共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
N. N. Mordkovich T. A. Voeikova L. M. Novikova I. A. Smirnov V. K. Il’in P. E. Soldatov A. Yu. Tyurin-Kuz’min T. S. Smolenskaya V. P. Veiko R. S. Shakulov V. G. Debabov 《Microbiology》2013,82(4):404-409
An expression plasmid was constructed in order to carry out heterologous expression of the gene of the NAD+-dependent formate dehydrogenase (FDH) from methylotrophic bacterium Moraxella sp. in the cells of Shewanella oneidensis MR-1 under aerobic and anaerobic conditions. In both modes of cell cultivation, recombinant FDH activity was revealed in the cell lysate of the transformants. In the medium with la? tate as a carbon source, the rate of anaerobic respiration determined as the rate of conversion of fumarate (the electron acceptor) to succinate was higher in the transformant with recombinant FDH. Anaerobic cultivation of the FDH-containing transformant of S. oneidensis MR-1 in a microbial fuel cell (MFC) revealed increased current density. 相似文献
3.
Cr(VI) was added to early- and mid-log-phase Shewanella oneidensis (S. oneidensis) MR-1 cultures to study the physiological state-dependent toxicity of Cr(VI). Cr(VI) reduction and culture growth were measured during and after Cr(VI) reduction. Inhibition of growth was observed when Cr(VI) was added to cultures of MR-1 growing aerobically or anaerobically with fumarate as the terminal electron acceptor. Under anaerobic conditions, there was immediate cessation of growth upon addition of Cr(VI) in early- and mid-log-phase cultures. However, once Cr(VI) was reduced below detection limits (0.002 mM), the cultures resumed growth with normal cell yield values observed. In contrast to anaerobic MR-1 cultures, addition of Cr(VI) to aerobically growing cultures resulted in a gradual decrease of the growth rate. In addition, under aerobic conditions, lower cell yields were also observed with Cr(VI)-treated cultures when compared to cultures that were not exposed to Cr(VI). Differences in response to Cr(VI) between aerobically and anaerobically growing cultures indicate that Cr(VI) toxicity in MR-1 is dependent on the physiological growth condition of the culture. Cr(VI) reduction has been previously studied in Shewanella spp., and it has been proposed that Shewanella spp. may be used in Cr(VI) bioremediation systems. Studies of Shewanella spp. provide valuable information on the microbial physiology of dissimilatory metal reducing bacteria; however, our study indicates that S. oneidensis MR-1 is highly susceptible to growth inhibition by Cr(VI) toxicity, even at low concentrations [0.015 mM Cr(VI)]. 相似文献
4.
5.
Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis 下载免费PDF全文
Shewanella oneidensis is a metal reducer that can use several terminal electron acceptors for anaerobic respiration, including fumarate, nitrate, dimethyl sulfoxide (DMSO), trimethylamine N-oxide (TMAO), nitrite, and insoluble iron and manganese oxides. Two S. oneidensis mutants, SR-558 and SR-559, with Tn5 insertions in crp, were isolated and analyzed. Both mutants were deficient in Fe(III) and Mn(IV) reduction. They were also deficient in anaerobic growth with, and reduction of, nitrate, fumarate, and DMSO. Although nitrite reductase activity was not affected by the crp mutation, the mutants failed to grow with nitrite as a terminal electron acceptor. This growth deficiency may be due to the observed loss of cytochromes c in the mutants. In contrast, TMAO reduction and growth were not affected by loss of cyclic AMP (cAMP) receptor protein (CRP). Fumarate and Fe(III) reductase activities were induced in rich medium by the addition of cAMP to aerobically growing wild-type S. oneidensis. These results indicate that CRP and cAMP play a role in the regulation of anaerobic respiration, in addition to their known roles in catabolite repression and carbon source utilization in other bacteria. 相似文献
6.
The tetraheme c-type cytochrome, CymA, from Shewanella oneidensis MR-1 has previously been shown to be required for respiration with Fe(III), nitrate, and fumarate [Myers, C. R., and Myers, J. M. (1997) J. Bacteriol. 179, 1143-1152]. It is located in the cytoplasmic membrane where the bulk of the protein is exposed to the periplasm, enabling it to transfer electrons to a series of redox partners. We have expressed and purified a soluble derivative of CymA (CymA(sol)) that lacks the N-terminal membrane anchor. We show here, by direct measurements of electron transfer between the purified proteins, that CymA(sol) efficiently reduces S. oneidensis fumarate reductase. This indicates that no further proteins are required for electron transfer between the quinone pool and fumarate if we assume direct reduction of CymA by quinols. By expressing CymA(sol) in a mutant lacking CymA, we have shown that this soluble form of the protein can complement the defect in fumarate respiration. We also demonstrate that CymA is essential for growth with DMSO (dimethyl sulfoxide) and for reduction of nitrite, implicating CymA in at least five different electron transfer pathways in Shewanella. 相似文献
7.
