首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leishmania parasites replicate within the phagolysosome compartment of mammalian macrophages. Although Leishmania depend on sugars as a major carbon source during infections, the nutrient composition of the phagolysosome remains poorly described. To determine the origin of the sugar carbon source in macrophage phagolysosomes, we have generated a N-acetylglucosamine acetyltransferase (GNAT) deficient Leishmania major mutant (∆gnat) that is auxotrophic for the amino sugar, N-acetylglucosamine (GlcNAc). This mutant was unable to grow or survive in ex vivo infected macrophages even when macrophages were cultivated in presence of exogenous GlcNAc. In contrast, the L. major ∆gnat mutant induced normal skin lesions in mice, suggesting that these parasites have access to GlcNAc in tissue macrophages. Intracellular growth of the mutant in ex vivo infected macrophages was restored by supplementation of the macrophage medium with hyaluronan, a GlcNAc-rich extracellular matrix glycosaminoglycan. Hyaluronan is present and constitutively turned-over in Leishmania-induced skin lesions and is efficiently internalized into Leishmania containing phagolysosomes. These findings suggest that the constitutive internalization and degradation of host glycosaminoglycans by macrophages provides Leishmania with essential carbon sources, creating a uniquely favorable niche for these parasites.  相似文献   

2.
Leishmania parasites incorporate N-acetylglucosamine (GlcNAc) into surface-expressed glycosylphosphatidylinositol (GPI) glycolipids and N-linked glycans. To investigate whether these glycoconjugates are required for infectivity of promastigote and intracellular amastigote stages, we generated a Leishmania major mutant lacking the gene encoding glutamine : fructose-6-phosphate amidotransferase (GFAT). The L. major Δ gfat mutant is unable to synthesize GlcN-6-phosphate de novo and is auxotrophic for GlcN or GlcNAc. GlcN starvation leads to the rapid depletion of dolichol-linked oligosaccharides and GPI precursors, hypersensitivity to elevated temperatures encountered in the mammalian host and eventual parasite death. Short-term tunicamycin treatment induces a similar hypersensitivity to temperature, indicating that N-linked glycans are required for thermotolerance and viability. L. major Δ gfat promastigotes are unable to proliferate in ex vivo infected macrophages, demonstrating that GlcN(Ac) levels in the phagolysosome are low. In contrast, Δ gfat amastigotes grow as well as wild-type amastigotes in macrophages and induce lesions in susceptible mice. These stages still require GlcN(Ac) for viability but can apparently scavenge all of their glucosamine requirements from the macrophage phagolysosome. These results highlight significant differences in the nutrient requirements of promastigote and amastigote stages and suggest that enzymes involved in UDP-GlcNAc biosynthesis are essential for pathogenesis in the mammalian host.  相似文献   

3.
Leishmania parasites target macrophages in their mammalian hosts and proliferate within the mature phagolysosome compartment of these cells. Intracellular amastigote stages are dependent on sugars as a major carbon source in vivo, but retain the capacity to utilize other carbon sources. To investigate whether amastigotes can switch to using other carbon sources, we have screened for suppressor strains of the L. mexicana Δlmxgt1‐3 mutant which lacks the major glucose transporters LmxGT1‐3. We identified a novel suppressor line (Δlmxgt1‐3s2) that has restored growth in rich culture medium and virulence in ex vivo infected macrophages, but failed to induce lesions in mice. Δlmxgt1‐3s2 amastigotes had lower rates of glucose utilization than the parental line and primarily catabolized non‐essential amino acids. The increased mitochondrial metabolism of this line was associated with elevated levels of intracellular reactive oxygen species, as well as increased sensitivity to inhibitors of the tricarboxylic acid (TCA) cycle, including nitric oxide. These results suggest that hardwired sugar addiction of Leishmania amastigotes contributes to the intrinsic resistance of this stage to macrophage microbicidal processes in vivo, and that these stages have limited capacity to switch to using other carbon sources.  相似文献   

4.
Living in a phagolysosome; metabolism of Leishmania amastigotes   总被引:2,自引:0,他引:2  
Leishmania amastigotes primarily proliferate within macrophages in the mammalian host. Genome-based metabolic reconstructions, combined with biochemical, reverse genetic and mRNA or protein profiling studies are providing new insights into the metabolism of this intracellular stage. We propose that the complex nutritional requirements of amastigotes have contributed to the tropism of these parasites for the amino acid-rich phagolysosome of macrophages. Amastigote metabolism in this compartment is robust because many metabolic mutants are capable of either growing normally or persisting long term in susceptible animals. New approaches for measuring amastigote metabolism in vivo are discussed.  相似文献   

