首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly-(lactide-co-glycolide) (PLGA) is an FDA-approved biodegradable polymer which has been widely used as a scaffold for tissue engineering applications. Collagen has been used as a coating material for bone contact materials, but relatively little interest has focused on biomimetic coating of PLGA with extracellular matrix components such as collagen and the glycosaminoglycan chondroitin sulfate (CS). In this study, PLGA films were coated with collagen type I or collagen I with CS (collagen I/CS) to investigate the effect of CS on the behaviour of the osteoblastic cell line MG 63. Collagen I/CS coatings promoted a significant increase in cell number after 3 days (in comparison to PLGA) and after 7 days (in comparison to PLGA and collagen-coated PLGA). No influence of collagen I or collagen I/CS coatings on the spreading area after 1 day of culture was observed. However, the cells on collagen I/CS formed numerous filopodia and displayed well developed vinculin-containing focal adhesion plaques. Moreover, these cells contained a significantly higher concentration of osteocalcin, measured per mg of protein, than the cells on the pure collagen coating. Thus, it can be concluded that collagen I/CS coatings promote MG 63 cell proliferation, improve cell adhesion and enhance osteogenic cell differentiation.  相似文献   

2.
Extracellular matrix (ECM) proteins play a critical role in many cellular functions, from spreading, migration and proliferation to apoptosis. This role can be altered when proteins of the native ECM are adsorbed to different substrates which cause structural modifications that can influence their biological function. The effects on CaCo-2 cells of laminin-1, fibronectin, collagen-1 and ECM gel adsorbed to glass and to tissue culture polystyrene (PS) were compared in terms of adhesion, proliferation, shapes and spreading of cells in culture. Significant differences between glass and PS surfaces were observed for proliferation and cell shape. Protein surfaces prepared on PS substrates had, in most cases, more pronounced effects on cells than uncoated PS, especially if coated by collagen-1. Adsorbed ECM gel was the most adhesive for cells, but its effect on cell proliferation was not notably different from the controls (glass or PS). These findings indicate that the choice of the substrate can have a significant effect on experimental results and should be taken into consideration when comparing results obtained on different surfaces.  相似文献   

3.
Extracellular matrix (ECM) is an important mediator of endothelial functions such as adhesion, spreading, migration, proliferation, and maintenance of differentiated functions. Attachment of cultured cells to tissue culture polystyrene (TCPS) is dependent on vitronectin which adsorbs onto the surface from the serum in the culture medium. Vitronectin (VN) will adsorb efficiently to TCPS even if the latter has been coated with another matrix molecule and blocked with albumin. This means that studies of the interactions of cells with individual coated ECM molecules will be confounded by the presence of adsorbed VN if serum is present in the culture medium. In this study, the adhesion, spreading, growth, and output of endogenous matrix molecules by bovine corneal endothelial (BCE) cells were measured on five different matrix substrates using medium which had been depleted of vitronectin to avoid such confounding effects. The same cell adhesion and spreading maxima were achieved on vitronectin, fibronectin (FN), laminin (LM), and types I and IV collagen (col I, col IV). The coating concentrations required to achieve these maxima, however, differed among the substrates, LM needing considerably higher concentrations than the other substrates for both maximal adhesion and spreading and FN needing higher concentrations for cell spreading. When cells were continuously passaged on each of the five substrates coated at concentrations optimal for cell spreading, no differences in cell proliferation rates or cell morphology were observed. Significant differences, however, were observed in the subcellular output of endogenous matrix molecules (FN, LM, col IV, and thrombospondin) between the different substrates. Col I was a poor substrate for the production of all ECM molecules tested over the 10 passages of the experiment, whereas col IV was a consistently good substrate. LM and FN substrates displayed differential effects on the output of different ECM molecules. VN was unique in that BCE cells at early passage on this substrate produced high levels of endogenous matrix molecules, whereas with continued passage on this substrate, a progressive decline in ECM secretion was observed. These results show that incorporation of individual molecules into the ECM by BCE cells in culture is significantly affected by the nature of the substratum. They further suggest that passage of endothelial cells in media containing serum (which results in coating of VN onto the substrate) may result in a progressive reduction of ECM output.  相似文献   

