macrophages during the early postnatal period. Also discussed is the role of defective presentation of pancreatic hormones and GAD in the thymus, and its potential repercussion on T-cell tolerance. Observations have demonstrated that the diabetogenic process in the NOD mouse is extremely complex, involving neuroendocrine immune interaction from fetal life onward.  相似文献   

6.
The induction of tolerance in a primed immune system is a major aim for therapy in autoimmunity and transplant rejection. In this paper, we investigate the action of the nondepleting anti-CD4 Ab, YTS 177. Although this Ab is nondepleting, we have demonstrated a direct action in vivo on activated effector cells. We show that the Ab inhibits transfer of insulin-dependent diabetes mellitus by the CD4+ Th1 clone BDC2.5 to nonobese diabetic mice. Furthermore, we show that this Ab acts directly on diabetogenic effector cells because it prevented BDC2.5-induced insulin-dependent diabetes mellitus in nonobese diabetic-scid recipients in the absence of other T cells. The Ab halts the diabetic process even when it is administered after the BDC2.5 cells have infiltrated the pancreas and destruction of islets is already underway. This is accompanied by an immediate decrease in proinflammatory cytokine production with cessation of beta cell destruction and disappearance of infiltrating cells from the pancreas, leaving any remaining beta cells intact. These data suggest that Abs such as this may be effective not only because they induce regulatory T cells but also because they are able to directly prevent effector cell function.  相似文献   

7.
When immunological tolerance breaks down, autoimmune destruction of insulin-producing beta cells in the pancreas can cause insulin-dependent diabetes mellitus. We previously showed that transgenic nonobese diabetic (NOD) mice expressing IL-4 in the pancreas (NOD-IL-4 mice) were protected from insulitis and diabetes. Here we have characterized the avoidance of pathological autoimmunity in these mice. The absence of disease did not result from a lack of T cell priming, because T cells responding to dominant islet Ags were present. These islet Ag-specific T cells displayed a Th2 phenotype, indicating that Th2 responses could account for the observed tolerance. Interestingly, islet Ag-specific Th1 T cells were present and found to be functional, because neutralization of the Th2 effector cytokines IL-4 and IL-10 resulted in diabetes. Histological examination revealed that NOD-IL-4 splenocytes inhibited diabetogenic T cells in cotransfer experiments by limiting insulitis and delaying diabetes. Neutralization of IL-4 in this system abrogated the ability of NOD-IL-4 splenocytes to delay the onset of diabetes. These results indicate that IL-4 expressed in the islets does not prevent the generation of pathogenic islet responses but induces islet Ag-specific Th2 T cells that block the action of diabetogenic T cells in the pancreas.  相似文献   

8.
Heme oxygenase-1 (HO-1) is crucial in regulating oxidative injury. The present study was designed to assess whether HO-1 upregulation by cobalt protoporphyrin IX (CoPP) moderates or prevents the diabetic state in non-obese diabetic (NOD) mice, an animal model for Type 1 diabetes (T1D). HO-1 expression and HO activity were upregulated in the pancreas by the intermittent administration of CoPP. This was associated with decreases in blood glucose and pancreatic O2-, but increased pAKT and BcL-XL and cell survival. A considerable number of beta cells were preserved in the islets of CoPP-treated NOD mice, while none were found in untreated diabetic mice. The number of CD11c+ dendritic cells was decreased in the pancreas of CoPP-treated NOD mice (p  相似文献   

9.
Type 1 diabetes (T1D) is the result of selective destruction of the insulin-producing beta-cells in the pancreatic islets of Langerhans. T1D is due to a complex interplay between the beta-cell, the immune system, and the environment in genetically susceptible individuals. The initiating mechanism(s) behind the development of T1D are largely unknown, and no genes or proteins are specific for most T1D cases. Different pro-apoptotic cytokines, IL-1 beta in particular, are present in the islets during beta-cell destruction and are able to modulate beta-cell function and induce beta-cell death. In beta-cells exposed to IL-1 beta, a race between destructive and protective events are initiated and in susceptible individuals the deleterious events prevail. Proteins are involved in most cellular processes, and it is thus expected that their cumulative expression profile reflects the specific activity of cells. Proteomics may be useful in describing the protein expression profile and thus the diabetic phenotype. Relatively few studies using proteomics technologies to investigate the T1D pathogenesis have been published to date despite the defined target organ, the beta-cell. Proteomics has been applied in studies of differentiating beta-cells, cytokine exposed islets, dietary manipulated islets, and in transplanted islets. Although that the studies have revealed a complex and detailed picture of the protein expression profiles many functional implications remain to be answered. In conclusion, a rather detailed picture of protein expression in beta-cell lines, islets, and transplanted islets both in vitro and in vivo have been described. The data indicate that the beta-cell is an active participant in its own destruction during diabetes development. No single protein alone seems to be responsible for the development of diabetes. Rather the cumulative pattern of changes seems to be what favors a transition from dynamic stability in the unperturbed beta-cell to dynamic instability and eventually to beta-cell destruction.  相似文献   

