首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Therapeutic proteins can contain multiple impurities, some of which are variants of the product, while others are derived from the cell substrate and the manufacturing process. Such impurities, even when present at trace levels, have the potential to activate innate immune cells in peripheral blood or embedded in tissues causing expression of cytokines and chemokines, increasing antigen uptake, facilitating processing and presentation by antigen presenting cells, and fostering product immunogenicity. Currently, while products are tested for host cell protein content, assays to control innate immune response modulating impurities (IIRMIs) in products are focused mainly on endotoxin and nucleic acids, however, depending on the cell substrate and the manufacturing process, numerous other IIRMI could be present. In these studies we assess two approaches that allow for the detection of a broader subset of IIRMIs. In the first, we use commercial cell lines transfected with Toll like receptors (TLR) to detect receptor-specific agonists. This method is sensitive to trace levels of IIRMI and provides information of the type of IIRMIs present but is limited by the availability of stably transfected cell lines and requires pre-existing knowledge of the IIRMIs likely to be present in the product. Alternatively, the use of a combination of macrophage cell lines of human and mouse origin allows for the detection of a broader spectrum of impurities, but does not identify the source of the activation. Importantly, for either system the lower limit of detection (LLOD) of impurities was similar to that of PBMC and it was not modified by the therapeutic protein tested, even in settings where the product had inherent immune modulatory properties. Together these data indicate that a cell-based assay approach could be used to screen products for the presence of IIRMIs and inform immunogenicity risk assessments, particularly in the context of comparability exercises.  相似文献   

2.
Immunogenicity of therapeutic proteins is a nightmare for industrials because induced antibodies can neutralize the therapeutic activity and provoke autoimmune symptoms. It was believed that sequence humanization would be sufficient to tackle these problems but multiple clinical examples now demonstrate that humanization does not suffice to abrogate immune responses. In order to predict immunogenicity of therapeutic proteins, different approaches have been developed, among which the most relevant ones are based on the evaluation of the response of na?ve CD4 T lymphocytes specific for therapeutic proteins. Other approaches also exist or are in development. This review is the state of art in the different technologies that are proposed to predict immunogenicity of therapeutic proteins.  相似文献   

3.
4.
Biology of E1-deleted adenovirus vectors in nonhuman primate muscle   总被引:3,自引:0,他引:3       下载免费PDF全文
Adenovirus vectors have been studied as vehicles for gene transfer to skeletal muscle, an attractive target for gene therapies for inherited and acquired diseases. In this setting, immune responses to viral proteins and/or transgene products cause inflammation and lead to loss of transgene expression. A few studies in murine models have suggested that the destructive cell-mediated immune response to virally encoded proteins of E1-deleted adenovirus may not contribute to the elimination of transgene-expressing cells. However, the impact of immune responses following intramuscular administration of adenovirus vectors on transgene stability has not been elucidated in larger animal models such as nonhuman primates. Here we demonstrate that intramuscular administration of E1-deleted adenovirus vector expressing rhesus monkey erythropoietin or growth hormone to rhesus monkeys results in generation of a Th1-dependent cytotoxic T-cell response to adenovirus proteins. Transgene expression dropped significantly over time but was still detectable in some animals after 6 months. Systemic levels of adenovirus-specific neutralizing antibodies were generated, which blocked vector readministration. These studies indicate that the cellular and humoral immune response generated to adenovirus proteins, in the context of transgenes encoding self-proteins, hinders long-term transgene expression and readministration with first-generation vectors.  相似文献   

5.
Recent ICH S6 guidance on preclinical safety evaluation of biotechnology derived biopharmaceuticals indicates that testing for anti-drug antibodies is not always required to establish the safety of a protein therapeutic. Most human protein therapeutics will induce a rapid and robust anti-drug antibody response in preclinical studies and the presence of high levels of circulating drug complicates the detection of anti-drug antibodies. The presence of anti-drug antibodies in preclinical studies does not predict if a protein therapeutic will be immunogenic in the clinic. When testing for anti-drug antibodies is warranted, there are a variety of analytical procedures that can be utilized, although each of these methods has advantages as well as limitations. Immunoassays can be used to identify if antibodies are present that bind to the therapeutic, and when necessary, biological assays can be used to identify if those antibodies neutralize the effect of the therapeutic. Under certain circumstances including intravenous dosing of a mAb therapeutic, anti-drug antibodies can form large immune complexes that can result in a safety issue. The value of immunogenicity data in preclinical studies is to aid in interpretation of other study data when necessary.  相似文献   