4.
Improved biocompatibility and performance of biomedical devices can be achieved through the incorporation of bioactive molecules on device surfaces. Five structurally distinct pectic polysaccharides (modified hairy regions (MHRs)) were obtained by enzymatic liquefaction of apple (MHR-B, MHR-A and MHR-alpha), carrot (MHR-C) and potato (MHR-P) cells. Polystyrene (PS) Petri dishes, aminated by a plasma deposition process, were surface modified by the covalent linking of the MHRs. Results clearly demonstrate that MHR-B induces cell adhesion, proliferation and survival, in contrast to the other MHRs. Moreover, MHR-alpha causes cells to aggregate, decrease proliferation and enter into apoptosis. Cells cultured in standard conditions with 1% soluble MHR-B or MHR-alpha show the opposite behaviour to the one observed on MHR-B and -alpha-grafted PS. Fibronectin was similarly adsorbed onto MHR-B and tissue culture polystyrene (TCPS) control, but poorly on MHR-alpha. The Fn cell binding site (RGD sequence) was more accessible on MHR-B than on TCPS control, but poorly on MHR-alpha. The disintegrin echistatin inhibited fibroblast adhesion and spreading on MHR-B-grafted PS, which suggests that MHRs control fibroblast behaviour via serum-adhesive proteins. This study provides a basis for the design of intelligently-tailored biomaterial coatings able to induce specific cell functions.  相似文献   

5.
In an effort to regulate the behavior of mammalian cell entrapped in a gel, the gels were functionalized with the putative cell-binding (-Arg-Gly-Asp-) (RGD) domain. The adhesion molecules composed of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides and the cell recognition ligands were inculcated into the thermo-reversible hydrogel composed of N-isopropylacrylamide, with a small amount of succinyl poly(ethylene glycol) (PEG) acrylate (MW 2000) used as the biomimetic extracellular matrix (ECM). The GRGDS-containing p(NiPAAm-co-PEG) copolymer gel was examined in vitro for its ability to promote cell spreading and to increase the viability of the cells by introducing PEG spacers. ECM poorly adhered to hydrogel lacking adhesion molecules permitting only a 20% spread of the seeded cells after 10 days. When the PEG spacer arms, which were immobilized by a peptide linkage, had been integrated into the hydrogel, the conjugation of RGD improved cell spreading by 600% in a 10-day trial.  相似文献   

6.
The mammalian growth plate is a dynamic structure rich in extracellular matrix (ECM). Interactions of growth plate chondrocytes with ECM proteins regulate cell behavior. In this study, we compared chondrocyte adhesion and spreading dynamics on fibronectin (FN) and bone sialoprotein (BSP). Chondrocyte adhesion and spreading were also compared with fibroblasts to analyze potential cell-type-specific effects. Chondrocyte adhesion to BSP is independent of posttranslational modifications but is dependent on the RGD sequence in BSP. Whereas chondrocytes and fibroblasts adhered at similar levels on FN and BSP, cells displayed more actin-dependent spread on FN despite a 16x molar excess of BSP adsorbed to plastic. To identify intracellular mediators responsible for this difference in spreading, we investigated focal adhesion kinase (FAK)-Src and Rho-Rho kinase (ROCK) signaling. Although activated FAK localized to the vertices of adhered chondrocytes, levels of FAK activation did not correlate with the extent of spreading. Furthermore, Src inhibition reduced chondrocyte spreading on both FN and BSP, suggesting that FAK-Src signaling is not responsible for less cell spreading on BSP. In contrast, inhibition of Rho and ROCK in chondrocytes increased cell spreading on BSP and membrane protrusiveness on FN but did not affect cell adhesion. In fibroblasts, Rho inhibition increased fibroblast spreading on BSP while ROCK inhibition changed membrane protrusiveness of FN and BSP. In summary, we identify a novel role for Rho-ROCK signaling in regulating chondrocyte spreading and demonstrate both cell- and matrix molecule-specific mechanisms controlling cell spreading.  相似文献   

