首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Arctic and Antarctic marine faunas differ by age and isolation. Fishes of the two polar regions have undergone different regional histories that have driven the physiological diversities. Antarctic fish are highly stenothermal, in keeping with stable water temperatures, whereas Arctic fish, being exposed to seasonal temperature variations, exhibit higher physiological plasticity. This study reports the characterization of the oxygen transport system of three Arctic species of the family Gadidae, namely the Arctic cod Arctogadus glacialis, the polar cod Boreogadus saida, and the Atlantic cod Gadus morhua. Unlike Antarctic notothenioids, the blood displays high multiplicity, i.e. it has three hemoglobins, similar to many other acanthomorph teleosts. In the most abundant hemoglobin, oxygen binding is modulated by heterotropic effectors, with marked Bohr and Root effects. Remarkably, in two species (A. glacialis and B. saida), the Hill coefficient is very close to one in the whole pH range, indicating the apparent absence of cooperativity. The amino acid sequences have been used to gain insight into the evolution history of globins of polar fish. The results indicate that Arctic and Antarctic globins have different phylogenies and lead us to suggest that the selective pressure of environment stability allows the phylogenetic signal to be maintained in the Antarctic sequences, whereas environmental variability would tend to disrupt this signal in the Gadidae sequences.  相似文献   

2.
K Adachi  T Asakura 《Blood cells》1982,8(2):213-224
Diluted solutions of deoxyhemoglobin S in concentrated phosphate buffer form aggregates or gels with a clear exhibition of a delay time. The aggregates can be liquified by cooling, bubbling with O2 or CO gas, or the dilution of phosphate buffer with water. These properties can be used as a simple method for studying the mechanism of polymerization and depolymerization of hemoglobins. The advantages of this method are: 1) The amount of hemoglobin sample required is only 1% to 5% of that required for the gelation of deoxy-Hb S in low phosphate buffer. 2) The kinetics can be measured turbidimetrically using an ordinary spectrophotometer. 3) The solubility of hemoglobin can be directly determined by taking the absorption spectrum of the supernatant solution after polymerization. 4) The polymer phase can be easily separated from the solution so that the amount and composition of the polymers can be analyzed. 5) The volume of the polymer phase is so small that excluded volume effect can be neglected. 6) The method can be applied to the study of polymerization of non-sickle hemoglobins and that of mixtures of sickle and non-sickle hemoglobins. The major question is whether the polymerization of hemoglobin in concentrated phosphate buffer is the same as that of deoxy-Hb S in low phosphate buffer. To answer this question, we studied the polymerization of Hb S, Hb A, Hb C Harlem, and Hb C in phosphate buffers of different molarities. We also studied the mechanism of the conversion of gels of these hemoglobins into crystals.  相似文献   

3.
The Root effect is a widespread property among fish hemoglobins whose structural basis remains largely obscure. Here we report a crystallographic and spectroscopic characterization of the non-Root-effect hemoglobin isolated from the Antarctic fish Trematomus newnesi in the deoxygenated form. The crystal structure unveils that the T state of this hemoglobin is stabilized by a strong H-bond between the side chains of Asp95α and Asp101β at the α1β2 and α2β1 interfaces. This unexpected finding undermines the accepted paradigm that correlates the presence of this unusual H-bond with the occurrence of the Root effect. Surprisingly, the T state is characterized by an atypical flexibility of two α chains within the tetramer. Indeed, regions such as the CDα corner and the EFα pocket, which are normally well ordered in the T state of tetrameric hemoglobins, display high B-factors and non-continuous electron densities. This flexibility also leads to unusual distances between the heme iron and the proximal and distal His residues. These observations are in line with Raman micro-spectroscopy studies carried out both in solution and in the crystal state. The findings here presented suggest that in fish hemoglobins the Root effect may be switched off through a significant destabilization of the T state regardless of the presence of the inter-aspartic H-bond. Similar mechanisms may also operate for other non-Root effect hemoglobins. The implications of the flexibility of the CDα corner for the mechanism of the T-R transition in tetrameric hemoglobins are also discussed.  相似文献   