10.
Significant role for Fas in the pathogenesis of autoimmune diabetes   总被引:22,自引:0,他引:22  
Programmed cell death represents an important pathogenic mechanism in various autoimmune diseases. Type I diabetes mellitus (IDDM) is a T cell-dependent autoimmune disease resulting in selective destruction of the beta cells of the islets of Langerhans. beta cell apoptosis has been associated with IDDM onset in both animal models and newly diagnosed diabetic patients. Several apoptotic pathways have been implicated in beta cell destruction, including Fas, perforin, and TNF-alpha. Evidence for Fas-mediated lysis of beta cells in the pathogenesis of IDDM in nonobese diabetic (NOD) mice includes: 1) Fas-deficient NOD mice bearing the lpr mutation (NOD-lpr/lpr) fail to develop IDDM; 2) transgenic expression of Fas ligand (FasL) on beta cells in NOD mice may result in accelerated IDDM; and 3) irradiated NOD-lpr/lpr mice are resistant to adoptive transfer of diabetes by cells from NOD mice. However, the interpretation of these results is complicated by the abnormal immune phenotype of NOD-lpr/lpr mice. Here we present novel evidence for the role of Fas/FasL interactions in the progression of NOD diabetes using two newly derived mouse strains. We show that NOD mice heterozygous for the FasL mutation gld, which have reduced functional FasL expression on T cells but no lymphadenopathy, fail to develop IDDM. Further, we show that NOD-lpr/lpr mice bearing the scid mutation (NOD-lpr/lpr-scid/scid), which eliminates the enhanced FasL-mediated lytic activity induced by Fas deficiency, still have delayed onset and reduced incidence of IDDM after adoptive transfer of diabetogenic NOD spleen cells. These results provide evidence that Fas/FasL-mediated programmed cell death plays a significant role in the pathogenesis of autoimmune diabetes.  相似文献   

11.
12.
Type 1 diabetes mellitus is an autoimmune disease characterized by T cell-mediated destruction of the insulin-producing beta cells in the islets of Langerhans. From studies in animal models, CD8(+) T cells recognizing autoantigens such as islet-specific glucose-6-phosphatase catalytic subunit-related protein, insulin, or glutamic acid decarboxylase (GAD) are believed to play important roles in both the early and late phases of beta cell destruction. In this study, we investigated the factors governing the diabetogenic potential of autoreactive CD8(+) clones isolated from spleens of NOD mice that had been immunized with GAD65(515-524) or insulin B-chain(15-23) peptides. Although these two clones were identical in most phenotypic and functional aspects, for example cytokine production and killing of autologous beta cells, they differed in the expression of IFN-gamma-inducible protein-10, which was only produced at high levels by the insulin-specific clone, but not by the GAD65-specific clone, and other autoantigen-specific nonpathogenic CD8 T cell clones. Interestingly, upon i.p. injection into neonatal mice, only the insulin B-chain(15-23)-reactive CD8(+) T clone accelerated diabetes in all recipients after 4 wk, although both insulin- and GAD-reactive clones homed to pancreas and pancreatic lymph nodes with similar kinetics. Diabetes was associated with increased pancreatic T cell infiltration and, in particular, recruitment of macrophages. Thus, secretion of IFN-gamma-inducible protein-10 by autoaggressive CD8(+) lymphocytes might determine their diabetogenic capacity by affecting recruitment of cells to the insulitic lesion.  相似文献   