7.
The effect of fibronectin protein (Fn) coating onto polysaccharide layers of hyaluronic acid (Hyal) and its sulfated derivative (HyalS) on fibroblast cell adhesion was analyzed. The Hyal or HyalS were coated and grafted on the glass substrate by a photolithographic method. The Fn coating was achieved by two different routes: the immobilization of Fn by covalent bond to the polysaccharide layers and the simple adsorption of Fn onto Hyal and HyalS surfaces. AFM, SEM, and ATR-FTIR techniques were used for the chemical and topographical characterization of the surfaces. According to AFM and SEM data, the surface topography was dependent on the method used to cover the polysaccharide layers with the protein. ATR-FTIR analysis supplied information about the rearrangement of Fn after the interaction (adsorption or binding) with the Hyal and the HyalS. The conformational changes of the Fn were minimal when it was simply adsorbed on HyalS surfaces and larger once bound, whereas on the Hyal layer the protein underwent a bigger conformational change once adsorbed and covalently grafted. Then, the biological characterization was carried out by analyzing the human diploid skin fibroblasts adhesion on these surfaces. The morphology of fibroblasts was evaluated by SEM, whereas the dynamics of fibroblasts movement were recorded by a time-lapse system. Cell variations in area, perimeter, and length were analyzed at 2, 4, and 6 h. It was found that the addition of Fn (covalently bound or merely adsorbed) was fundamental in the promotion of fibroblasts adhesion and spreading. The greatest adhesion occurred onto HyalS layers covered by the adsorbed Fn.  相似文献   

8.
Cationic starch (D.S. 0.065) and anionic starch (D.S. 0.037) were used to form biopolyelectrolyte multilayers. The influence of the solution concentration of NaCl on the adsorption of starch onto silicon oxide substrates and on the formation of multilayers was investigated using stagnation point adsorption reflectometry (SPAR) and quartz crystal microbalance with dissipation (QCM-D). The wet adhesive properties of the starch multilayers were examined by measuring pull-off forces with the AFM colloidal probe technique. It was shown that polyelectrolyte multilayers (PEM) can be successfully constructed from cationic starch and anionic starch at electrolyte concentrations of 1 mM NaCl and 10 mM NaCl. The water content of the PEMs was approximately 80% at both electrolyte concentrations. However, the thickness of the PEMs formed at 10 mM NaCl was approximately twice the thickness formed at 1 mM NaCl. The viscoelastic properties of the starch PEMs, modeled as Voigt elements, were dependent on the polyelectrolyte that was adsorbed in the outermost layer. The PEMs appeared to be more rigid when capped by anionic starch than when capped by cationic starch. The wet adhesive pull-off forces increased with layer number and were also dependent on the polyelectrolyte adsorbed in the outermost layer. Thus, starch PEM treatment has a large potential for increasing the adhesive interaction between solid substrates to levels higher than can be reached by a single layer of cationic starch.  相似文献   

9.
The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell–cell cohesion, cell adhesion/spreading onto collagen type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell–cell and/or cell–ECM contacts and anchorage-independent cell proliferation.  相似文献   

10.
Cell-extracellular matrix (cell-ECM) interactions mediated by integrin receptors are essential for providing positional and environmental information necessary for many cell functions, such as proliferation, differentiation and survival. In vitro studies on cell adhesion to randomly adsorbed molecules on substrates have been limited to sub-micrometer patches, thus preventing the detailed study of structural arrangement of integrins and their ligands. In this article, we illustrate the role of the distance between integrin ligands, namely the RGD (arginine-glycine-aspartate) sequence present in ECM proteins, in the control of cell adhesion. By using substrates, which carry cyclic RGD peptides arranged in highly defined nanopatterns, we investigated the dynamics of cell spreading and the molecular composition of adhesion sites in relation to a fixed spacing between the peptides on the surface. Our novel approach for in vitro studies on cell adhesion indicates that not only the composition, but also the spatial organization of the extracellular environment is important in regulating cell-ECM interactions.  相似文献   

11.
After acute lung injury, repair of the alveolar epithelium occurs on a substrate undergoing cyclic mechanical deformation. While previous studies showed that mechanical stretch increased alveolar epithelial cell necrosis and apoptosis, the impact of cell death during repair was not determined. We examined epithelial repair during cyclic stretch (CS) in a scratch-wound model of primary rat alveolar type II (ATII) cells and found that CS altered the balance between proliferation and cell death. We measured cell migration, size, and density; intercellular gap formation; cell number, proliferation, and apoptosis; cytoskeletal organization; and focal adhesions in response to scratch wounding followed by CS for up to 24 h. Under static conditions, wounds were closed by 24 h, but repair was inhibited by CS. Wounding stimulated cell motility and proliferation, actin and vinculin redistribution, and focal adhesion formation at the wound edge, while CS impeded cell spreading, initiated apoptosis, stimulated cytoskeletal reorganization, and attenuated focal adhesion formation. CS also caused significant intercellular gap formation compared with static cells. Our results suggest that CS alters several mechanisms of epithelial repair and that an imbalance occurs between cell death and proliferation that must be overcome to restore the epithelial barrier.  相似文献   