6.
Abstract

One of the fastest growing fields in the pharmaceutical industry is the market for therapeutic glycoproteins. Today, these molecules play a major role in the treatment of various diseases, and include several protein classes, i.e., clotting factors, hormones, cytokines, antisera, enzymes, enzyme inhibitors, Ig-Fc-Fusion proteins, and monoclonal antibodies. Optimal glycosylation is critical for therapeutic glycoproteins, as glycans can influence their yield, immunogenicity and efficacy, which impact the costs and success of such treatments. While several mammalian cell expression systems currently used can produce therapeutic glycoproteins that are mostly decorated with human-like glycans, they can differ from human glycans by presenting two structures at the terminal and therefore most exposed position. First, natural human N-glycans are lacking the terminal Gal? 1–3Gal (alpha-Gal) modification;  相似文献   

7.

Background

Lentiviral gene transfer can provide long-term expression of therapeutic genes such as erythropoietin. Because overexpression of erythropoietin can be toxic, regulated expression is needed. Doxycycline inducible vectors can regulate expression of therapeutic transgenes efficiently. However, because they express an immunogenic transactivator (rtTA), their utility for gene therapy is limited. In addition to immunogenic proteins that are expressed from inducible vectors, injection of the vector itself is likely to elicit an immune response because viral capsid proteins will induce “danger signals” that trigger an innate response and recruit inflammatory cells.

Methodology and Principal Findings

We have developed an autoregulatory lentiviral vector in which basal expression of rtTA is very low. This enabled us to temporally separate the injection of virus and the expression of the therapeutic gene and rtTA. Wistar rats were injected with an autoregulatory rat erythropoietin expression vector. Two or six weeks after injection, erythropoietin expression was induced by doxycycline. This resulted in an increase of the hematocrit, irrespective of the timing of the induction. However, most rats only responded once to doxycycline administration. Antibodies against rtTA were detected in the early and late induction groups.

Conclusions

Our results suggest that, even when viral vector capsid proteins have disappeared, expression of foreign proteins in muscle will lead to an immune response.  相似文献   

8.
Plants possess some desirable characteristics to synthesize recombinant glycoproteins for pharma-ceutical application. However, the mammalian glycoproteins produced in plants are somewhat different from their natural counterparts in terms of N-glycoforms. The immunogenicity of plant-specific glyco-epitopes is the major concern in human therapy. Here, the distribution of N-glycans in different growth phases of tobacco BY2 cells and their immunogenicity in mice were determined. It was ob-served that the percentage of β1,2-xylose and α1,3-fucose in proteins of growing cells increased and the corresponding protein extracts caused accelerated immune response in mice. Based on this ob-servation, the recombinant erythropoietin in BY2 cells was expressed and characterized, and Western blot analysis showed that the recombinant erythropoietin contained a relatively small amount of plant-specific glyco-epitopes in the early phase of culture growth. This study may provide a simple but effective strategy for the production of therapeutic glycoproteins with human-like N-glycan structures in plant hosts to avoid a great allergenic risk.  相似文献   

9.
Therapeutic monoclonal antibodies have become an important class of modern medicines.The established technologies for therapeutic antibody discovery such as humanization of mouse antibodies,phage display of human antibody libraries and transgenic animals harboring human IgG genes have been practiced successfully so far,and many incremental improvements are being made constantly.These methodologies are responsible for currently marketed therapeutic antibodies and for the biopharma industry pipeline which are concentrated on only a few dozen targets.A key challenge for wider application of biotherapeutic approaches is the paucity of truly validated targets for biotherapeutic intervention.The efforts to expand the target space include taking the pathway approach to study the disease correlation.Since many new targets are multi-spanning and multimeric membrane proteins there is a need to develop more effective methods to generate antibodies against these difficult targets.The pharmaceutical properties of therapeutic antibodies are an active area for study concentrating on biophysical characteristics such as thermal stability and aggregation propensity.The immunogenicity of biotherapeutics in humans is a very complex issue and there are no truly predictive animal models to rely on.The in silico and T-cell response approaches identify the potential for immunogenicity;however,one needs contingency plans for emergence of antiproduct antibody response for clinical trials.  相似文献   