13.
Type 1 diabetes results from the T cell-mediated destruction of pancreatic beta cells. Islet transplantation has recently become a potential therapeutic approach for patients with type 1 diabetes. However, islet-graft failure appears to be a challenging issue to overcome. Thus, complementary gene therapy strategies are needed to improve the islet-graft survival following transplantation. Immune modulation through gene therapy represents a novel way of attacking cytotoxic T cells targeting pancreatic islets. Various death ligands of the TNF family such as FasL, TNF, and TNF-Related Apoptosis-Inducing Ligand (TRAIL) have been studied for this purpose. The over-expression of TNF or FasL in pancreatic islets exacerbates the onset of type 1 diabetes generating lymphocyte infiltrates responsible for the inflammation. Conversely, the lack of TRAIL expression results in higher degree of islet inflammation in the pancreas. In addition, blocking of TRAIL function using soluble TRAIL receptors facilitates the onset of diabetes. These results suggested that contrary to what was observed with TNF or FasL, adenovirus mediated TRAIL gene delivery into pancreatic islets is expected to be therapeutically beneficial in the setting of experimental models of type 1 diabetes. In conclusion; this study mainly reveals the fundamental principles of death ligand-mediated immune evasion in diabetes mellitus.  相似文献   

14.
In type 1 diabetes mellitus (T1DM), T cell-mediated destruction of insulin-producing pancreatic beta cells leads to the acute onset of hyperglycemia. The nonobese diabetic mouse model of human T1DM reveals that T cells capable of inducing diabetes can escape normal central tolerance, and can cause T1DM if left unchecked. However, several regulatory T cell subsets can temper autoaggressive T cells, although it remains undetermined when and how, and by which subset, homeostatic control of diabetogenic T cells is normally achieved in vivo. Using a cotransfer model, we find that NKT cells efficiently dampen the action of diabetogenic CD4+ T cells, and do so in an indirect manner by modifying the host environment. Moreover, the NKT cell-containing population modifies the host via production of IFN-gamma that is necessary for driving the inhibition of diabetogenic T cells in vivo.  相似文献   

15.
Viruses in type 1 diabetes: brief review   总被引:5,自引:0,他引:5  
Type 1 diabetes results from the progressive destruction of insulin-producing pancreatic beta cells. Although the etiology of type 1 diabetes is believed to have a major genetic component, studies on the risk of developing type 1 diabetes suggest that environmental factors, such as viruses, may be important etiological determinants. Among the viruses, the most clear and unequivocal evidence that a virus induces type 1 diabetes in animals comes from studies on the D variant of encephalomyocarditis (EMC-D) virus in mice and Kilham rat virus (KRV) in rats. A high titer of EMC-D viral infection results in the development of diabetes within 3 days, primarily due to the rapid destruction of beta cells by viral replication within the cells. A low titer of EMC-D viral infection results in the recruitment of macrophages to the islets. Soluble mediators produced by the activated macrophages such as interleukin-1Beta, tumor necrosis factor-alpha, and nitric oxide play a critical role in the destruction of residual beta cells. KRV causes autoimmune type 1 diabetes in diabetes resistant-BioBreeding rats by breakdown of immune balance, including the preferential activation of effector T cells, such as Th1-like CD45RC+CD4+ T cells and CD8+ T cells, and down-regulation of Th2-like CD45RC-CD4+ and CD4+CD25+ T cells, rather than by direct infection of pancreatic beta cells.  相似文献   

16.
17.
Type 1 diabetes (T1D) is an autoimmune disorder resulting from a self‐destruction of pancreatic islet beta cells. The complete proteome of the human pancreas, where both the dysfunctional beta cells and their proximal environment co‐exist, remains unknown. Here, we used TMT10‐based isobaric labeling and multidimensional LC‐MS/MS to quantitatively profile the differences between pancreatic head region tissues from T1D (N = 5) and healthy subjects (N = 5). Among the 5357 (1% false discovery rate) confidently identified proteins, 145 showed statistically significant dysregulation between T1D and healthy subjects. The differentially expressed pancreatic proteome supports the growing notion of a potential role for exocrine pancreas involvement in T1D. This study also demonstrates the utility for this approach to analyze dysregulated proteins as a means to investigate islet biology, pancreatic pathology and T1D pathogenesis.  相似文献   

