首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
2.
Leishmania braziliensis M2903 contains a highly amplified small chromosome. This work is aimed at resolving its structural organization and determining whether this unusual chromosome contains specific genes encoding proteins with important functions in disease pathology or drug resistance. Our results show that the M2903 250-kb small chromosome contains LD1 sequences and has an inverted repeat structure. The LD1 sequences and two cDNAs (cDNA2 and cDNA53) were mapped on a cosmid contig, and the two cDNAs and the corresponding genomic fragments from the small chromosome were sequenced. The gene encoding cDNA2 predicts a putative GTP-binding protein with homology to other GTP-binding proteins only in the G-1 domain region; however, four other conserved motifs can be recognized. Sequence similarity to cDNA53 is located in at least five chromosomes, and its small chromosome copy is a pseudogene. An open reading frame downstream of the cDNA53 pseudogene predicts another GTP-binding protein that belongs to a new G-protein family with an unusual conserved GTP-binding domain and a newly characterized conserved sequence motif. A portion of this GTP-binding protein gene was studied previously in L. aethiopica as a recombinant antigen that reacts with human antibodies.  相似文献   

3.
4.
QM, a novel gene that was originally identified as a tumor suppressor, has been cloned from species encompassing members of higher vertebrate, plant and fungal kingdoms, but it is not well documented in fish. In present study, a gene homologous to QM was obtained from grass carp (Ctenopharyngodon idellus) head kidney and spleen cDNA library. The full-length grass carp QM (GcQM) cDNA of 759 bp contains a short 5' UTR of 22 bp, a 3' UTR of 89 bp and an open reading frame of 648 nucleotides that translates into a 215-amino acid peptide with a molecular weight of 24.5 kDa. The predicted GcQM contains a series of functional motifs that belong to the QM family signature conserved among different species. Multiple alignment analysis reveals that GcQM shares an overall identity of 62.4% approximately 97.7% with other members of QM family. The fish QM has a closest genetic relationship to chicken homologue Jif-1. The GcQM expresses constitutively in spleen, heart and brain, and significantly up-regulated by Aeromonas hydrophila and grass carp haemorrhagic virus (GCHV) in head kidney, spleen and liver. The results suggest that grass carp QM homolog is an inflammatory stress inducible gene associated with anti-bacterial and viral defense, and it plays an important role in immune defense.  相似文献   

5.
Wang D  Guo M  Liang Z  Fan J  Zhu Z  Zang J  Zhu Z  Li X  Teng M  Niu L  Dong Y  Liu P 《The Journal of biological chemistry》2005,280(24):22962-22967
Vacuolar protein sorting protein 29 (Vps29p), which is involved in retrograde trafficking from prevacuolar endosomes to the trans-Golgi network, performs its biological functions by participating in the formation of a "retromer complex." In human cells, this complex comprises four conserved proteins: hVps35p, hVps29p, hVps26p, and sorting nexin 1 protein (SNX1). Here, we report the crystal structure of hVps29p at 2.1 Angstroms resolution, the first three-dimensional structure of the retromer subunits. This novel structure adopts a four-layered alpha-beta-beta-alpha sandwich fold. hVps29p contains a metal-binding site that is very similar to the active sites of some proteins of the phosphodiesterase/nuclease protein family, indicating that hVps29p may carry out chemically similar functions. Structure and sequence conservation analysis suggests that hVps29p contains two protein-protein interaction sites. One site, which potentially serves as the interface between hVps29p and hVps35p, comprises 5 conserved hydrophobic and 8 hydrophilic residues. The other site is relatively more hydrophilic and may serve as a binding interface with hVps26p, SNX1, or other target proteins.  相似文献   

6.
采用同源克隆和RACE法克隆获得喜盐鸢尾(Iris halophila Pall.)Na+/H+逆转运蛋白基因IhNHX1的全长序列,该基因序列的全长为1 946 bp,包含1个长度为1 611 bp的开放阅读框(ORF),编码537个氨基酸。序列对比及系统树分析结果表明:IhNHX1基因编码的氨基酸序列与另外11种植物NHX1基因编码的氨基酸序列的一致性高达96.2%,相同序列占61.7%,表明该氨基酸序列保守性较高;在系统树上喜盐鸢尾与其他植物的分支长均大于1.2,表明它们的亲缘关系均较远;IhNHX1基因编码的氨基酸序列含有2个保守结构域,即氨氯吡嗪结合位点和CaM结合结构域,分别是NHX1蛋白的标志性结合位点和重要调节区域。该蛋白质的二级结构和跨膜结构域分析结果表明:在IhNHX1基因编码的蛋白质的二级结构中,α螺旋占48.60%、不规则卷曲占32.03%、延伸链占14.71%、氢键转角占4.66%;该蛋白质含有10个跨膜结构域。此外,对5’RACE方法中5’端正向引物的优化设计步骤进行了归纳,以提高PCR扩增的特异性。  相似文献   