10.
Rationally engineered therapeutic proteins with reduced immunogenicity   总被引:1,自引:0,他引:1  
Chronic administration of protein therapeutics may elicit unacceptable immune responses to the specific protein. Our hypothesis is that the immunogenicity of protein drugs can be ascribed to a few immunodominant helper T lymphocyte (HTL) epitopes, and that reducing the MHC binding affinity of these HTL epitopes contained within these proteins can generate drugs with lower immunogenicity. To test this hypothesis, we studied the protein therapeutic erythropoietin (Epo). Two regions within Epo, designated Epo 91-120 and Epo 126-155, contained HTL epitopes that were recognized by individuals with numerous HLA-DR types, a property common to immunodominant HTL epitopes. We then engineered analog epitopes with reduced HLA binding affinity. These analog epitopes were associated with reduced in vitro immunogenicity. Two modified forms of Epo containing these substitutions were shown to be bioactive and nonimmunogenic in vitro. These findings support our hypothesis and demonstrate that immunogenicity of protein drugs can be reduced in a systematic and predictable manner.  相似文献   

11.
For largely unknown reasons, biopharmaceuticals evoke potentially harmful antibody formation. Such antibodies can inhibit drug efficacy and, when directed against endogenous proteins, cause life-threatening complications. Insight into the mechanisms by which biopharmaceuticals break tolerance and induce an immune response will contribute to finding solutions to prevent this adverse effect. Using a transgenic mouse model, we here demonstrate that protein misfolding, detected with the use of tissue-type plasminogen activator and thioflavin T, markers of amyloid-like properties, results in breaking of tolerance. In wild-type mice, misfolding enhances protein immunogenicity. Several commercially available biopharmaceutical products were found to contain misfolded proteins. In some cases, the level of misfolded protein was found to increase upon storage under conditions prescribed by the manufacturer. Our results indicate that misfolding of therapeutic proteins is an immunogenic signal and a risk factor for immunogenicity. These findings offer novel possibilities to detect immunogenic protein entities with tPA and reduce immunogenicity of biopharmaceuticals.  相似文献   

12.
The immunogenicity of therapeutic Abs is a concern as anti-drug Abs may impact negatively on the pharmacodynamics and safety profile of Ab drugs. The factors governing induction of anti-drug Abs are not fully understood. In this study, we describe a model based on mouse-human chimeric Abs for the study of Ab immunogenicity in vivo. Six chimeric Abs containing human V regions and mouse C regions were generated from six human anti-Rhesus D Abs and the Ag-binding characteristics of the parental human Abs were retained. Analysis of the immune response toward the individual chimeric Abs revealed the induction of anti-variable domain Abs including anti-idiotypic Abs against some of these, thereby demonstrating the applicability of the model for studying anti-drug Ab responses in vivo. Immunization of BALB/c, C57, and outbred NMRI mice with a polyclonal composition consisting of all six chimeric Abs demonstrated that the immunogenicity of the individual Abs was haplotype dependent. Chimeric Abs, which were nonimmunogenic when administered individually, did not become immunogenic as part of the polyclonal composition, implying the absence of epitope spreading. Ex vivo Ab-binding studies established a clear correlation between the level of immunogenicity of the Abs comprised in the composition and the impact on the pharmacology of the Abs. These analyses demonstrate that under these conditions this polyclonal Ab composition was generally less susceptible to blocking Abs than the respective mAbs.  相似文献   

13.
Chinese hamster ovary (CHO) cells have been used as host cells in the production of a range of recombinant therapeutic proteins, including monoclonal antibodies and Fc-fusion proteins. Host cell proteins (HCP) represent impurities that must be removed from therapeutic formulations because of their potential risks for immunogenicity. While the majority of HCP impurities are effectively removed in typical downstream purification processes, clearance of a small population of HCP remains challenging. In this study, we knocked out the Anxa2 and Ctsd genes to assess the feasibility of knockout approaches for diminishing the risk of contamination with HCP. Using the CRISPR/Cas9 system, Anxa2-, and Ctsd-knockout CHO cell lines were successfully established, and we confirmed the complete elimination of the corresponding HCP in cell lysates. Importantly, all knockout cell lines showed similar growth and viability to those of the wild-type control during 8 days of cultivation. Thus, knockout of unrequired genes can reduce contamination with HCP in the production of recombinant therapeutic proteins.  相似文献   

