首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell death can be a highly regulated process. A large and growing number of mammalian cell death mechanisms have been described over the past few decades. Major pathways with established roles in normal or disease biology include apoptosis, necroptosis, pyroptosis and ferroptosis. However, additional non-apoptotic cell death mechanisms with unique morphological, genetic, and biochemical features have also been described. These mechanisms may play highly specialized physiological roles or only become activated in response to specific lethal stimuli or conditions. Understanding the nature of these emerging and understudied mechanisms may provide new insight into cell death biology and suggest new treatments for diseases such as cancer and neurodegeneration.  相似文献   

2.
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death, which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insight into the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells.  相似文献   

3.
Sphingolipids and cell death   总被引:3,自引:0,他引:3  
Sphingolipids (SLs) have been considered for many years as predominant building blocks of biological membranes with key structural functions and little relevance in cellular signaling. However, this view has changed dramatically in recent years with the recognition that certain SLs such as ceramide, sphingosine 1-phosphate and gangliosides, participate actively in signal transduction pathways, regulating many different cell functions such as proliferation, differentiation, adhesion and cell death. In particular, ceramide has attracted considerable attention in cell biology and biophysics due to its key role in the modulation of membrane physical properties, signaling and cell death regulation. This latter function is largely exerted by the ability of ceramide to activate the major pathways governing cell death such as the endoplasmic reticulum and mitochondria. Overall, the evidence so far indicates a key function of SLs in disease pathogenesis and hence their regulation may be of potential therapeutic relevance in different pathologies including liver diseases, neurodegeneration and cancer biology and therapy.  相似文献   

4.
Neurodegeneration causes dysfunction and degeneration of neurons and is triggered by various factors including genetic defects, free radicals, injury, and glutamate excitotoxicity. Among those, glutamate excitotoxicity is implicated in chronic disorders including AD and ALS, and in acute insults in the CNS including traumatic brain injury. Neurological disorders show hallmark morphological abnormalities such as axon degeneration and cell body death. The molecular mechanisms underlying excitotoxicity-induced neurodegeneration are complex and deciphering a molecular mechanism from one angle is beneficial to understand the process, however, still difficult to develop strategies to suppress excitotoxicity-induced degeneration due to existence of other mechanisms. Thus, directly identifying compounds that can modulate excitotoxicity-induced neurodegeneration and subsequently clarifiying the molecular mechanism is a valid approach to develop effective strategies to suppress neurodegeneration. We searched for compounds that can suppress excitotoxicity-induced neurodegeneration and found that CP-31398, a known compound that can rescue the structure and function of the tumor suppressor protein p53 mutant form and stabilize the active conformation of the p53 wild-type form, suppresses excitotoxicity-induced axon degeneration and cell body death. Moreover, CP-31398 suppresses mitochondrial dysfunction which has a strong correlation with excitotoxicity. Thus, our findings identify a compound that can serve as a novel modulator of neurodegeneration induced by glutamate excitotoxicity.  相似文献   

5.
There are at least eight genetic entities known as the ceroid-lipofuscinoses in humans which share clinical and pathological features that have caused them to be grouped together under the eponym of Batten disease. They present pathologically as lysosomal storage diseases but are also characterised by severe neurodegeneration. Although the biochemical defects appear primarily centred on lysosomes and defects in proteolysis, the link between this and pathogenesis of neuronal death is poorly understood.The pathogenesis of neurodegeneration has been studied particularly in two animal models these being the English setter dog and the New Zealand Southhampshire sheep (OCL6). In these, and some of the human entities, there is evidence of mitochondrial dysfunction. This includes the accumulation of subunit c of ATP synthase as a component of storage material in at least six of eight genetic forms of the disease; structural abnormalities of mitochondria and selective loss of neurons in areas of the brain that are particularly metabolically active. Direct evidence of dysfunction comes from mitochondrial function tests in fibroblasts and, in animal models, isolated liver mitochondria. Supporting evidence of mitochondrial dysfunction was shown by disturbances in proportions of energy-rich phosphates in fibroblasts in some of these diseases. If these various defects were reflected in neurons, then it would support the hypothesis that neuron death was associated with energy-linked excitotoxicity.  相似文献   