5.
Leishmania parasites must adapt to elevated temperatures and other environmental stresses during infection of their mammalian hosts. How these environmental cues are sensed is poorly understood. In this study we show that calcium uptake is required for parasite thermotolerance at 34-37°C. To identify potential downstream targets of calcium influx, a Leishmania major mutant lacking the essential regulatory subunit (CnB) of the Ca(2+) /calmodulin-dependent serine/threonine-specific phosphatase, calcineurin, was generated. The Δcnb mutant grew as well as wild-type parasites at 27°C and differentiated normally to infective metacyclic promastigotes. However, Δcnb parasites lost viability when exposed to increased temperature (34°C) and were hypersensitive to endoplasmic reticulum and membrane stress, induced by tunicamycin and inhibitors of sterol and sphingolipid biosynthesis respectively. Δcnb promastigotes were internalized by macrophages, but their differentiation to the heat adapted amastigote stage was delayed and the resulting parasites failed to proliferate. Strikingly, the Δcnb parasites were completely cleared by susceptible BALB/c mice. Complementation of Δcnb parasites with CnB restored thermotolerance and infectivity in both macrophages and animal models. Our results suggest that Ca(2+) influx and calcineurin signalling are required for both early and long-term adaptive parasite responses to environmental stresses encountered in the mammalian host.  相似文献   

6.
The obligatory aerobic acetic acid bacterium Gluconobacter oxydans 621H oxidizes sugars and sugar alcohols primarily in the periplasm, and only a small fraction is metabolized in the cytoplasm. The latter can occur either via the Entner-Doudoroff pathway (EDP) or via the pentose phosphate pathway (PPP). The Embden-Meyerhof pathway is nonfunctional, and a cyclic operation of the tricarboxylic acid cycle is prevented by the absence of succinate dehydrogenase. In this work, the cytoplasmic catabolism of fructose formed by oxidation of mannitol was analyzed with a Δgnd mutant lacking the oxidative PPP and a Δedd Δeda mutant devoid of the EDP. The growth characteristics of the two mutants under controlled conditions with mannitol as the carbon source and enzyme activities showed that the PPP is the main route for cytoplasmic fructose catabolism, whereas the EDP is dispensable and even unfavorable. The Δedd Δeda mutant (lacking 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase) formed 24% more cell mass than the reference strain. In contrast, deletion of gnd (6-phosphogluconate dehydrogenase) severely inhibited growth and caused a strong selection pressure for secondary mutations inactivating glucose-6-phosphate dehydrogenase, thus preventing fructose catabolism via the EDP also. These Δgnd zwf* mutants (with a mutation in the zwf gene causing inactivation of the glucose-6-phosphate dehydrogenase) were almost totally disabled in fructose catabolism but still produced about 14% of the carbon dioxide of the reference strain, possibly by catabolizing substrates from the yeast extract. Overexpression of gnd in the reference strain improved biomass formation in a similar manner as deletion of edd and eda, further confirming the importance of the PPP for cytoplasmic fructose catabolism.  相似文献   

7.
Harmane, harmine, and harmaline were investigated for their in vitro antileishmanial activity toward parasites of the species Leishmania infantum. Harmane and Harmine displayed a moderate antiproliferative activity toward human monocytes and exerted a weak antileishmanial activity toward both the promastigote and the amastigote forms of the parasite. Their mechanism of action on the promastigote form of the parasite involved interactions with DNA metabolism leading to an accumulation of parasites in the S-G(2)M phases of the cell-cycle. Harmaline, at the contrary, was deprived from toxicity toward human cells and Leishmania promastigotes, however it exerted a strong antileishmanial activity toward the intracellular amastigote form of the parasite. This property was shown to partly result from the capacity of the molecule to prevent parasite internalization within macrophages by inhibiting Leishmania PKC activity.  相似文献   