4.
Characterization of the hemoglobins of winter-hibernating, winter-active and summer-active Arctic ground squirrels (Citellus undulatus) by citrate agar electrophoresis and isoelectric focusing (IEF), pH 5.5-8.5, showed no differences in hemoglobin electrophoretic patterns. Previous studies showing alterations in hemoglobins were most likely the result of artifacts due to the use of whole blood. The Arctic ground squirrel's hemoglobin amino terminal sequence was determined for each activity state and was identical in all cases.  相似文献   

5.
The tetramer-dimer dissociation equilibria (K 4,2) of several fish hemoglobins have been examined by sedimentation velocity measurements with a scanner-computer system for the ultracentrifuge and by flash photolysis measurements using rapid kinetic methods. Samples studied in detail included hemoglobins from a marine teleost, Brevoortia tyrannus (common name, menhaden); a fresh water teleost, Cyprinus carpio, (common name, carp); and an elasmobranch Prionace glauca (common name, blue shark). For all three species in the CO form at pH 7, in 0.1 M phosphate buffer, sedimentation coefficients of 4.3 S (typical of tetrameric hemoglobin) are observed in the micromolar concentration range. In contrast, mammalian hemoglobins dissociate appreciably to dimers under these conditions. The inability to detect dissociation in three fish hemoglobins at the lowest concentrations examined indicates that K 4,2 must have a value of 10(-8) M or less. In flash photolysis experiments on very dilute solutions in long path length cells, two kinetic components were detected with their proportions varying as expected for an equilibrium between tetramers (the slower component) and dimers (the faster component); values of K 4,2 for the three fish hemoglobins in the range 10(-9) to 10(-8) M were calculated from these data. Thus, the values of K 4,2 for liganded forms of the fish hemoglobins appear to be midway between the value for liganded human hemoglobin (K 4,2 approximately 10(-6) M) and unliganded human hemoglobin (K 4,2 approximately 10(-12) M). This conclusion is supported by measurements on solutions containing guanidine hydrochloride to enhance the degree of dissociation. All three fish hemoglobins are appreciably dissociated at guanidine concentrations of about 0.8 M, which is roughly midway between the guanidine concentrations needed to cause comparable dissociation of liganded human hemoglobin (about 0.4 M) and unliganded human hemoglobin (about 1.6 M). Kinetic measurements on solutions containing guanidine hydrochloride indicated that there are changes in both the absolute rates and the proportions of the fast and slow components, which along with other factors complicated the analysis of the data in terms of dissociation constants. Measurements were also made in solutions containing urea to promote dissociation, but with this agent very high concentrations (about 6 M) were required to give measureable dissociation and the fish hemoglobins were unstable under these conditions, with appreciable loss of absorbance spectra in both the sedimentation and kinetic experiments.  相似文献   

6.
A comparative analysis of stability of the hemoglobin structural-functional organization to effect of some experimental factors modeling action of internal medium and habitat was performed in representatives of Chondrostei and Teleostei belonging to euryhaline and diadromous fish. Differentiation of hemoglobins by stability parameters was shown to coincide to division of the studied fish into two main ecological groups: euryhaline fish with unstable hemoglobin and diadromous fishes with stable hemoglobin. In turn, the euryhaline fish by the character of destruction of hemoglobins under effects of destabilizing factors are differentiated into three subgroups: cartilaginous fish, cartilaginous ganoids, and bony fish. Thus, differentiation of hemoglobins by parameters of resistance to destabilizing factors is determined by peculiarities of the fish mode of life and is of adaptive nature. The described in the present study method of determination of critical precipitation concentration (CPC) of hemoglobin may be used as an express-method for estimation of hemoglobin resistance to salt effects, while the CPC values—as one of criteria of fish belonging to various ecological groups (diadromous, euryhaline).  相似文献   

