首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human neuronal ceroid lipofuscinoses (NCLs) are a group of genetic neurodegenerative diseases characterized by progressive death of neurons in the central nervous system (CNS) and accumulation of abnormal lysosomal storage material. Infantile NCL (INCL), the most severe form of NCL, is caused by mutations in the Ppt1 gene, which encodes the lysosomal enzyme palmitoyl-protein thioesterase 1 (Ppt1). We generated mutations in the Ppt1 ortholog of Drosophila melanogaster to characterize phenotypes caused by Ppt1 deficiency in flies. Ppt1-deficient flies accumulate abnormal autofluorescent storage material predominantly in the adult CNS and have a life span 30% shorter than wild type, phenotypes that generally recapitulate disease-associated phenotypes common to all forms of NCL. In contrast, some phenotypes of Ppt1-deficient flies differed from those observed in human INCL. Storage material in flies appeared as highly laminar spherical deposits in cells of the brain and as curvilinear profiles in cells of the thoracic ganglion. This contrasts with the granular deposits characteristic of human INCL. In addition, the reduced life span of Ppt1-deficient flies is not caused by progressive death of CNS neurons. No changes in brain morphology or increases in apoptotic cell death of CNS neurons were detected in Ppt1-deficient flies, even at advanced ages. Thus, Ppt1-deficient flies accumulate abnormal storage material and have a shortened life span without evidence of concomitant neurodegeneration.  相似文献   

2.
Buff H  Smith AC  Korey CA 《Genetics》2007,176(1):209-220
Infantile neuronal ceroid lipofuscinosis (INCL) is a pediatric neurodegenerative disease caused by mutations in the human CLN1 gene. CLN1 encodes palmitoyl-protein thioesterase 1 (PPT1), suggesting an important role for the regulation of palmitoylation in normal neuronal function. To further elucidate Ppt1 function, we performed a gain-of-function modifier screen in Drosophila using a collection of enhancer-promoter transgenic lines to suppress or enhance the degeneration produced by overexpression of Ppt1 in the adult visual system. Modifier genes identified in our screen connect Ppt1 function to synaptic vesicle cycling, endo-lysosomal trafficking, synaptic development, and activity-dependent remodeling of the synapse. Furthermore, several homologs of the modifying genes are known to be regulated by palmitoylation in other systems and may be in vivo substrates for Ppt1. Our results complement recent work on mouse Ppt1(-/-) cells that shows a reduction in synaptic vesicle pools in primary neuronal cultures and defects in endosomal trafficking in human fibroblasts. The pathways and processes implicated by our modifier loci shed light on the normal cellular function of Ppt1. A greater understanding of Ppt1 function in these cellular processes will provide valuable insight into the molecular etiology of the neuronal dysfunction underlying the disease.  相似文献   

3.
Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of the childhood caused by mutations in the gene encoding palmitoyl protein thioesterase 1 (PPT1). PPT1 localizes to late endosomes/lysosomes of non-neuronal cells and in neurons also to presynaptic areas. PPT1-deficiency causes massive death of cortical neurons and most tissues show an accumulation of saposins A and D. We have here studied endocytic pathways, saposin localization and processing in PPT1-deficient fibroblasts to elucidate the cellular defects resulting in accumulation of specific saposins. We show that PPT1-deficiency causes a defect in fluid-phase and receptor-mediated endocytosis, whereas marker uptake and recycling endocytosis remain intact. Furthermore, we show that saposins A and D are more abundant and relocalized in PPT-deficient fibroblasts and mouse primary neurons. Metabolic labeling and immunoprecipitation analyses revealed hypersecretion and abnormal processing of prosaposin, implying that the accumulation of saposins may result from endocytic defects. We show for the first time a connection between saposin storage and a defect in the endocytic pathway of INCL cells. These data provide new insights into the metabolism of PPT1-deficient cells and offer a basis for further studies on cellular processes causing neuronal death in INCL and other neurodegenerative diseases.  相似文献   