7.
8.
The sequence of the ubiquitin protein is highly conserved between species and has facilitated the cloning of numerous ubiquitin-like proteins. In the present study, we report the cloning of the cDNA for human ubiquilin 3 (UBQLN3). The deduced amino acid sequence of UBQLN3 contains a UBQ domain (ubiquitin-like) in the amino terminus as well as two highly conserved domains found in several recently cloned ubiquitin-like proteins. One of these domains, termed the NP domain, is a highly conserved 93 amino acid region present in UBQLN3 and several ubiquitin-like proteins. The last conserved domain is the UBA domain (ubiquitin-associated) found in a variety of proteins of the ubiquination pathway. The human UBQLN3 gene was mapped to the 11p15 region of chromosome 11. Northern blot analysis of multiple human and mouse tissues demonstrated UBQLN3 mRNA expression specifically in testis.  相似文献   

9.
Crystal structure of the PH-BEACH domains of human LRBA/BGL   总被引:1,自引:0,他引:1  
Gebauer D  Li J  Jogl G  Shen Y  Myszka DG  Tong L 《Biochemistry》2004,43(47):14873-14880
The beige and Chediak-Higashi syndrome (BEACH) domain defines a large family of eukaryotic proteins that have diverse cellular functions in vesicle trafficking, membrane dynamics, and receptor signaling. The domain is the only module that is highly conserved among all of these proteins, but the exact functions of this domain and the molecular basis for its actions are currently unknown. Our previous studies showed that the BEACH domain is preceded by a novel, weakly conserved pleckstrin homology (PH) domain. We report here the crystal structure at 2.4 A resolution of the PH-BEACH domain of human LRBA/BGL. The PH domain has the same backbone fold as canonical PH domains, despite sharing no sequence homology with them. However, our binding assays demonstrate that the PH domain in the BEACH proteins cannot bind phospholipids. The BEACH domain contains a core of several partially extended peptide segments that is flanked by helices on both sides. The structure suggests intimate association between the PH and the BEACH domains, and surface plasmon resonance studies confirm that the two domains of the protein FAN have high affinity for each other, with a K(d) of 120 nM.  相似文献   

10.
Using computer methods for multiple alignment, sequence motif search, and tertiary structure modeling, we show that eukaryotic translation elongation factor 1γ (EF1γ) contains an N-terminal domain related to class θ glutathione S-transferases (GST). GST-like proteins related to class θ comprise a large group including, in addition to typical GSTs and EF1γ, stress-induced proteins from bacteria and plants, bacterial reductive dehalogenases and β-etherases, and several uncharacterized proteins. These proteins share 2 conserved sequence motifs with GSTs of other classes (α, μ, and π). Tertiary structure modeling showed that in spite of the relatively low sequence similarity, the GST-related domain of EF1γ is likely to form a fold very similar to that in the known structures of class α, μ, and π GSTs. One of the conserved motifs is implicated in glutathione binding, whereas the other motif probably is involved in maintaining the proper conformation of the GST domain. We predict that the GST-like domain in EF1γ is enzymatically active and that to exhibit GST activity, EF1γ has to form homodimers. The GST activity may be involved in the regulation of the assembly of multisubunit complexes containing EF1 and aminoacyl-tRNA synthetases by shifting the balance between glutathione, disulfide glutathione, thiol groups of cysteines, and protein disulfide bonds. The GST domain is a widespread, conserved enzymatic module that may be covalently or noncovalently complexed with other proteins. Regulation of protein assembly and folding may be 1 of the functions of GST.  相似文献   

11.
The PAS domain is a versatile protein fold found in many archaeal, bacterial, and plant proteins capable of sensing environmental changes in light intensity, oxygen concentration, and redox potentials. The oxygen sensor FixL from Rhizobium species contains a heme-bearing PAS domain and a histidine kinase domain that couples sensing to signaling. We identified a novel mammalian PAS protein (PASKIN) containing a domain architecture resembling FixL. PASKIN is encoded by an evolutionarily conserved single-copy gene which is ubiquitously expressed. The human PASKIN and mouse Paskin genes show a conserved intron-exon structure and share their promoter regions with another ubiquitously expressed gene that encodes a regulator of protein phosphatase-1. The 144-kDa PASKIN protein contains a PAS region homologous to the FixL PAS domain and a serine/threonine kinase domain which might be involved in signaling. Thus, PASKIN is likely to function as a mammalian PAS sensor protein.  相似文献   