7.
Hemoglobins extracted from fishes that live in temperate waters show little or no dissociation even in the liganded form, unlike human hemoglobin (HbA). To establish whether cold adaptation influences the tendency to dissociate, the dimer-tetramer association constants (L(2,4)) of the carbonmonoxy derivatives of representative hemoglobins from two Antarctic fishes, Trematomus newnesi (Hb1Tn) and Trematomus bernacchii (Hb1Tb), were determined by analytical ultracentrifugation as a function of pH in the range 6.0-8.6 and compared to HbA. HbA is more dissociated than fish hemoglobins at all pH values and in particular at pH 6.0. In contrast, both fish hemoglobins are mostly tetrameric over the whole pH range studied. The extent of hydrophobic surface area buried at the alpha(1)beta(2) interface upon association of dimers into tetramers and the number of hydrogen bonds formed are currently thought to play a major role in the stabilization of the hemoglobin tetramer. These contributions were derived from the X-ray structures of the three hemoglobins under study and found to be in good agreement with the experimentally determined L(2,4) values. pH affects oxygen binding of T. bernacchii and T. newnesi hemoglobins in a different fashion. The lack of a pH effect on the dissociation of the liganded proteins supports the proposal that the structural basis of such effects resides in the T (unliganded) structure rather than in the R (liganded) one.  相似文献   

8.
The crystal structure of hemoglobin has been known for several decades, yet various features of the molecule remain unexplained or controversial. Several animal hemoglobins have properties that cannot be readily explained in terms of their amino acid sequence and known atomic models of hemoglobin. Among these, fish hemoglobins are well known for their widely varying interactions with heterotropic effector molecules and pH sensitivity. Some fish hemoglobins are almost completely insensitive to pH (within physiological limits), whereas others show extremely low oxygen affinity under acid conditions, a phenomenon called the Root effect. X-ray crystal structures of Root effect hemoglobins have not, to date, provided convincing explanations of this effect. Sequence alignments have signally failed to pinpoint the residues involved, and site-directed mutagenesis has not yielded a human hemoglobin variant with this property. We have solved the crystal structure of tuna hemoglobin in the deoxy form at low and moderate pH and in the presence of carbon monoxide at high pH. A comparison of these models shows clear evidence for novel mechanisms of pH-dependent control of ligand affinity.  相似文献   

9.
The importance of the Arctic, in contributing to the knowledge of the overall ensemble of adaptive processes influencing the evolution of marine organisms, calls for investigations on molecular adaptations in Arctic fish. Unlike the vast majority of Antarctic Notothenioidei, several Arctic species display high hemoglobin multiplicity. The blood of four species, the spotted wolffish of the family Anarhichadidae and three Gadidae, contains three functionally distinct major components. Similar to many Antarctic notothenioids, Arctic Liparis tunicatus (suborder Cottoidei, family Liparidae) has one major hemoglobin (Hb 1) accompanied by a minor component (Hb 2). This paper reports the structural and functional characterisation of Hb 1 of L. tunicatus. This hemoglobin shows low oxygen affinity, and pronounced Bohr and Root effects. The amino-acid sequence of the beta chain displays an unusual substitution in NA2 (beta2) at the phosphate-binding site, and the replacement of Val E11 (beta67) with Ile. Similar to some Antarctic fish Hbs, electron paramagnetic resonance spectra reveal the formation of a ferric penta-coordinated species even at physiological pH. The amino-acid sequences have also been used to gain insight into the evolutionary history of globins of polar fish. L. tunicatus globins appear close to the notothenioid clades as predicted by teleostean phylogenies. Close phylogenetic relationships between Cottoidei and Notothenioidei, together with their life style, seem to be the main factor driving the globin-sequence evolution.  相似文献   