4.
Infantile neuronal ceroid lipofuscinosis (INCL) is a fatal neurodegenerative disorder caused by a deficiency of palmitoyl-protein thioesterase-1 (PPT1). We have previously shown that children with INCL have increased risk of hypothermia during anesthesia and that PPT1-deficiency in mice is associated with disruption of adaptive energy metabolism, downregulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and mitochondrial dysfunction. Here we hypothesized that Ppt1-knockout mice, a well-studied model of INCL that shows many of the neurologic manifestations of the disease, would recapitulate the thermoregulation impairment observed in children with INCL. We also hypothesized that when exposed to cold, Ppt1-knockout mice would be unable to maintain body temperature as in mice thermogenesis requires upregulation of Pgc-1α and uncoupling protein 1 (Ucp-1) in brown adipose tissue. We found that the Ppt1-KO mice had lower basal body temperature as they aged and developed hypothermia during cold exposure. Surprisingly, this inability to maintain body temperature during cold exposure in Ppt1-KO mice was associated with an adequate upregulation of Pgc-1α and Ucp-1 but with lower levels of sympathetic neurotransmitters in brown adipose tissue. In addition, during baseline conditions, brown adipose tissue of Ppt1-KO mice had less vacuolization (lipid droplets) compared to wild-type animals. After cold stress, wild-type animals had significant decreases whereas Ppt1-KO had insignificant changes in lipid droplets compared with baseline measurements, thus suggesting that Ppt1-KO had less lipolysis in response to cold stress. These results uncover a previously unknown phenotype associated with PPT1 deficiency, that of altered thermoregulation, which is associated with impaired lipolysis and neurotransmitter release to brown adipose tissue during cold exposure. These findings suggest that INCL should be added to the list of neurodegenerative diseases that are linked to alterations in peripheral metabolic processes. In addition, extrapolating these findings clinically, impaired thermoregulation and hypothermia are potential risks in patients with INCL.  相似文献   

5.
6.
7.
Palmitoyl protein thioesterase (PPT) is an enzyme that removes palmitate residues from various S-acylated proteins in vitro. We recently identified mutations in the human PPT gene in patients suffering from a neurodegenerative disease in childhood, infantile neuronal ceroid lipofuscinosis (INCL), with dramatic manifestations limited to the neurons of neocortical origin. Here we have expressed the human PPT cDNA in COS-1 cells and demonstrate the lysosomal targeting of the enzyme via the mannose 6-phosphate receptor-mediated pathway. The enzyme was also secreted into the growth medium and could be endocytosed by recipient cells. We further demonstrate the disturbed intracellular routing of PPT carrying the worldwide most common INCL mutation, Arg122Trp, to lysosomes. The results provide evidence that INCL represents a novel lysosomal enzyme deficiency. Further, the defect in the PPT gene causing a neurodegenerative disorder suggests that depalmitoylation of the still uncharacterized substrate(s) for PPT is critical for postnatal development or maintenance of cortical neurons.  相似文献   

8.
The regulatory mechanisms that orchestrate the developmental acquisition of electrical properties in embryonic neurons are poorly understood. Progress in this important area is dependent on the availability of preparations that allow electrophysiology to be married with genetics. The powerful genetics of the fruitfly Drosophila melanogaster has long been exploited to describe fundamental mechanisms associated with structural neuronal development (i.e. axon guidance). It has not, however, been fully employed to study the final stages of embryonic neural development and in particular the acquisition of electrical activity. This review focuses on the recent development of a Drosophila preparation that allows central neurons to be accessed by patch electrodes at both embryonic and larval stages. This preparation, which allows electrophysiology to be coupled with genetics, offers the prospect of making significant advances in our understanding of functional neuron development.  相似文献   