6.
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insightinto the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
Interferon alpha (IFN-alpha) is used worldwide for the treatment of a variety of cancers. For pancreatic cancer, recent clinical trials using IFN-alpha in combination with standard chemotherapeutic drugs showed some antitumor activity of the cytokine, but the effect was not significant enough to enlist pancreatic cancer as a clinically effective target of IFN-alpha. In general, an improved therapeutic effect and safety are expected for cytokine therapy when given in a gene therapy context, because the technology would allow increased local concentrations of this cytokine in the target sites. In this study, we first examined the antiproliferative effect of IFN-alpha gene transduction into pancreatic cancer cells. The expression of IFN-alpha effectively induced growth suppression and cell death in pancreatic cancer cells, an effect which appeared to be more prominent when compared with other types of cancers and normal cells. Another strategy we have been developing for pancreatic cancer targets its characteristic genetic aberration, K-ras point mutation, and we reported that the expression of antisense K-ras RNA significantly suppressed the growth of pancreatic cancer cells. When these two gene therapy strategies are combined, the expression of antisense K-ras RNA significantly enhanced IFN-alpha-induced cell death (1.3- to 3.5-fold), and suppressed subcutaneous growth of pancreatic cancer cells in mice. Because the 2',5'-oligoadenylate synthetase/RNase L pathway, which is regulated by IFN and induces apoptosis of cells, is activated by double-strand RNA, it is plausible that the double-strand RNA formed by antisense and endogenous K-ras RNA enhanced the antitumor activity of IFN-alpha. This study suggested that the combination of IFN-alpha and antisense K-ras RNA is a promising gene therapy strategy against pancreatic cancer.  相似文献   

8.
Stem cells in the etiology and treatment of cancer   总被引:15,自引:0,他引:15  
Using approaches first applied in human leukemias, recent progress has been made in the identification of putative cancer stem cells in several different carcinomas and other solid cancers. Additional studies have suggested that cancer stem cells may be derived not only from transformation of quiescent, long-term stem cells but also from short-lived progenitors that then obtain the ability to undergo self-renewal. Therefore, the heterogeneity observed in many types of human cancers may reflect the activation of specific oncogenes and/or loss of specific tumor suppressor genes and the different stem and/or progenitor cell populations in which these genetic or epigenetic events occur. Similarities have been observed in the pathways regulating stem cell homing and metastasis, and increasing evidence also suggests that treatment failure and the recurrence of human cancer may reflect the intrinsic quiescence and drug resistance of cancer stem cells.  相似文献   

9.
Apoptosis in neurodegenerative diseases: the role of mitochondria   总被引:21,自引:0,他引:21  
Nerve cell death is the central feature of the human neurodegenerative diseases. It has long been thought that nerve cell death in these disorders occurs by way of necrosis, a process characterized by massive transmembrane ion currents, compromise of mitochondrial ATP production, and the formation of high levels of reactive oxygen species combining to induce rapid disruption of organelles, cell swelling, and plasma membrane rupture with a secondary inflammatory response. Nuclear DNA is relatively preserved. Recent evidence now indicates that the process of apoptosis rather than necrosis primarily contributes to nerve cell death in neurodegeneration. This has opened up new avenues for understanding the pathogenesis of neurodegeneration and may lead to new and more effective therapeutic approaches to these diseases.  相似文献   

10.
Once considered as a mere by-product of respiration, mitochondrial generation of reactive oxygen species (ROS) has recently emerged as a genetically controlled phenomenon, involved in complex intracellular signal transduction cascades that directly regulate cell survival and death in responses to environmental stressors. These cascades are involved in the pathogenesis of several major age-related diseases, such as cancer and neurodegeneration, and also appear to somehow regulate the "normal" ageing process. The present short review summarizes recent discoveries on mitochondrial reactive oxygen species regulation by p53, a tumor suppressor protein and p66shc, a protein implicated in the life-span determination. It also outlines the emerging network whereby these molecules cross-talk with each other and with the mitochondrial antioxidant system, namely MnSOD (SOD2), another life-span determining protein, to regulate oxidative stress in the organelle. This molecular circuit, which comprises two genetic determinants of longevity and a major tumor suppressor gene, also provides a theoretical framework connecting senescence and cancer.  相似文献   