10.
The hemolysate of the Antarctic teleost Gobionotothen gibberifrons (family Nototheniidae) contains two hemoglobins (Hb 1 and Hb 2). The concentration of Hb 2 (15-20% of the total hemoglobin content) is higher than that found in most cold-adapted Notothenioidei. Unlike the other Antarctic species so far examined having two hemoglobins, Hb 1 and Hb 2 do not have globin chains in common. Therefore this hemoglobin system is made of four globins (two alpha- and two beta-chains). The complete amino-acid sequence of the two hemoglobins (Hb 1, alpha2(1)beta2(1); Hb 2, alpha2(2)beta2(2)) has been established. The two hemoglobins have different functional properties. Hb 2 has lower oxygen affinity than Hb 1, and higher sensitivity to the modulatory effect of organophosphates. They also differ thermodynamically, as shown by the effects on the oxygen-binding properties brought about by temperature variations. The oxygen-transport system of G. gibberifrons, with two functionally distinct hemoglobins, suggests that the two components may have distinct physiological roles, in relation with life style and the environmental conditions which the fish may have to face. The unique features of the oxygen-transport system of this species are reflected in the phylogeny of the hemoglobin amino-acid sequences, which are intermediate between those of other fish of the family Nototheniidae and of species of the more advanced family Bathydraconidae.  相似文献   

11.
Six major hemoglobin components are present in the teleostean fish Zoarces viviparus L. Biochemical characterization has led to a molecular model for the polypeptide chain composition of the individual hemoglobins. Only three different chains are involved. They are determined by three different structural loci, as indicated by the genetic variation of the electrophoretic hemoglobin pattern observed in natural populations. Hemoglobins occur that, despite identical chain compositions, have different electrophoretic mobilities. This may be due to a mechanism, known from man, where part of the hemoglobin is blocked by a hexose.  相似文献   

12.
Analysis of the molecular properties of proteins extracted from organisms living under extreme conditions often highlights peculiar features. We investigated by UV-visible spectroscopy and X-ray crystallography the oxidation process, promoted by air or ferricyanide, of five hemoglobins extracted from Antarctic fishes (Notothenioidei). Spectroscopic analysis revealed that these hemoglobins share a common oxidation pathway, which shows striking differences from the oxidation processes of hemoglobins from other vertebrates. Indeed, simple exposure of these hemoglobins to air leads to the formation of a significant amount of the low-spin hexacoordinated form, denoted hemichrome. This hemichrome form, which is detected under a variety of experimental conditions, can be reversibly transformed to either carbomonoxy or deoxygenated forms with reducing agents. Interestingly, the spectra of the fully oxidized species, obtained by treating the protein with ferricyanide, show the simultaneous presence of peaks corresponding to different hexacoordinated states, the aquomet and the hemichrome. In order to assign the heme region state of the alpha and beta chains, the air-oxidized and ferricyanide-oxidized forms of Trematomus bernacchii hemoglobin were crystallized. Crystallographic analysis revealed that these forms correspond to an alpha(aquomet)-beta(bishistidyl-hemichrome) state. This demonstrates that the alpha and beta chains of Antarctic fish hemoglobins follow very different oxidation pathways. As found for Trematomus newnesi hemoglobin in a partial hemichrome state [Riccio, A., Vitagliano, L., di Prisco, G., Zagari, A. & Mazzarella, L. (2002) Proc. Natl Acad. Sci. USA99, 9801-9806], the quaternary structures of these alpha(aquomet)-beta(bishistidyl-hemichrome) forms are intermediate between the physiological R and T hemoglobin states. Together, these structures provide information on the general features of this intermediate state.  相似文献   