Shewanella oneidensis is a model species for aquatic ecosystems and plays an important role in bioremediation, biofuel cell manufacturing and biogeochemical cycling. S. oneidensis MR-1 is able to generate hydrogen sulfide from various sulfur species; however, its catalytic kinetics have not been determined. In this study, five in-frame deletion mutants of S. oneidensis were constructed and their H2S-producing activities were analyzed. SirA and PsrA were the two major contributors to H2S generation under anoxic cultivation, and the optimum SO32− concentration for sulfite respiration was approximately 0.8 mM, while the optimum S2O32− concentration for thiosulfate respiration was approximately 0.4 mM. Sulfite and thiosulfate were observed to interfere with each other during respiration, and a high concentration of sulfite or thiosulfate chelated extracellular free-iron but did not repress the expression of sirA or psrA. Nitrite and nitrate were two preferred electron acceptors during anaerobic respiration; however, under energy-insufficient conditions, S. oneidensis could utilize multiple electron acceptors simultaneously. Elucidiating the stoichiometry of H2S production in S. oneidensis would be helpful for the application of this species in bioremediation and biofuel cell manufacturing, and would help to characterize the ecophysiology of sulfur cycling. 相似文献
8.
The effect of iron substrates and growth conditions on in vitro dissimilatory iron reduction by membrane fractions of Shewanella oneidensis MR-1 was characterized. Membrane fractions were separated by sucrose density gradients from cultures grown with O(2), fumarate, and aqueous ferric citrate as the terminal electron acceptor. Marker enzyme assays and two-dimensional gel electrophoresis demonstrated the high degree of separation between the outer and cytosolic membrane. Protein expression pattern was similar between chelated iron- and fumarate-grown cultures, but dissimilar for oxygen-grown cultures. Formate-dependent ferric reductase activity was assayed with citrate-Fe(3+), ferrozine-Fe(3+), and insoluble goethite as electron acceptors. No activity was detected in aerobic cultures. For fumarate and chelated iron-grown cells, the specific activity for the reduction of soluble iron was highest in the cytosolic membrane. The reduction of ferrozine-Fe(3+) was greater than the reduction of citrate-Fe(3+). With goethite, the specific activity was highest in the total membrane fraction (containing both cytosolic and outer membrane), indicating participation of the outer membrane components in electron flow. Heme protein content and specific activity for iron reduction was highest with chelated iron-grown cultures with no heme proteins in aerobically grown membrane fractions. Western blots showed that CymA, a heme protein involved in iron reduction, expression was also higher in iron-grown cultures compared to fumarate- or aerobic-grown cultures. To study these processes, it is important to use cultures grown with chelated Fe(3+) as the electron acceptor and to assay ferric reductase activity using goethite as the substrate. 相似文献
9.
Hui Wang Elon Correa Warwick B. Dunn Catherine L. Winder Royston Goodacre Jonathan R. Lloyd 《Metabolomics : Official journal of the Metabolomic Society》2013,9(3):642-656
This study investigated the physiological impact of changing electron donor–acceptor ratios on electron transfer pathways in the metabolically flexible subsurface bacterium Shewanella oneidensis, using batch and chemostat cultures, with an azo dye (ramazol black B) as the model electron acceptor. Altering the growth rate did result in changes in biomass yield, but not in other key physiological parameters including the total cytochrome content of the cells, the production of extracellular flavin redox shuttles or the potential of the organism to reduce the azo dye. Dramatic increases in the ability to reduce the dye were noted when cells were grown under conditions of electron acceptor (fumarate) limitation, although the yields of extracellular redox mediators (flavins) were similar under conditions of electron donor (lactate) or acceptor limitation. FT-IR spectroscopy confirmed shifts in the metabolic fingerprints of cells grown under these contrasting conditions, while spectrophotometric analyses supported a critical role for c-type cytochromes, expressed at maximal concentrations under conditions of electron acceptor limitation. Finally, key intracellular metabolites were quantified in batch experiments at various electron donor and acceptor ratios and analysed using discriminant analysis and a Bayesian network to construct a central metabolic pathway model for cells grown under conditions of electron donor or acceptor limitation. These results have identified key mechanisms involved in controlling electron transfer in Shewanella species, and have highlighted strategies to maximise reductive activity for a range of bioprocesses. 相似文献
10.
11.
Chemotactic responses to metals and anaerobic electron acceptors in Shewanella oneidensis MR-1 下载免费PDF全文
Although a previous study indicated that the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 lacks chemotactic responses to metals that can be used as anaerobic electron acceptors, new results show that this bacterium responds to both Mn(III) and Fe(III). Cells were also shown to respond to another unusual electron acceptor, the humic acid analog anthraquinone-2,6-disulfonate. These results indicate that S. oneidensis is capable of moving towards a number of unusual anaerobic electron acceptors, including some that would normally be insoluble in the environment. Additionally, S. oneidensis was shown to migrate in gradients of several divalent cations under anaerobic conditions. Although responses to the reduced forms of redox-active metals, such as Mn(II) and Fe(II), might indicate that S. oneidensis uses gradients of these metals to locate the insoluble electron acceptors Mn(III/IV) and Fe(III) for dissimilatory purposes, responses to non-redox-active metals, such as Zn(II), suggest that movement towards divalent cations might serve other, potentially assimilatory, purposes. 相似文献
12.