18.
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells are destroyed in the islets of Langerhans. One of its main pathological manifestations is the hyper-expression of Major Histocompatibility Complex I (MHC-I) by beta cells, which was first described over 3 decades ago yet its cause remains unknown. It might not only be a sign of beta cell dysfunction but could also render the cells susceptible to autoimmune destruction; for example, by islet-infiltrating CD8 T cells. In this report, we studied pancreas tissue from a 22-year-old non-diabetic male cadaveric organ donor who had been at high risk of developing T1D, in which autoantibodies against GAD and IA-2 were detected. Pancreas sections were analyzed for signs of inflammation. Multiple insulin-containing islets were identified, which hyper-expressed MHC-I. However, islet density and MHC-I expression exhibited a highly lobular and heterogeneous pattern even within the same section. In addition, many islets with high expression of MHC-I presented higher levels of CD8 T cell infiltration than normal islets. These results demonstrate the heterogeneity of human pathology that occurs early during the pre-diabetic, autoantibody positive phase, and should contribute to the understanding of human T1D.  相似文献   

19.
In type 1 diabetes, cytokine action on beta cells potentially contributes to beta cell destruction by direct cytotoxicity, inducing Fas expression, and up-regulating class I MHC and chemokine expression to increase immune recognition. To simultaneously block beta cell responsiveness to multiple cytokines, we overexpressed suppressor of cytokine signaling-1 (SOCS-1). This completely prevented progression to diabetes in CD8(+) TCR transgenic nonobese diabetic (NOD) 8.3 mice without affecting pancreas infiltration and partially prevented diabetes in nontransgenic NOD mice. SOCS-1 appeared to protect at least in part by inhibiting TNF- and IFN-gamma-induced Fas expression on beta cells. Fas expression was up-regulated on beta cells in vivo in prediabetic NOD8.3 mice, and this was inhibited by SOCS-1. Additionally, IFN-gamma-induced class I MHC up-regulation and TNF- and IFN-gamma-induced IL-15 expression by beta cells were inhibited by SOCS-1, which correlated with suppressed 8.3 T cell proliferation in vitro. Despite this, 8.3 T cell priming in vivo appeared unaffected. Therefore, blocking beta cell responses to cytokines impairs recognition by CD8(+) T cells and blocks multiple mechanisms of beta cell destruction, but does not prevent T cell priming and recruitment to the islets. Our findings suggest that increasing SOCS-1 expression may be useful as a strategy to block CD8(+) T cell-mediated type 1 diabetes as well as to more generally prevent cytokine-dependent tissue destruction in inflammatory diseases.  相似文献   

20.
Intrauterine hyperglycemic environment could harm the fetus making it more susceptible to develop postnatal glucose intolerance. A possible mechanism is compromise of the fetal pancreatic development. We previously found that a high sucrose low copper diabetogenic diet induces type 2 diabetes in the Cohen diabetic sensitive rats, but not in the Sabra control rats. However, oxidative stress was observed in the placenta and term fetal liver of diabetic and nondiabetic controls. We now investigated whether the fetal pancreas is affected by this diet and whether the effects result from oxidative stress, maternal hyperglycemia, or both. Term fetal pancreases were evaluated for morphology, beta cells, oxidative stress, apoptosis, and DNA methylation. There were no microscopic changes in hematoxylin and eosin stained sections and beta cells immunostaining in the pancreas of fetuses of both strains. Fetuses of the sensitive strain fed diabetogenic diet had significantly higher activity of superoxide dismutase and catalase, elevated levels of low molecular weight antioxidants, and more intense immunostaining for nuclear factor kappa‐B and hypoxia inducing factor‐1α. Both strains fed diabetogenic diet had increased immunostaining for Bcl‐2‐like protein and caspase 3 and decreased immunostaining for 5‐methylcytosine in their islets and acini. Our data suggest that maternal diabetogenic diet alters apoptotic rate and epigenetic steady states in the term fetal pancreas, unrelated to maternal diabetes. Maternal hyperglycemia further increases pancreatic oxidative stress, aggravating the pancreatic damage. The diet‐induced insults to the fetal pancreas may be an important contributor to the high susceptibility to develop diabetes following metabolic intrauterine insults  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号