9.
Infantile-onset neuronal ceroid lipofuscinosis (INCL) is a severe pediatric neurodegenerative disorder produced by mutations in the gene encoding palmitoyl-protein thioesterase 1 (Ppt1). This enzyme is responsible for the removal of a palmitate group from its substrate proteins, which may include presynaptic proteins like SNAP-25, cysteine string protein (CSP), dynamin, and synaptotagmin. The fruit fly, Drosophila melanogaster, has been a powerful model system for studying the functions of these proteins and the molecular basis of neurological disorders like the NCLs. Genetic modifier screens and tracer uptake studies in Ppt1 mutant larval garland cells have suggested that Ppt1 plays a role in endocytic trafficking. We have extended this analysis to examine the involvement of Ppt1 in synaptic function at the Drosophila larval neuromuscular junction (NMJ). Mutations in Ppt1 genetically interact with temperature sensitive mutations in the Drosophila dynamin gene shibire, accelerating the paralytic behavior of shibire mutants at 27 °C. Electrophysiological work in NMJs of Ppt1-deficient larvae has revealed an increase in miniature excitatory junctional potentials (EJPs) and a significant depression of evoked EJPs in response to repetitive (10 hz) stimulation. Endocytosis was further examined in Ppt1-mutant larvae using FM1–43 uptake assays, demonstrating a significant decrease in FM1–43 uptake at the mutant NMJs. Finally, Ppt1-deficient and Ppt1 point mutant larvae display defects in locomotion that are consistent with alterations in synaptic function. Taken together, our genetic, cellular, and electrophysiological analyses suggest a direct role for Ppt1 in synaptic vesicle exo- and endocytosis at motor nerve terminals of the Drosophila NMJ.  相似文献   

10.
Zhang Z  Mandal AK  Wang N  Keck CL  Zimonjic DB  Popescu NC  Mukherjee AB 《Gene》1999,231(1-2):203-211
Mutations in the palmitoyl-protein thioesterase (PPT) gene cause infantile neuronal ceroid lipofuscinosis (INCL), the clinical manifestations of which include the early loss of vision followed by deterioration of brain functions. To gain insight into the temporal onset of these clinical manifestations, we isolated and characterized a murine PPT (mPPT)-cDNA, mapped the gene on distal chromosome 4, and studied its expression in the eye and in the brain during development. Our results show that both cDNA and protein sequences of the murine and human PPTs are virtually identical and that the mPPT expression in the retina and in the brain is temporally regulated during development. Furthermore, the retinal expression of mPPT occurs much earlier and at a higher level than in the brain at all developmental stages investigated. Since many retinal and brain proteins are highly palmitoylated and depalmitoylation by PPT is essential for their effective recycling in the lysosomes, our results raise the possibility that inactivating mutations of the PPT gene, as occur in INCL, are likely to cause cellular accumulation of lipid-modified proteins in the retina earlier than in the brain. Consequently, the loss of vision occurs before the deterioration of brain functions in this disease.  相似文献   

11.
Cell death plays an essential role in development, and the removal of cell corpses presents an important challenge for the developing organism. Macrophages are largely responsible for the clearance of cell corpses in Drosophila melanogaster and mammalian systems. We have examined the developmental requirement for macrophages in Drosophila and find that macrophage function is essential for central nervous system (CNS) morphogenesis. We generate and analyze mutations in the Pvr locus, which encodes a receptor tyrosine kinase of the PDGF/VEGF family that is required for hemocyte migration. We find that loss of Pvr function causes the mispositioning of glia within the CNS and the disruption of the CNS axon scaffold. We further find that inhibition of hemocyte development or of Croquemort, a receptor required for macrophage-mediated corpse engulfment, causes similar CNS defects. These data indicate that macrophage-mediated clearance of cell corpses is required for proper morphogenesis of the Drosophila CNS.  相似文献   

12.
13.
14.
The CNS midline cells, specified by the single-minded (sim) gene, are required for the proper patterning of the ventral CNS and epidermis, which are derived from the Drosophila ventral neuroectoderm. Defects in the sim mutant are characterized by the loss of the gene expression, which is required for the proper formation of the ventral neurons and epidermis, and by a decrease in the spacing of longitudinal and commissural axon tracks. Molecular and cellular mechanisms for these defects were analyzed to elucidate the precise role of the CNS midline cells in proper patterning of the ventral neuroectoderm during embryonic neurogenesis. These analyses showed that the ventral neuroectoderm in the sim mutant fails to carry out its proper formation and characteristic cell division cycle. This resulted in the loss of the dividing neuroectodermal cells that are located ventral to the CNS midline. The CNS midline cells are also required for the cell cycle-independent expression of the neural and epidermal markers. This indicates that the CNS midline cells are essential for the establishment and maintenance of the ventral epidermal and neuronal cell lineage by cell-cell interaction. On the other hand, the CNS midline cells do not cause extensive cell death in the ventral neuroectoderm. This study indicates that the CNS midline cells play important roles in the coordination of the proper cell cycle progression and the correct identity determination of the adjacent ventral neuroectoderm along the dorsoventral axis.  相似文献   