13.
G Sun E Sharkova R Chesnut S Birkey M F Duggan A Sorokin P Pujic S D Ehrlich F M Hulett 《Journal of bacteriology》1996,178(5):1374-1385
Two Bacillus subtilis genes, designated resD and resE, encode proteins that are similar to those of two-component signal transduction systems and play a regulatory role in respiration. The overlapping resD-resE genes are transcribed during vegetative growth from a very weak promoter directly upstream of resD. They are also part of a larger operon that includes three upstream genes, resABC (formerly orfX14, -15, and -16), the expression of which is strongly induced postexponentially. ResD is required for the expression of the following genes: resA, ctaA (required for heme A synthesis), and the petCBD operon (encoding subunits of the cytochrome bf complex). The resABC genes are essential genes which encode products with similarity to cytochrome c biogenesis proteins. resD null mutations are more deleterious to the cell than those of resE. resD mutant phenotypes, directly related to respiratory function, include streptomycin resistance, lack of production of aa3 or caa3 terminal oxidases, acid accumulation when grown with glucose as a carbon source, and loss of ability to grow anaerobically on a medium containing nitrate. A resD mutation also affected sporulation, carbon source utilization, and Pho regulon regulation. The data presented here support an activation role for ResD, and to a lesser extent ResE, in global regulation of aerobic and anaerobic respiration i B.subtilis. 相似文献
14.
15.
Pinchuk GE Geydebrekht OV Hill EA Reed JL Konopka AE Beliaev AS Fredrickson JK 《Applied and environmental microbiology》2011,77(23):8234-8240
Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of a wide range of electron acceptors. Here, we quantitatively assessed the lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor-limited growth on lactate with O(2), lactate with fumarate, and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensable for growth, the respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions, S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the tricarboxylic acid (TCA) cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under conditions of O(2) limitation but was required for anaerobic growth, likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as an electron donor and an electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by a recently described new type of oxidative NAD(P)H-independent d-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by the generation of proton motive force. 相似文献
16.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitramine explosive commonly used for military applications that is responsible for severe soil and groundwater contamination. In this study, Shewanella oneidensis MR-1 was shown to efficiently degrade RDX anaerobically (3.5?μmol·h(-1)·(g protein)(-1)) via two initial routes: (1) sequential N-NO(2) reductions to the corresponding nitroso (N-NO) derivatives (94% of initial RDX degradation) and (2) denitration followed by ring cleavage. To identify genes involved in the anaerobic metabolism of RDX, a library of ~2500 mutants of MR-1 was constructed by random transposon mutagenesis and screened for mutants with a reduced ability to degrade RDX compared with the wild type. An RDX-defective mutant (C9) was isolated that had the transposon inserted in the c-type cytochrome gene cymA. C9 transformed RDX at ~10% of the wild-type rate, with degradation occurring mostly via early ring cleavage caused by initial denitration leading to the formation of methylenedinitramine, 4-nitro-2,4-diazabutanal, formaldehyde, nitrous oxide, and ammonia. Genetic complementation of mutant C9 restored the wild-type phenotype, providing evidence that electron transport components have a role in the anaerobic reduction of RDX by MR-1. 相似文献
17.
18.
The availability of increasingly inexpensive sequencing combined with an ever‐expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next‐generation high‐throughput sequencing (Tn‐seq) promises to revolutionize systems level analysis of microbial metabolism. Tn‐seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non‐essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn‐seq to assess gene function in the Gram negative γ‐proteobacterium Shewanella oneidensis strain MR‐1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration. 相似文献
19.
20.
Alexander V. Bogachev Yulia V. Bertsova Dmitry A. Bloch Michael I. Verkhovsky 《Molecular microbiology》2012,86(6):1452-1463
Interpretation of the constantly expanding body of genomic information requires that the function of each gene be established. Here we report the genomic analysis and structural modelling of a previously uncharacterized redox‐metabolism protein UrdA (SO_4620) of Shewanella oneidensis MR‐1, which led to a discovery of the novel enzymatic activity, urocanate reductase. Further cloning and expression of urdA, as well as purification and biochemical study of the gene's product UrdA and redox titration of its prosthetic groups confirmed that the latter is indeed a flavin‐containing enzyme catalysing the unidirectional reaction of two‐electron reduction of urocanic acid to deamino‐histidine, an activity not reported earlier. UrdA exhibits both high substrate affinity and high turnover rate (Km << 10 μM, kcat = 360 s?1) and strong specificity in favour of urocanic acid. UrdA homologues are present in various bacterial genera, such as Shewanella, Fusobacterium and Clostridium, the latter including the human pathogen Clostridium tetani. The UrdA activity in S. oneidensis is induced by its substrate under anaerobic conditions and it enables anaerobic growth with urocanic acid as a sole terminal electron acceptor. The latter capability can provide the cells of UrdA‐containing bacteria with a niche where no other bacteria can compete and survive. 相似文献