13.
Sickle cell disease is caused by a mutant form of hemoglobin, hemoglobin S, that polymerizes under hypoxic conditions. The extent and mechanism of polymerization are thus the subject of many studies of the pathophysiology of the disease and potential treatment strategies. To facilitate such studies, a model system using high concentration phosphate buffer (1.5 M-1.8 M) has been developed. To properly interpret results from studies using this model it is important to understand the similarities and differences in hemoglobin S polymerization in the model compared to polymerization under physiological conditions. In this article, we show that hemoglobin S and normal adult hemoglobin, hemoglobin A, aggregate in high concentration phosphate buffer even when the concentration of hemoglobin is below the solubility defined for polymerization. This phenomenon was not observed using 0.05 M phosphate buffer or in another model system we studied that uses dextran to enhance polymerization. We have used static light scattering, dynamic light scattering, and differential interference contrast microscopy to confirm aggregation of deoxygenated and oxygenated hemoglobins below their solubility and have shown that this aggregation is not observable using turbidity measurements, a common technique for assessing polymerization. We have also shown that the aggregation increases with increasing temperature in the range of 15 degrees -37 degrees C and that it increases as the concentration of phosphate increases. These studies contribute to the working knowledge of how to properly apply studies of hemoglobin S polymerization that are conducted using the high phosphate model.  相似文献   

14.
A Riggs 《Federation proceedings》1976,35(10):2115-2118
The packaging of vertebrate blood hemoglobins within cells places subtle constraints on hemoglobin evolution. Since the concentration of hemoglobin is near the solubility limit a selective advantage should exist for a noncomplementary external topology of amino acid residues. Further, any change in charge on the protein should alter ion distribution across the cell membrane and so modify ion-sensitive oxygen transport. An efficient hemoglobin must not only combine readily with oxygen at prevailing environmental oxygen pressures, but must also release it at metabolically appropriate pressures. These adaptations frequently employ different strategies to achieve the same objective in different animals. Some hemoglobins have evolved special properties unrelated to the transport of oxygen to metabolizing tissues. Thus many teleost fish have hemoglobins that discharge much of their oxygen at low pH even at high oxygen pressures. This property appears to aid in filling the swim bladder with oxygen. The hemoglobins of elasmobranchs have evoked a unique resistance to urea as a consequence of the high urea content of their blood. Sometimes the functional adaptations of hemoglobins are achieved by multiple hemoglobins in the same cells. Often, however, different red cell populations with functionally unique hemoglobins arise sequentially during ontogeny.  相似文献   

15.
The Arctic fish Anarhichas minor, a benthic sedentary species, displays high hemoglobin multiplicity. The three major hemoglobins (Hb 1, Hb 2, and Hb 3) show important functional differences in pH and organophosphate regulation, subunit cooperativity, and response of oxygen binding to temperature. Hb 1 and Hb 2 display a low, effector-enhanced Bohr effect and no Root effect. In contrast, Hb 3 displays pronounced Bohr and Root effects, accompanied by strong organophosphate regulation. Hb 1 has the beta (beta(1)) chain in common with Hb 2; Hb 3 and Hb 2 share the alpha (alpha(2)) chain. The amino acid sequences have been established. Several substitutions in crucial positions were observed, such as Cys in place of C-terminal His in the beta(1) chain of Hb 1 and Hb 2. In Hb 3, Val E11 of the beta(2) chain is replaced by Ile. Homology modeling revealed an unusual structure of the Hb 3 binding site of inositol hexakisphoshate. Phylogenetic analysis indicated that only Hb 2 displays higher overall similarity with the major Antarctic hemoglobins. The oxygen transport system of A. minor differs remarkably from those of Antarctic Notothenioidei, indicating distinct evolutionary pathways in the regulatory mechanisms of the fish respiratory system in the two polar environments.  相似文献   

16.
The functional properties of hemoglobin from Egyptian water buffalo have been characterized as a function of pH, temperature and chloride concentration. Alongside overall similarities shared with ox and Arctic ruminant hemoglobins, hemoglobin from buffalo shows significant differences with respect to the effect of temperature. The results obtained may suggest that the limited effect of temperature on oxygen binding recently reported for ox hemoglobin could be regarded as an interesting case of a reminiscence of a past glacial age.  相似文献   