12.
The ability of cancer cells to invade neighboring tissues is crucial for cell dissemination and tumor metastasis. It is generally assumed that cell adhesion to extracellular matrix proteins is an important stage of cancer progression. Hence, adhesion of cancer cells under in vitro conditions to proteins adsorbed on a substratum surface has been studied to provide a better understanding of cell-protein interaction mechanisms. A protein, adsorbed in an appropriate conformation on a substratum surface, creates a biologically active layer that regulates such cell functions as adhesion, spreading, proliferation and migration. In our study, we examined the interaction of PC-3 cells under in vitro conditions with fibronectin adsorbed on sulfonated polystyrene surfaces of a defined chemical composition and topography. We investigated cell adhesion to fibronectin and cell spreading. Using automatic, sequential microscopic image registration, we are the first to present observations of the dynamics of PC-3 cell spreading and the cell shape during this process. Our results show that cell adhesion and the shape of spreading cells strongly depend on the time interaction with fibronectin. The analysis of images of cytoskeletal protein distribution in the cell region near the cell-substratum interface revealed that induction of a signal cascade took place, which led to the reorganization of the cytoskeletal proteins and the activation of focal adhesion kinase (FAK).  相似文献   

13.
V Ginsburg  D D Roberts 《Biochimie》1988,70(11):1651-1659
The adhesive glycoproteins laminin, thrombospondin and von Willebrand's factor bind specifically and with high affinity to sulfated glycolipids, and it is this binding that probably accounts for their ability to agglutinate glutaraldehyde-fixed erythrocytes. The 3 proteins differ, however, in the effect of sulfated polysaccharides on their binding to sulfatides. Fucoidan strongly inhibits binding of both laminin and thrombospondin, but not of von Willebrand's factor, suggesting the involvement of laminin or thrombospondin or other unknown sulfatide-binding proteins in specific cell interactions that are also inhibited by fucoidan. Thrombospondin adsorbed onto plastic promotes the attachment and spreading of G361 melanoma cells. Interestingly, fucoidan and an antibody directed against the sulfatide-binding domain of thrombospondin selectively inhibit spreading but not attachment. Sulfatides, but not neutral glycolipids or gangliosides, when adsorbed onto plastic also promote attachment and spreading of G361 melanoma cells. Direct adhesion of G361 cells requires high densities of sulfatide. In the presence of laminin, however, specific adhesion of G361 cells to sulfatide is strongly stimulated and requires only low densities of adsorbed lipid, suggesting that laminin mediates adhesion by cross-linking receptors on the melanoma cell surface to sulfatide adsorbed onto the plastic. Although thrombospondin binds to sulfatide and to G361 cells, it does not enhance but rather inhibits direct and laminin-dependent G361 cell adhesion to sulfatide, presumably because it is unable to bind simultaneously to ligands on opposing surfaces. Thus, sulfated glycoconjugates participate in both laminin- and thrombospondin-mediated cell adhesion, but their mechanisms of interaction are different.  相似文献   

14.
Mechanical properties of polyelectrolyte multilayer films were studied by nanoindentation using the atomic force microscope (AFM). Force-distance measurements using colloidal probe tips were systematically obtained for supported films of poly(L-lysine) and hyaluronan that are suited to bio-application. Both native and covalently cross-linked films were studied as a function of increasing layer number, which increases film thickness. The effective Young's modulus perpendicular to the film, Eperpendicular, was determined to be a function of film thickness, cross-linking, and sample age. Thick PEM films exhibited a lower Eperpendicular than thinner PEM, whereas the Young's modulus of cross-linked films was more than 10-fold larger than native films. Moduli range from approximately 20 kPa for native films up to approximately 800 kPa for cross-linked ones. Young's moduli increased slightly with sample age, plateauing after approximately 4 weeks. Spreading of smooth muscle cells on these substrates with pre-attached collagen proved to be highly dependent on film rigidity with stiffer films giving greater cell spreading.  相似文献   