12.
The removal of the 5′ cap structure by the DCP1–DCP2 decapping complex irreversibly commits eukaryotic mRNAs to degradation. In human cells, the interaction between DCP1 and DCP2 is bridged by the Ge-1 protein. Ge-1 contains an N-terminal WD40-repeat domain connected by a low-complexity region to a conserved C-terminal domain. It was reported that the C-terminal domain interacts with DCP2 and mediates Ge-1 oligomerization and P-body localization. To understand the molecular basis for these functions, we determined the three-dimensional crystal structure of the most conserved region of the Drosophila melanogaster Ge-1 C-terminal domain. The region adopts an all α-helical fold related to ARM- and HEAT-repeat proteins. Using structure-based mutants we identified an invariant surface residue affecting P-body localization. The conservation of critical surface and structural residues suggests that the C-terminal region adopts a similar fold with conserved functions in all members of the Ge-1 protein family.  相似文献   

13.
PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence‐structure‐dynamics‐function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence‐conserved residues and build phylogenetic tree. Three‐dimensional structure alignment was also applied to obtain structure‐conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics.  相似文献   

14.
Zhang WX  Yang SY 《Genomics》2000,70(1):41-48
The T-box is a strongly conserved protein domain, 174 to 186 amino acids in length, that binds DNA. Many genes from many species have been shown to encode T-box domain-containing proteins. Here we report the cloning and characterization of a novel T-box gene, TBX21. The human cDNA contains an open reading frame encoding a 535-amino-acid protein with a predicted molecular mass of 58.3 kDa. Except for the T-box sequence, database searches revealed no significant homology to any known sequences at the nucleotide or protein level. In addition to the human cDNA sequence, we report the cDNA sequence of the murine homologue, the structure and organization of the murine Tbx21 gene, and its localization to mouse chromosome 11. TBX21 expression was detected in peripheral blood lymphocytes, spleen, lung, and natural killer cells.  相似文献   

15.
Functional annotation of uncharacterized genes is the main focus of computational methods in the post genomic era. These tools search for similarity between proteins on the premise that those sharing sequence or structural motifs usually perform related functions, and are thus particularly useful for membrane proteins. Early responsive to dehydration (ERD) genes are rapidly induced in response to dehydration stress in a variety of plant species. In the present work we characterized function of Brassica juncea ERD4 gene using computational approaches. The ERD4 protein of unknown function possesses ubiquitous DUF221 domain (residues 312-634) and is conserved in all plant species. We suggest that the protein is localized in chloroplast membrane with at least nine transmembrane helices. We detected a globular domain of 165 amino acid residues (183-347) in plant ERD4 proteins and expect this to be posited inside the chloroplast. The structural-functional annotation of the globular domain was arrived at using fold recognition methods, which suggested in its sequence presence of two tandem RNA-recognition motif (RRM) domains each folded into βαββαβ topology. The structure based sequence alignment with the known RNA-binding proteins revealed conservation of two non-canonical ribonucleoprotein sub-motifs in both the putative RNA-recognition domains of the ERD4 protein. The function of highly conserved ERD4 protein may thus be associated with its RNA-binding ability during the stress response. This is the first functional annotation of ERD4 family of proteins that can be useful in designing experiments to unravel crucial aspects of stress tolerance mechanism.  相似文献   

16.
In mitogenically stimulated cells, a specific complex forms between the Ras GTPase-activating protein (RasGAP) and the cellular protein p190. We have previously reported that p190 contains a carboxy-terminal domain that functions as a GAP for the Rho family GTPases. Thus, the RasGAP-p190 complex may serve to couple Ras- and Rho-mediated signalling pathways. In addition to its RhoGAP domain, p190 contains an amino-terminal domain that contains sequence motifs found in all known GTPases. Here, we report that p190 binds GTP and GDP through this conserved domain and that the structural requirements for binding are similar to those seen with other GTPases. While the purified protein is unable to hydrolyze GTP, we detect an activity in cell lysates that can promote GTP hydrolysis by p190. A mutated form of p190 that fails to bind nucleotide retains its RasGAP binding and RhoGAP activities, indicating that GTP binding by p190 is not required for these functions. The sequence of p190 in the GTP-binding domain, which shares structural features with both the Ras-like small GTPases and the larger G proteins, suggests that this protein defines a novel class of guanine nucleotide-binding proteins.  相似文献   