8.
Protozoan parasites of the genus Leishmania are important human pathogens that differentiate inside host macrophages into an amastigote life cycle stage. Although this stage causes the pathogenesis of leishmaniasis, only few proteins have been implicated in amastigote intracellular survival. Here we compare morphology, infectivity and protein expression of L. donovani LD1S grown in host free (axenic) culture, or exclusively propagated in infected hamsters, with the aim to reveal parasite traits absent in axenic but selected for in hamster-derived amastigotes through leishmanicidal host activities. Axenic and splenic amastigotes showed a striking difference in virulence and the ability to cause experimental hepato-splenomegaly in infected hamsters. 2D-DIGE analysis revealed statistically significant differences in abundance for 152 spots, with 14 spots showing fivefold or higher abundance in splenic amastigotes. Proteins identified by MS analysis include the anti-oxidant enzyme tryparedoxin peroxidase, and enzymes implicated in protein and amino acid metabolism. Analysis of parasite growth in vitro in minimal medium demonstrated increased survival of hamster-derived compared with axenic parasites under conditions that mimic the nutrient poor, cytotoxic phagolysosome. Thus, our comparative proteomics analysis sheds important new light on the biochemistry of bona fide amastigotes and informs on survival factors relevant for intracellular L. donovani infection.  相似文献   

9.
Gluconate-6-phosphate dehydrogenase (GND) is genetically determined in Salmonella typhimurium by a locus (gnd) mapping between the somatic antigen (rfb) and histidine (his) operons. The enzyme is constitutive. Strains of Salmonella carrying an F' genetic element which contains the gnd(+) gene have GND activity two to three times that of the wild type. This gene dosage effect was used to determine that the GND reaction is not rate-limiting for the metabolism of glucose by the pentose shunt in S. typhimurium.  相似文献   

10.
Protozoan parasites of the Leishmania genus express the metabolic machinery to synthesize pyrimidine nucleotides via both de novo and salvage pathways. To evaluate the relative contributions of pyrimidine biosynthesis and salvage to pyrimidine homeostasis in both life cycle stages of Leishmania donovani, individual mutant lines deficient in either carbamoyl phosphate synthetase (CPS), the first enzyme in pyrimidine biosynthesis, uracil phosphoribosyltransferase (UPRT), a salvage enzyme, or both CPS and UPRT were constructed. The Δcps lesion conferred pyrimidine auxotrophy and a growth requirement for medium supplementation with one of a plethora of pyrimidine nucleosides or nucleobases, although only dihydroorotate or orotate could circumvent the pyrimidine auxotrophy of the Δcps/Δuprt double knockout. The Δuprt null mutant was prototrophic for pyrimidines but could not salvage uracil or any pyrimidine nucleoside. The capability of the Δcps parasites to infect mice was somewhat diminished but still robust, indicating active pyrimidine salvage by the amastigote form of the parasite, but the Δcps/Δuprt mutant was completely attenuated with no persistent parasites detected after a 4-week infection. Complementation of the Δcps/Δuprt clone with either CPS or UPRT restored infectivity. These data establish that an intact pyrimidine biosynthesis pathway is essential for the growth of the promastigote form of L. donovani in culture, that all uracil and pyrimidine nucleoside salvage in the parasite is mediated by UPRT, and that both the biosynthetic and salvage pathways contribute to a robust infection of the mammalian host by the amastigote. These findings impact potential therapeutic design and vaccine strategies for visceral leishmaniasis.  相似文献   

11.
Leishmania parasites alternate between extracellular promastigotes in sandflies and intracellular amastigotes in mammals. These protozoans acquire sphingolipids (SLs) through de novo synthesis (to produce inositol phosphorylceramide) and salvage (to obtain sphingomyelin from the host). A single ISCL (Inositol phosphoSphingolipid phospholipase C-Like) enzyme is responsible for the degradation of both inositol phosphorylceramide (the IPC hydrolase or IPCase activity) and sphingomyelin (the SMase activity). Recent studies of a L. major ISCL-null mutant (iscl(-)) indicate that SL degradation is required for promastigote survival in stationary phase, especially under acidic pH. ISCL is also essential for L. major proliferation in mammals. To further understand the role of ISCL in Leishmania growth and virulence, we introduced a sole IPCase or a sole SMase into the iscl(-) mutant. Results showed that restoration of IPCase only complemented the acid resistance defect in iscl(-) promastigotes and improved their survival in macrophages, but failed to recover virulence in mice. In contrast, a sole SMase fully restored parasite infectivity in mice but was unable to reverse the promastigote defects in iscl(-). These findings suggest that SL degradation in Leishmania possesses separate roles in different stages: while the IPCase activity is important for promastigote survival and acid tolerance, the SMase activity is required for amastigote proliferation in mammals. Consistent with these findings, ISCL was preferentially expressed in stationary phase promastigotes and amastigotes. Together, our results indicate that SL degradation by Leishmania is critical for parasites to establish and sustain infection in the mammalian host.  相似文献   