15.
Recent studies have identified extracellular matrix (ECM) compliance as an influential factor in determining the fate of anchorage-dependent cells. We explore a method of examining the influence of ECM compliance on cell morphology and remodeling in three-dimensional culture. For this purpose, a biological ECM analog material was developed to pseudo-independently alter its biochemical and physical properties. A set of 18 material variants were prepared with shear modulus ranging from 10 to 700 Pa. Smooth muscle cells were encapsulated in these materials and time-lapse video microscopy was used to show a relationship between matrix modulus, proteolytic biodegradation, cell spreading, and cell compaction of the matrix. The proteolytic susceptibility of the matrix, the degree of matrix compaction, and the cell morphology were quantified for each of the material variants to correlate with the modulus data. The initial cell spreading into the hydrogel matrix was dependent on the proteolytic susceptibility of the materials, whereas the extent of cell compaction proved to be more correlated to the modulus of the material. Inhibition of matrix metalloproteinases profoundly affected initial cell spreading and remodeling even in the most compliant materials. We concluded that smooth muscle cells use proteolysis to form lamellipodia and tractional forces to contract and remodel their surrounding microenvironment. Matrix modulus can therefore be used to control the extent of cellular remodeling and compaction. This study further shows that the interconnection between matrix modulus and proteolytic resistance in the ECM may be partly uncoupled to provide insight into how cells interpret their physical three-dimensional microenvironment.  相似文献   

16.
The layer-by-layer (LbL) technique has been widely used to produce nanofilms for biomedical applications. Naturally occurring polymers such as ECM macromolecules are attractive candidates for LbL film preparation. In this study, we assessed the build-up of type I collagen (Col1)/chondroitin sulfate (CS) or Col1/Heparin (HN) on polydimethylsiloxane (PDMS) substrates. The build-up was assessed by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Integrin-mediated cell adhesion was assessed by studying the cytoskeletal organization of mammalian primary cells (chondrocytes) seeded on different end layers and number of layers. Data generated from the QCM-D observations showed a consistent build-up of films with more adsorption in the case of Col1/HN. Col1/CS films were stable in media, whereas Col1/HN films were not. AFM analysis showed that the layers were fibrillar in structure for both systems and between 20 and 30 nm thick. The films promoted cell adhesion when compared with tissue culture plastic in serum-free media with cycloheximide. Crosslinking of the films resulted in constrained cell spreading and a ruffled morphology. Finally, beta1 integrin blocking antibodies prevented cell spreading, suggesting that cell adhesion and spreading were mediated mainly by interaction with the collagen fibrils. The ability to construct stable ECM-based films on PDMS has particular relevance in mechanobiology, microfluidics, and other biomedical applications.  相似文献   

17.
This study reports the fabrication of bioactive polymer fibers onto which signaling molecules can control and direct cell responses. To encourage and control directional biological responses, GRGDS peptides were immobilized onto the surface of 100 microm diameter poly(ethylene terephtalate) (PET) fibers (monofilaments). PET fiber surfaces were first coated with a thin polymeric interfacial bonding layer bearing amine groups by plasma polymerization. Carboxy-methyl-dextran (CMD) was covalently grafted onto the surface amine groups using water-soluble carbodiimide chemistry. GRGDS were covalently immobilized onto CMD-coated fiber surfaces. X-ray photoelectron spectroscopy (XPS) analyses enabled characterization of the multilayer fabrication steps. Human umbilical vein endothelial cells were seeded and grown on fibers to investigate cell patterning behavior (i.e., adhesion, spreading, cytoskeleton organization, and cell orientation). Cell adhesion was reduced on CMD-coated fibers, whereas amine- and GRGDS-coated fibers promoted cell adhesion and spreading. Cell adhesion was enhanced as the GRGDS concentration increased. Epifluorescence microscopic visualization of cells on RGD-coated substrates showed well-defined stress fibers and sharp spots of vinculin, typical of focal adhesions. In comparison to plasticware commonly used in cell cultures, fiber curvature promoted cell orientation along the fiber axis.  相似文献   