11.
We investigated the mechanisms involved in the resistance to cell death observed in epithelial cancers. Here, we identify that primary epithelial cancer cells from colon, breast and lung carcinomas express high levels of the antiapoptotic proteins PED, cFLIP, Bcl-xL and Bcl-2. These cancer cells produced interleukin-4 (IL-4), which amplified the expression levels of these antiapoptotic proteins and prevented cell death induced upon exposure to TRAIL or other drug agents. IL-4 blockade resulted in a significant decrease in the growth rate of epithelial cancer cells and sensitized them, both in vitro and in vivo, to apoptosis induction by TRAIL and chemotherapy via downregulation of the antiapoptotic factors PED, cFLIP, Bcl-xL and Bcl-2. Furthermore, we provide evidence that exogenous IL-4 was able to upregulate the expression levels of these antiapoptotic proteins and potently stabilized the growth of normal epithelial cells rendering them apoptosis resistant. In conclusion, IL-4 acts as an autocrine survival factor in epithelial cells. Our results indicate that inhibition of IL-4/IL-4R signaling may serve as a novel treatment for epithelial cancers.  相似文献   

12.
A potential role for apoptosis in neurodegeneration and Alzheimer's disease   总被引:23,自引:0,他引:23  
Previous studies have shown that β-amyloid (Aβ) peptides are neurotoxic. Recent data suggest that neurons undergoing Aβ-induced cell death exhibit characteristics that correspond to the classical features of apoptosis, suggesting that these cells may initiate a program of cell death. This chapter explores the criteria and precautions that must be applied to evaluate mechanisms of cell death in vitro and in vivo, discusses the evidence supporting an apoptotic mechanism of cell death in response to Aβ in cultured neurons, and describes potential correlations for these findings in the Alzheimer's disease brain. In addition, cellular signaling pathways that may be associated with apoptosis in response to Aβ are examined, and support for apoptosis as a mechanism of cell death for other neurodegeneration-inducing stimuli (e.g., oxidative injury) is described. The connection of multiple stimuli that induce neuronal cell death to an apoptotic mechanism suggests that apoptosis could play a central role in neurodegeneration in the brain.  相似文献   

13.
Mammary cancer is among the most frequently observed canine tumors in unspayed female dogs resulting in death due to metastatic disease. These tumors are excellent models of human breast cancer but until recently there was only anecdotal evidence regarding underlying genetic defects. We recently reported expression defects in the cyclin‐dependent kinase p21/Cip1 and p53 among three independent canine mammary tumor (CMT) cell lines derived from spontaneous canine mammary cancers. We investigated further defects in the same three cell lines focusing on additional tumor suppressor gene defects in cyclin‐dependent kinase inhibitors. p27/KIP1 appeared normally expressed and did not appear to encode inactivating mutations. In contrast, expression of p16/INK4A was defective/absent in two cell lines and normal/slightly induced in the third cell line. To determine if defects were causative in maintaining the transformed phenotype, a p16/INK4A transgene was permanently transfected followed by selection and single cell cloning. CMT/p16 clones were characterized for transgene expression, p16 protein content and phenotype including proliferation rate, cell cycle phase distribution, contact inhibition, substrate dependent cell growth and cell morphology. All cell lines appeared unique yet clear indications of phenotype rescue due to p16/INK4A transgene complementation were observed suggesting that defects in p16 expression were present in all three. In some cases cellular senescence also appeared to be induced. These data provide evidence supporting p16/INK4A mutations as causative defects promoting transformation in canine mammary cancer and further characterizes tumor suppressor gene defects with functional consequences in these cells supporting their application as spontaneous animal models of human disease. J. Cell. Biochem. 106: 491–505, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
All living cells utilize intricate DNA repair mechanisms to address numerous types of DNA lesions and to preserve genomic integrity, and pluripotent stem cells have specific needs due to their remarkable ability of self-renewal and differentiation into different functional cell types. Not surprisingly, human stem cells possess a highly efficient DNA repair network that becomes less efficient upon differentiation. Moreover, these cells also have an anaerobic metabolism, which reduces the mitochondria number and the likelihood of oxidative stress, which is highly related to genomic instability. If DNA lesions are not repaired, human stem cells easily undergo senescence, cell death or differentiation, as part of their DNA damage response, avoiding the propagation of stem cells carrying mutations and genomic alterations. Interestingly, cancer stem cells and typical stem cells share not only the differentiation potential but also their capacity to respond to DNA damage, with important implications for cancer therapy using genotoxic agents. On the other hand, the preservation of the adult stem cell pool, and the ability of cells to deal with DNA damage, is essential for normal development, reducing processes of neurodegeneration and premature aging, as one can observe on clinical phenotypes of many human genetic diseases with defects in DNA repair processes. Finally, several recent findings suggest that DNA repair also plays a fundamental role in maintaining the pluripotency and differentiation potential of embryonic stem cells, as well as that of induced pluripotent stem (iPS) cells. DNA repair processes also seem to be necessary for the reprogramming of human cells when iPS cells are produced. Thus, the understanding of how cultured pluripotent stem cells ensure the genetic stability are highly relevant for their safe therapeutic application, at the same time that cellular therapy is a hope for DNA repair deficient patients.  相似文献   