15.
16.
17.
18.
A requirement for neuropilin-1 in embryonic vessel formation.   总被引:29,自引:0,他引:29  
Neuropilin-1 is a membrane protein that is expressed in developing neurons and functions as a receptor or a component of the receptor complex for the class 3 semaphorins, which are inhibitory axon guidance signals. Targeted inactivation of the neuropilin-1 gene in mice induced disorganization of the pathway and projection of nerve fibers, suggesting that neuropilin-1 mediates semaphorin-elicited signals and regulates nerve fiber guidance in embryogenesis. Neuropilin-1 is also expressed in endothelial cells and shown to bind vascular endothelial growth factor (VEGF), a potent regulator for vasculogenesis and angiogenesis. However, the roles of neuropilin-1 in vascular formation have been unclear. This paper reported that the neuropilin-1 mutant mouse embryos exhibited various types of vascular defects, including impairment in neural vascularization, agenesis and transposition of great vessels, insufficient aorticopulmonary truncus (persistent truncus arteriosus), and disorganized and insufficient development of vascular networks in the yolk sac. The vascular defects induced by neuropilin-1 deficiency in mouse embryos suggest that neuropilin-1 plays roles in embryonic vessel formation, as well as nerve fiber guidance.  相似文献   

19.
Sertoli cells are a type of nurse cell in the seminiferous epithelium that are crucial for sustaining spermatogenesis by extending nutritional and energy support to the developing germ cells. Dysfunction of Sertoli cells could cause disordered spermatogenesis and reduced fertility in males. In this study, we focused on the expression and function of palmitoyl protein thioesterase 1 (PPT1), a lysosomal depalmitoylating enzyme, in Sertoli cells. Here, we show that PPT1 expression in Sertoli cells is responsive to cholesterol treatment and that specific knockout of Ppt1 in Sertoli cells causes male subfertility associated with poor sperm quality and a high ratio of sperm deformity. Specifically, Ppt1 deficiency leads to poor cell variably accompanied with abnormal lysosome accumulation and increased cholesterol levels in Sertoli cells. Further, Ppt1 deficiency results in poor adhesion of developing germ cells to Sertoli cells in the seminiferous epithelium, which is likely to be responsible for the reduced male fertility as a consequence of declines in sperm count and motility as well as a high incidence of sperm head deformity. In summary, PPT1 affects sperm quality and male fertility through regulating lysosomal function and cholesterol metabolism in Sertoli cells.  相似文献   

20.
During gastrulation in Drosophila, ventral cells change shape, undergoing synchronous apical constriction, to create the ventral furrow (VF). This process is affected in mutant embryos lacking zygotic function of the folded gastrulation (fog) gene, which encodes a putative secreted protein. Fog is an essential autocrine signal that induces cytoskeletal changes in invaginating VF cells. Here we show that Fog is also required for nervous system development. Fog is expressed by longitudinal glia in the central nervous system (CNS), and reducing its expression in glia causes defects in process extension and axon ensheathment. Glial Fog overexpression produces a disorganized glial lattice. Fog has a distinct set of functions in CNS neurons. Our data show that reduction or overexpression of Fog in these neurons produces axon guidance phenotypes. Interestingly, these phenotypes closely resemble those seen in embryos with altered expression of the receptor tyrosine phosphatase PTP52F. We conducted epistasis experiments to define the genetic relationships between Fog and PTP52F, and the results suggest that PTP52F is a downstream component of the Fog signaling pathway in CNS neurons. We also found that Ptp52F mutants have early VF phenotypes like those seen in fog mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号