18.
Activation of Rac and Cdc42 by Integrins Mediates Cell Spreading   总被引:20,自引:7,他引:13       下载免费PDF全文
Adhesion to ECM is required for many cell functions including cytoskeletal organization, migration, and proliferation. We observed that when cells first adhere to extracellular matrix, they spread rapidly by extending filopodia-like projections and lamellipodia. These structures are similar to the Rac- and Cdc42-dependent structures observed in growth factor-stimulated cells. We therefore investigated the involvement of Rac and Cdc42 in adhesion and spreading on the ECM protein fibronectin. We found that integrin-dependent adhesion led to the rapid activation of p21-activated kinase, a downstream effector of Cdc42 and Rac, suggesting that integrins activate at least one of these GTPases. Dominant negative mutants of Rac and Cdc42 inhibit cell spreading in such a way as to suggest that integrins activate Cdc42, which leads to the subsequent activation of Rac; both GTPases then contribute to cell spreading. These results demonstrate that initial integrin-dependent activation of Rac and Cdc42 mediates cell spreading.  相似文献   

19.
The principal region of the human plasma fibronectin molecule mediating the adhesion of melanoma cells appears to be the alternatively spliced type III connecting segment (IIICS (Humphries, M. J., Akiyama, S. K., Komoriya, A., Olden, K., and Yamada, K. M. (1986a) J. Cell Biol., in press]. A series of overlapping synthetic peptides spanning the entire IIICS (CS peptides) were examined for their effects on B16-F10 melanoma cell adhesion to the parent fibronectin molecule. Two nonadjacent CS peptides, designated CS1 and CS5, were inhibitory. In contrast, neither inhibited fibronectin-mediated spreading of fibroblastic baby hamster kidney cells. When N-terminal cysteine derivatives of the CS peptides were conjugated to IgG by covalent cross-linking with N-succinimidyl-3(2-pyridyldithio)propionate, both the CS1 and CS5 conjugates promoted B16-F10 melanoma cell spreading. All conjugates were inactive for spreading of baby hamster kidney cells, confirming the cell type specificity of the IIICS adhesion site. Determination of the amounts of CS peptide required to support melanoma cell adhesion revealed that the activity of CS1 was only 2.4-fold lower than that of the intact fibronectin molecule. CS5 was approximately 320-fold less active than fibronectin, suggesting that the CS1 region may be the major site of interaction with the melanoma cell surface. The adhesion-promoting activities of CS1-IgG and CS5-IgG were additive as were the inhibitory activities of the free peptides for B16-F10 cell spreading on fibronectin. These findings suggest that both regions of the IIICS can function separately or together in mediating the interaction of melanoma cells with fibronectin. Since CS1 and CS5 are each found in separate alternatively spliced regions of the IIICS, it is conceivable that the adhesion-promoting activity of fibronectin for different cell types may be under complex regulation.  相似文献   

20.
Interaction of cell integrins with the ECM (extracellular matrix) proteins is commonly assumed to be associated with cell dissemination and tumour metastases. Since these processes depend on the mechanism of cell-protein interaction, we have attempted to show the contribution of α5β1 and αvβ3 integrins of the prostate cancer PC-3 cells in in vitro interaction with FN (fibronectin) adsorbed on defined polystyrene surfaces. Cell adhesion, spreading and cytoskeleton organization were studied using antibodies against integrins or a GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro) peptide. The results show that blocking the α5β1 integrin causes: (i) a decrease in the number of the adherent cells in the early phase of adhesion and (ii) a decrease in the dynamics of cell spreading and cell shape changes, and weaker reorganization of cytoskeletal proteins than in the control cells. Conversely, the blocking of the αvβ3 integrin: (i) causes no observable effect on the number of the adhered cells; however, (ii) causes an increase in the dynamics of cell spreading and cell shape changes, and stronger reorganization of cytoskeletal proteins than in the control cells. Interestingly, the blocking of integrins with a GRGDSP peptide strongly decreases the number of the adhered cells, and a complete inhibition of cell spreading. Our results strongly suggest that the α5β1 integrin plays the main role in the adhesion and spreading of PC-3 cells interacting with FN, whereas the αvβ3 integrin seems to regulate other receptors in the spreading process. Moreover, integrin-FN interaction through the RGD sequence evidently curbed the cell adhesion and spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号