17.
Hemoglobin is a tetrameric protein with two alpha and two beta subunits binds oxygen in a cooperative manner. In dominant tetrameric form of fish hemoglobin carry more than 90 percent of oxygen from gill to tissues at 20° C. The tetrameric form of fish hemoglobin is changed to monomeric form at low oxygen pressure in order to increase its oxygen affinity. This is one of adaptive mechanisms used by different kinds of fish. The major aim of this paper is to study the molecular basis of shirbot hemoglobin adaptation mechanism to various environmental conditions. Using different methods such as ion exchange chromatography, UV-Vis, fluorescence and circular dichroism spectroscopy, we extracted the main tetrameric fraction of shirbot hemoglobin and studied the structural characteristics of shirbot and human hemoglobins in a comparative way. Our results showed that tetrameric form of shirbot hemoglobin has less stable and loosely folded structure in contrast to human hemoglobin. Our data also indicate, in case of exposure to life-threatening environmental factors such as low oxygen level, acidic pH, oxidizing chemicals and other water pollutants especially detergents (surfactants) triggering tetramer to monomer dissociation in shirbot hemoglobin is more prominently than in human hemoglobin. The resulting monomer of hemoglobin has more oxygen affinity and could take up oxygen more strongly even at low pressure. We hypothesize that this mechanism helps shirbot to adapt and to survive at such harsh environment. The mechanism that is may be adapted by other fish species.  相似文献   

18.
Antarctic fishes live at a constant temperature of -1.8 degrees C, in an oxygen-rich environment. In comparison with fishes that live in temperate or tropical waters, their blood contains less erythrocytes and hemoglobin. A study was initiated on the structure and function of Antarctic fish hemoglobin. The erythrocytes of the Antarctic benthic teleost Notothenia coriiceps neglecta, of the family Nototheniidae, have been shown to contain two hemoglobins, accounting for about 90% and 5% of the total content. These hemoglobins have been isolated, and obtained in crystalline form. They are tetramers and contain two pairs of globin chains. The globin chains of each hemoglobin have been purified and characterised. The two hemoglobins appear to have one of the two globin chains in common. The Root and Bohr effects have been investigated in erythrocytes, 'stripped' hemolysates and pure hemoglobins, indicating that the functional properties are finely regulated by pH and allosteric effectors.  相似文献   

19.
Prompted by the reported lack of solvation effects on the oxygen affinity of fish (trout I) hemoglobin that questioned allosteric water binding in human hemoglobin A (Bellelli, A., Brancaccio, A., and Brunori, M. (1993) J. Biol. Chem. 268, 4742-4744), we have investigated solvation effects in fish and human hemoglobins by means of the osmotic stress method and allosteric analysis. In contrast to the earlier report, we demonstrate that water potential does affect oxygen affinity of trout hemoglobin I in the presence of inert solutes like betaine. Moreover, we show that upon oxygenation electrophoretically anodic hemoglobin from trout and eel bind a similar number of water molecules as does human hemoglobin A, whereas the cathodic hemoglobins of trout and eel bind smaller, but mutually similar, numbers of water molecules. Addition of cofactors strongly increases the number of water molecules bound to eel hemoglobin A (as in human hemoglobin) but only weakly affects water binding to eel hemoglobin C.  相似文献   

20.
Eleven bacterial strains were isolated from the gastrointestinal tract of four fish species, Atlantic salmon (Salmo salar L.), Arctic charr (Salvelinus alpinus L.), Atlantic cod (Gadus morhua L.) and wolffish (Anarhichas lupus L.). All the strains were Gram-positive rods, non-sporing, catalase and oxidase-negative, able to grow at pH 9.0 but not on acetate containing media (pH < or = 5.4), and were fermentative. They had a high content of oleic acid (18:1 n-9) in cellular lipid, and were found to belong to the genus Carnobacterium by phenotypic criteria. The eleven carnobacteria strains were further identified on the basis of 16S rDNA sequence analysis and AFLP(TM) fingerprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号