17.
Nodulation formation efficiency D (NfeD) is a member of a class of membrane-anchored ClpP-class proteases. There is a second class of NfeD homologs that lack the ClpP domain. The genes of both NfeD classes usually are part of an operon that also contains a gene for a prokaryotic homolog of stomatin. (Stomatin is a major integral-membrane protein of mammalian erythrocytes.) Such NfeD/stomatin homolog gene pairs are present in more than 290 bacterial and archaeal genomes, and their protein products may be part of the machinery used for quality control of membrane proteins. Herein, we report the structure of the isolated C-terminal domain of PH0471, a Pyrococcus horikoshii NfeD homolog, which lacks the ClpP domain. This C-terminal domain (termed NfeDC) contains a five-strand beta-barrel, which is structurally very similar to the OB-fold (oligosaccharide/oligonucleotide-binding fold) domain. However, there is little sequence similarity between it and previously characterized OB-fold domains. The NfeDC domain lacks the conserved surface residues that are necessary for the binding of an OB-fold domain to DNA/RNA, an ion. Instead, its surface is composed of residues that are uniquely conserved in NfeD homologs and that form the structurally conserved surface turns and beta-bulges. There is also a conserved tryptophan present on the surface. We propose that, in general, NfeDC domains may interact with other spatially proximal membrane proteins and thereby regulate their activities.  相似文献   

18.
We describe the three-dimensional structure of the product of Arabidopsis thaliana gene At5g66040.1 as determined by NMR spectroscopy. This protein is categorized as single-domain sulfurtransferase and is annotated as a senescence-associated protein (sen1-like protein) and ketoconazole resistance protein (http://arabidopsis.org/info/genefamily/STR_genefamily.html). The sequence of At5g66040.1 is virtually identical to that of a protein from Arabidopsis found by others to confer ketoconazole resistance in yeast. Comparison of the three-dimensional structure with those in the Protein Data Bank revealed that At5g66040.1 contains an additional mobile beta-hairpin not found in other rhodaneses that may function in binding specific substrates. This represents the first structure of a single-domain plant sulfurtransferase. The enzymatically active cysteine-containing domain belongs to the CDC25 class of phosphatases, sulfide dehydrogenases, and stress proteins such as senescence specific protein 1 in plants, PspE and GlpE in bacteria, and cyanide and arsenate resistance proteins. Versions of this domain that lack the active site cysteine are found in other proteins, such as phosphatases, ubiquitin hydrolases, and sulfuryltransferases.  相似文献   

19.
Tetraspanins are a superfamily of transmembrane proteins implicated in cellular development, motility, and activation through their interactions with a large range of proteins and with specific membrane microdomains. The complete three-dimensional structure of the tetraspanin CD81 has been predicted by molecular modeling and from the crystallographic structure of the EC2 large extracellular domain. Periodicity of sequence conservation, homology modeling, secondary structure prediction, and protein docking were used. The transmembrane domain appears organized as a four-stranded left-handed coiled coil directly connecting to two helices of the EC2. A smaller extracellular loop EC1 contains a small largely hydrophobic beta-strand that packs in a conserved hydrophobic groove of the EC2. The palmitoylable intracellular N-terminal segment forms an amphipathic membrane-parallel helix. Structural variability occurs mainly in an hypervariable subdomain of the EC2 and in intracellular regions. Therefore, the variable interaction selectivity of tetraspanins originates both from sequence variability within structurally conserved domains and from the occurrence of small structurally variable domains. In CD81 and other tetraspanins, the numerous membrane-exposed aromatic residues are asymmetrically clustered and protrude on one side of the transmembrane domain. This may represent a functional specialization of these two sides for interactions with cholesterol, proteins, or membrane microdomains.  相似文献   

20.
The previously identified dendritic cell-derived ubiquitin-like protein (DC-UbP) was implicated in cellular differentiation and apoptosis. Sequence alignment suggested that it contains a ubiquitin-like (UbL) domain in the C terminus. Here, we present the solution NMR structure and backbone dynamics of the UbL domain of DC-UbP. The overall structure of the domain is very similar to that of Ub despite low similarity (<30%) in amino-acid sequence. One distinct feature of the domain structure is its highly positively charged surface that is different from the corresponding surfaces of the well-known UbL modifiers, Ub, NEDD8, and SUMO-1. The key amino-acid residues responsible for guiding polyubiquitinated proteins to proteasome degradation in Ub are not conserved in the UbL domain. This implies that the UbL domain of DC-UbP may have its own specific interaction partners with other yet unknown cellular functions related to the Ub pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号