14.
Therapeutic antibodies directed against tumor necrosis factor alpha (TNF-alpha) for the treatment of rheumatoid arthritis, and against the human EGF receptor-2 (HER2) receptor for the treatment of breast cancer have provided significant clinical benefit for the patients. The success of these antibodies has also provided strong support for the possibility that increased activity of cytokines or growth factors is causally implicated in a variety of human diseases. Interferon alpha (IFN-alpha) is induced by viruses (linked by epidemiological studies to autoimmune diseases), has significant direct effects on both epithelial cells and the immune system, and then can be further induced by the autoantibodies and apoptotic cells generated by the actions of IFN-alpha. The direct and deleterious impact on target tissues, the ability to induce an autoimmune response, and the potential for a self-sustaining cycle of induction and damage suggests that IFN-alpha could be a pivotal factor in the development of autoimmune diseases. This review will evaluate the rationale for, possible approaches to, and safety concerns associated with, targeting interferon alpha (IFN-alpha) as a therapeutic strategy for the treatment of autoimmune diseases. While the approach may be applicable to several autoimmune diseases, there will be an emphasis on systemic lupus erythematosus and insulin dependent diabetes mellitus.  相似文献   

15.
Nonhematopoietic stem cells as a delivery platform of therapeutic useful genes have attracted widespread attention in recent years, owing to gained a long lifespan, easy separation, high proliferation, and high transfection capacity. Mesenchymal stem/stromal cells (MSCs) are the choice of the cells for gene and cell therapy due to high self-renewal capacity, high migration rate to the site of the tumor, and with immune suppressive and anti-inflammatory properties. Hence, it has a high potential of safety genetic modification of MSCs for antitumor gene expression and has paved the way for the clinical application of these cells to target the therapy of cancers and other diseases. The aim of gene therapy is targeted treatment of cancers and diseases through recovery, change, or enhancement cell performance to the sustained secretion of useful therapeutic proteins and induction expression of the functional gene in intended tissue. Recent developments in the vectors designing leading to the increase and durability of expression and improvement of the safety of the vectors that overcome a lot of problems, such as durability of expression and the host immune response. Nowadays, gene therapy approach is used by MSCs as a delivery vehicle in the preclinical and the clinical trials for the secretion of erythropoietin, recombinant antibodies, coagulation factors, cytokines, as well as angiogenic inhibitors in many blood disorders like anemia, hemophilia, and malignancies. In this study, we critically discuss the status of gene therapy by MSCs as a delivery vehicle for the treatment of blood disorders. Finally, the results of clinical trial studies are assessed, highlighting promising advantages of this emerging technology in the clinical setting.  相似文献   

16.
Adeno-associated virus (AAV) is being developed as a vector capable of conferring long-term gene expression, which is useful in the treatment of chronic diseases. In most therapeutic applications, it is necessary to readminister the vector. This study characterizes the humoral immune response to AAV capsid proteins following intramuscular injection and its impact on vector readministration. Studies of mice and rhesus monkeys demonstrated the formation of neutralizing antibodies to AAV capsid proteins that persisted for over 1 year and then diminished, but this did not prevent the efficacy of vector readministration. More-detailed studies strongly suggested that the B-cell response was T cell dependent. This was further evaluated with a blocking antibody to human CD4, primatized for clinical trials, in a biologically compatible mouse in which the endogenous murine CD4 gene was functionally replaced with the human counterpart. Transient pharmacologic inhibition of CD4 T cells with CD4 antibody prevented an antivector response long after the effects of the CD4 antibody diminished; readministration of vector without diminution of gene expression was possible. Our studies suggest that truly durable transgene expression (i.e., prolonged genetic engraftment together with vector readministration) is possible with AAV in skeletal muscle, although it will be necessary to transiently inhibit CD4 T-cell function to avoid the activation of memory B cells.  相似文献   