12.
Clearance of pathogens by phagocytosis and their killing in phagolysosomes is a key aspect of our innate ability to fight infectious agents. Leishmania parasites have evolved ways to survive and replicate in macrophages by inhibiting phagosome maturation and avoiding the harsh environment of phagolysosomes. We describe here that during this process Leishmania donovani uses a novel strategy involving its surface lipophosphoglycan (LPG), a virulence factor impeding many host functions, to prevent the formation or disrupt lipid microdomains on the phagosome membrane. LPG acts locally on the membrane and requires its repetitive carbohydrate moieties to alter the organization of microdomains. Targeting and disruption of functional foci, where proteins involved in key aspects of phagolysosome biogenesis assemble, is likely to confer a survival advantage to the parasite.  相似文献   

13.
Leishmaniasis is a vector‐borne infectious disease with a wide range of pathologies depending on the species of Leishmania. Leishmania parasites are transmitted by the sand fly vector as promastigotes; within the mammalian host, Leishmania parasites differentiate into amastigotes and replicate in macrophages. The A2 protein from Leishmania donovani is expressed predominantly in amastigotes and therefore likely plays a role in survival in the mammalian host. In the present study, we have determined that the A2 protein colocalized with the Leishmania endoplasmic reticulum binding protein, BiP, was induced by stress and complexed with BiP following heat shock. The A2 gene in Leishmania major is a non‐expressed pseudogene, and we present evidence that ectopic expression of a transfected A2 gene in L. major enhanced its viability following heat shock. A2 may therefore play a role in protecting L. donovani from stress associated with infection in visceral organs, including the fever typically associated with visceral leishmaniasis. Interestingly, when comparing A2 protein localization, we also observed that the Leishmania secreted acid phosphatase SAcP protein was transported out of the parasite‐containing phagolysosome and was located throughout the macrophage cytoplasm in vesicles, providing the first example of a secreted Leishmania‐derived protein exiting the parasite‐containing phagolysosome.  相似文献   

14.
A glucose transporter null mutant of the parasitic protozoan Leishmania mexicana , in which three linked glucose transporter genes have been deleted by targeted gene replacement, is unable to replicate as amastigote forms within phagolysomes of mammalian host macrophages and is avirulent. Spontaneous suppressors of the null mutant have been isolated that partially restore replication of parasites within macrophages. These suppressor mutants have amplified the gene for an alternative hexose transporter, the LmGT4 permease (previously called the D2 permease), on a circular extrachromosomal element, and they overexpress LmGT4 mRNA and protein. The suppressors have also regained the ability to transport hexoses, and they have reverted other phenotypes of the null mutant exhibiting enhanced resistance to oxidative killing, heat shock and starvation for nutrients, as well as augmented levels of the storage carbohydrate β-mannan, increased cell size and increased growth as insect stage promastigotes compared with the unsuppressed mutant. Complementation of the null mutant with the LmGT4 gene on a multicopy episomal expression vector also reverted these phenotypes, confirming that suppression results from amplification of the LmGT4 gene. These results underscore the importance of hexose transporters for the infectious stage of the parasite life cycle.  相似文献   

15.

Background  

Leishmania spp., in the course of their parasitic life cycle, encounter two vastly different environments: the gut of sandflies and the phagosomes of mammalian macrophages. During transmission into a mammal, the parasites are exposed to increased ambient temperature as well as to different carbon sources. Molecular chaperones or heat shock proteins are implicated in the necessary adaptations which involve the ordered differentiation from the flagellated, extracellular promastigote to the intracellular amastigote stage.  相似文献   