15.
Ferroptosis: an iron-dependent form of nonapoptotic cell death   总被引:3,自引:0,他引:3  
Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration.  相似文献   

16.
17.
18.
Recent development in microbiology and genetic engineering has provided the identification and characterization of so-called 'oncogenes'. The concept of oncogenes has much stimulated intense interest in searching the cause of uncontrolled cell growth and factors responsible for formation of tumors. Because of the fact that oncogenes were first discovered in an established cell line derived from patient with bladder tumor, the association between oncogenes and genitourinary cancer has much attention. Variety of pathways of tumor development in bladder cancer can be divided in two major forms, low grade papillary tumor and high grade infiltrating tumor. Activation and a sequence of oncogenes may be relevant to the ultimate expression of these separate pathways. Concept of initiation and promotion may also be factored into these consideration. The application of these principles to the different pathways of tumor development such as in bladder, kidney and prostate cancers, supports the concept that oncogenes may be required to production of malignant tumors. The purpose of this paper is to review recent evidence that has enhanced our understanding of the genetic basis of cancer development in the genitourinary tract cancer.  相似文献   

19.
Recent genetic screens of fly mutants and molecular analysis have revealed that the Hippo (Hpo) pathway controls both cell proliferation and cell death. Deregulation of its human counterpart (the MST pathway) has been implicated in human cancers. However, how this pathway is linked with the known tumor suppressor network remains to be established. RUNX3 functions as a tumor suppressor of gastric cancer, lung cancer, bladder cancer, and colon cancer. Here, we show that RUNX3 is a principal and evolutionarily conserved component of the MST pathway. SAV1/WW45 facilitates the close association between MST2 and RUNX3. MST2, in turn, stimulates the SAV1-RUNX3 interaction. In addition, we show that siRNA-mediated RUNX3 knockdown abolishes MST/Hpo-mediated cell death. By establishing that RUNX3 is an endpoint effector of the MST pathway and that RUNX3 is capable of inducing cell death in cooperation with MST and SAV1, we define an evolutionarily conserved novel regulatory mechanism loop for tumor suppression in human cancers.  相似文献   

20.
p53 mutations, occurring in two-thirds of all human cancers, confer a gain of function phenotype, including the ability to form metastasis, the determining feature in the prognosis of most human cancer. This effect seems mediated at least partially by its ability to physically interact with p63, thus affecting a cell invasion pathway, and accordingly, p63 is deregulated in human cancers. In addition, p63, as an 'epithelial organizer', directly impinges on epidermal mesenchimal transition, stemness, senescence, cell death and cell cycle arrest, all determinant in cancer, and thus p63 affects chemosensitivity and chemoresistance. This demonstrates an important role for p63 in cancer development and its progression, and the aim of this review is to set this new evidence that links p63 to metastasis within the context of the long conserved other functions of p63.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号