17.
Transgenic animal platforms for the discovery of human monoclonal antibodies have been developed in mice, rats, rabbits and cows. The immune response to human proteins is limited in these animals by their tolerance to mammalian-conserved epitopes. To expand the range of epitopes that are accessible, we have chosen an animal host that is less phylogenetically related to humans. Specifically, we generated transgenic chickens expressing antibodies from immunoglobulin heavy and light chain loci containing human variable regions and chicken constant regions. From these birds, paired human light and heavy chain variable regions are recovered and cloned as fully human recombinant antibodies. The human antibody-expressing chickens exhibit normal B cell development and raise immune responses to conserved human proteins that are not immunogenic in mice. Fully human monoclonal antibodies can be recovered with sub-nanomolar affinities. Binning data of antibodies to a human protein show epitope coverage similar to wild type chickens, which we previously showed is broader than that produced from rodent immunizations.  相似文献   

18.
Comparing antigenicity and immunogenicity of engineered gp120   总被引:1,自引:0,他引:1       下载免费PDF全文
We have engineered monomeric gp120 in such a way as to favorably present the conserved epitope for the broadly neutralizing antibody b12 while lowering the exposure of epitopes recognized by some weakly neutralizing and nonneutralizing antibodies. The work presented here describes the immune response in rabbits immunized with two prototype, engineered gp120s to explore the relationship between antigenicity and immunogenicity for these mutants. The GDMR gp120 mutant (residues 473 to 476 on gp120 altered from GDMR to AAAA) has a series of substitutions on the edge of the CD4 binding site (CD4bs), and the mCHO gp120 mutant has seven extra glycans relative to the wild-type protein. Importantly, serum mapping showed that both mutants did not elicit antibodies against a number of epitopes that had been targeted for dampening. The sera from rabbits immunized with the GDMR gp120 mutant neutralized some primary viruses at levels somewhat better than the wild-type gp120 immune sera as a result of an increased elicitation of anti-V3 antibodies. Unlike wild-type gp120 immune sera, GDMR gp120 immune sera failed to neutralize HXBc2, a T-cell line adapted (TCLA) virus. This was associated with loss of CD4bs/CD4-induced antibodies that neutralize TCLA but not primary viruses. The mCHO gp120 immune sera did not neutralize primary viruses to any significant degree, reflecting the masking of epitopes of even weakly neutralizing antibodies without eliciting b12-like antibodies. These results show that antibody responses to multiple epitopes on gp120 can be dampened. More precise focusing to a neutralizing epitope will likely require several iterations comparing antigenicity and immunogenicity of engineered proteins.  相似文献   

19.
Therapeutic monoclonal antibodies have revolutionized the treatment of various inflammatory diseases. Immunogenicity against these antibodies has been shown to be clinically important: it is associated with shorter response duration because of diminishing concentrations in the blood and with infusion reactions. Concomitant immunomodulators in the form of methotrexate or azathioprine reduced the immunogenicity of therapeutic antibodies in rheumatoid arthritis, Crohn disease, and juvenile idiopathic arthritis. The occurrence of adverse events does not increase when immunomodulators are added to therapeutic antibodies. The mechanism whereby methotrexate and azathioprine influence immunogenicity remains unclear. Evidence-based consensus on prescribing concomitant immunomodulators is needed.  相似文献   

20.
The immunogenicity of clinically administered antibodies has clinical implications for the patients receiving them, ranging from mild consequences, such as increased clearance of the drug from the circulation, to life-threatening effects. The emergence of methods to engineer variable regions resulting in the generation of humanised and fully human antibodies as therapeutics has reduced the potential for adverse immunogenicity. However, due to differences in sequence referred to as allotypic variation, antibody constant regions are not homogeneous within the human population, even within sub-classes of the same immunoglobulin isotype. For therapeutically administered antibodies, the potential exists for an immune response from the patient to the antibody if the allotype of patient and antibody do not match. Allotypic distribution in the human population varies within and across ethnic groups making the choice of allotype for a therapeutic antibody difficult. This study investigated the potential of human IgG1 allotypes to stimulate responses in human CD4+ T cells from donors matched for homologous and heterologous IgG1 allotypes. Allotypic variants of the therapeutic monoclonal antibody trastuzumab were administered to genetically defined allotypic matched and mismatched donor T cells. No significant responses were observed in the mismatched T cells. To investigate the lack of T-cell responses in relation to mismatched allotypes, HLA-DR agretopes were identified via MHC associated peptide proteomics (MAPPs). As expected, many HLA-DR restricted peptides were presented. However, there were no peptides presented from the sequence regions containing the allotypic variations. Taken together, the results from the T-cell assay and MAPPs assay indicate that the allotypic differences in human IgG1 do not represent a significant risk for induction of immunogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号