16.
Leishmania pathogenesis is primarily studied using the disease-inducing promastigote stage of Leishmania major. Despite many efforts, all attempts so far have failed to culture the disease-relevant multiplying amastigote stage of L. major. Here, we established a stably growing axenic L. major amastigote culture system that was characterized genetically, morphologically, and by stage-specific DsRed protein expression. We found parasite stage-specific disease development in resistant C57BL/6 mice. Human neutrophils, as first host cells for promastigotes, do not take up amastigotes. In human macrophages, we observed an amastigote-specific complement receptor 3-mediated, endocytotic entry mechanism, whereas promastigotes are taken up by complement receptor 1-mediated phagocytosis. Promastigote infection of macrophages induced the inflammatory mediators TNF, CCL3, and CCL4, whereas amastigote infection was silent and resulted in significantly increased parasite numbers: from 7.1 ± 1.4 (after 3 h) to 20.1 ± 7.9 parasites/cell (after 96 h). Our study identifies Leishmania stage-specific disease development, host cell preference, entry mechanism, and immune evasion. Since the amastigote stage is the disease-propagating form found in the infected mammalian host, the newly developed L. major axenic cultures will serve as an important tool in better understanding the amastigote-driven immune response in leishmaniasis.  相似文献   

17.
Protozoan parasites belonging to the genus Leishmania exhibit a pronounced tropism for macrophages although they have the capacity to infect a variety of other phagocytic and non-phagocytic mammalian cells. Unlike most other intramacrophage pathogens, the major proliferative stage of Leishmania resides in the mature phagolysosomes of these host cells. In this review we highlight some of the strategies utilized by the intracellular amastigote stage of Leishmania to survive in this compartment. Remarkably, and in contrast to many other intracellular pathogens, Leishmania amastigotes have a minimalist surface glycocalyx which may facilitate uptake of essential lipids and promote exposure of phospholipids required for phagocytosis via macrophage apoptotic cell receptors. Leishmania amastigotes also differ from many other intracellular pathogens in having complex nutritional requirements which must be scavenged from the host cell. Amino acids and polyamines appear to be important carbon sources and growth-limiting nutrients, respectively, and their availability to intracellular amastigotes may be regulated by the activation state of host macrophages. Metabolic processes in both the parasite and host cell may thus be crucial determinants of disease outcome.  相似文献   

18.
The ability to manipulate the Leishmania genome to create genetically modified parasites by introducing or eliminating genes is considered a powerful alternative for developing a new generation vaccine against leishmaniasis. Previously, we showed that the deletion of one allele of the Leishmania infantum silent information regulatory 2 (LiSIR2) locus was sufficient to dramatically affect amastigote axenic proliferation. Furthermore, LiSIR2 single knockout (LiSIR2(+/-)) amastigotes were unable to replicate in vitro inside macrophages. Because this L. infantum mutant persisted in BALB/c mice for up to 6 wk but failed to establish an infection, we tested its ability to provide protection toward a virulent L. infantum challenge. Strikingly, vaccination with a single i.p. injection of LiSIR2(+/-) single knockout elicits complete protection. Thus, vaccinated BALB/c mice showed a reversal of T cell anergy with specific anti-Leishmania cytotoxic activity and high levels of NO production. Moreover, vaccinated mice simultaneously generated specific anti-Leishmania IgG Ab subclasses suggestive of both type 1 and type 2 responses. A strong correlation was found between the elimination of the parasites and an increased Leishmania-specific IFN-gamma/IL-10 ratio. Therefore, we propose that the polarization to a high IFN-gamma/low IL-10 ratio after challenge is a clear indicator of vaccine success. Furthermore these mutants, which presented attenuated virulence, represent a good model to understand the correlatives of protection in visceral leishmaniasis.  相似文献   

19.
Three of the major biochemical pathways implicated in the pathogenesis of hyperglycemia induced vascular damage (the hexosamine pathway, the advanced glycation end product (AGE) formation pathway and the diacylglycerol (DAG)-protein kinase C (PKC) pathway) are activated by increased availability of the glycolytic metabolites glyceraldehyde-3-phosphate and fructose-6-phosphate. We have discovered that the lipid-soluble thiamine derivative benfotiamine can inhibit these three pathways, as well as hyperglycemia-associated NF-kappaB activation, by activating the pentose phosphate pathway enzyme transketolase, which converts glyceraldehyde-3-phosphate and fructose-6-phosphate into pentose-5-phosphates and other sugars. In retinas of diabetic animals, benfotiamine treatment inhibited these three pathways and NF-kappaB activation by activating transketolase, and also prevented experimental diabetic retinopathy. The ability of benfotiamine to inhibit three major pathways simultaneously might be clinically useful in preventing the development and progression of diabetic complications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号