首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Sudden infant death syndrome (SIDS) remains the leading cause of death among infants less than 1 year of age. Disturbed expression of some neurotransmitters and their receptors has been shown in the central nervous system of SIDS victims but no biological abnormality of the peripheral vago-cardiac system has been demonstrated to date. The present study aimed to seek vago-cardiac abnormalities in SIDS victims. The cardiac level of expression of muscarinic receptors, as well as acetylcholinesterase enzyme activity were investigated.

Methodology/Principal Findings

Left ventricular samples and blood samples were obtained from autopsies of SIDS and children deceased from non cardiac causes. Binding experiments performed with [3H]NMS, a selective muscarinic ligand, in cardiac membrane preparations showed that the density of cardiac muscarinic receptors was increased as shown by a more than doubled Bmax value in SIDS (n = 9 SIDS versus 8 controls). On average, the erythrocyte acetylcholinesterase enzyme activity was also significantly increased (n = 9 SIDS versus 11 controls).

Conclusions

In the present study, it has been shown for the first time that cardiac muscarinic receptor overexpression is associated with SIDS. The increase of acetylcholinesterase enzyme activity appears as a possible regulatory mechanism.  相似文献   

2.

Background

Intrahepatic cholestasis of pregnancy (ICP) is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC), which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM). Apart from their hepatic functions bile acids are ubiquitous signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an in-vitro model of the fetal heart.

Methods and Results

Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR, western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M2 receptor in NRCM and serves as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response. Pharmacological inhibition and siRNA-knockdown of the M2 receptor completely abolished the negative effect of TC on contraction, calcium transient amplitude and synchronisation in NRCM clusters.

Conclusion

We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M2 receptor. This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.  相似文献   

3.
4.

Background

Previous studies showed that autoantibodies (M2-AA) against the second extracellular loop of M2 muscarinic receptor (M2AChR-el2) from dilated cardiomyopathy (DCM) serum could induce DCM-like morphological changes in mice hearts. However, the effects of M2-AA on the cardiac function during the process of DCM and the potential mechanisms are not fully known. The present study was designed to dynamically observe the cardiac function, mitochondrial changes, and M2 receptor binding characteristics in rats long-term stimulated with M2-AA in vivo.

Methods

M2-AA-positive model was established by actively immunizing healthy male Wistar rats with synthetic M2AChR-el2 peptide for 18 months. Meanwhile, vehicle group rats were administrated with physiological saline. The change of mitochondrial membrane potential (ΔΨm) was detected by radionuclide imaging. The ultrastructure of mitochondria was observed under electron microscopy. The M2 receptor binding characteristics were determined by radioactive ligand binding assay.

Results

After immunization for 12 months, compared with vehicle group, M2AChR-el2-immunized rats showed decreased myocardial contractility and cardiac diastolic function evidenced by declined maximal rate of rise of ventricular pressure and increased left ventricular end-diastolic pressure, respectively. Additionally, mitochondrial swelling and vacuolation were observed. At 18 months, M2AChR-el2-immunized rats manifested significant decreased cardiac systolic and diastolic function and pathological changes such as enlargement of right ventricular cavity and wall thinning; and the mitochondrial damage was aggravated. Furthermore, the M2 receptor maximum binding capacity (Bmax) of the M2AChR-el2-immunized rats significantly decreased, while the M2 receptor dissociation constant (Kd) was increased.

Conclusions

Our study suggested that long-term stimulation with M2-AA leaded to the ventricular dilatation and gradual deterioration of cardiac dysfunction. Mitochondrial damage and the down-regulation of M2 receptor density and affinity may be involved in the process.  相似文献   

5.
Muscarinic receptors exist in multiple subtypes, denoted as M1, M2 M3 and M4, encoded by four distinct but related genes. A fifth gene product, m5, has also been predicted although this sequence awaits a pharmacological equivalent. Many tissues express more than one muscarinic receptor subtype, which may couple to different intracellular effectors and thus have different physiological roles. One way to characterize the role of each receptor is to selectively inactivate one receptor population, thus pharmacologically ‘isolating’ the muscarinic receptor subtype of interest. Selective receptor inactivation can be achieved using either a selective, irreversible antagonist, or protection using a selective, reversible antagonist against a non-selective irreversible antagonist. Therefore, combination of these two approaches may provide optimal selective inactivation. Several muscarinic alkylating agents have been identified, including phenoxybenzamine, EEDQ (N-Ethoxycarbonyl-1-ethoxy-1,2-dihydroquinoline) and propylbenzilylcholine mustard. These irreversible antagonists do not, in general, discriminate between muscarinic receptor subtypes and are frequently used to estimate the affinity and relative efficacy of muscarinic agonists. Consequently, use of these irreversible antagonists provides estimations of the ‘receptor reserve’ associated with a response mediated by muscarinic receptor activation. In contrast, 4-DAMP mustard (4-diphenylacetoxy-N-(2-chloroethyl)piperidine) selectively inactivates M3 receptors, but will not discriminate between M1 M 2 or M4 receptors. In the absence of highly selective alkylating agents, receptor protection by reversible antagonists may be used. Thus, reversible antagonists, such as pirenzepine, methoctramine or para-fluorohexahydrosiladifenidol, at appropriate fractional receptor occupancies, may protect M1 M2 or M3 receptors against alkylation by phenoxybenzamine. Selective alkylation of M3 receptors by 4-DAMP mustard is enhanced with concurrent M2 protection. This approach has been applied to defining the role of these muscarinic receptor subtypes in the control of ileal smooth muscle tone. These data suggest that, in ileum, M2 receptors may act to inhibit β-adrenoceptor activation, thereby offsetting relaxation, while M3 receptors directly mediate contraction.  相似文献   

6.
为了探讨胚胎干细胞分化心肌细胞(ESCM)毒蕈碱受体的表达规律及β肾上腺素能系统对M2受体表达的影响,采用10-4 mol/L维生素C体外诱导小鼠M13胚胎干细胞分化为心肌细胞,用RT-PCR检测到分化后的细胞表达心肌细胞特异性基因Nkx2.5和β肌球蛋白重链;用免疫荧光法检测到分化后的细胞表达心肌细胞特异性标志物α辅肌动蛋白.小鼠胚胎干细胞分化前表达M1和M2毒蕈碱受体,在分化过程中,M1受体表达逐渐下降, M2受体表达在第3 d显著下降,此后表达逐渐增加,在第14 d达到高峰;Western印迹结果显示,异丙肾上腺素明显抑制M2受体的表达,选择性β1肾上腺素受体拮抗剂CGP20712A明显上调其表达,而选择性β2肾上腺素受体拮抗剂 ICI118551对其表达无影响.本实验表明,小鼠胚胎干细胞分化心肌细胞表达毒蕈碱受体, β肾上腺素能系统对M2受体表达有调控作用.  相似文献   

7.

Background

Acetylcholine, the primary parasympathetic neurotransmitter in the airways, plays an important role in bronchoconstriction and mucus production. Recently, it has been shown that acetylcholine, by acting on muscarinic receptors, is also involved in airway inflammation and remodelling. The mechanism(s) by which muscarinic receptors regulate inflammatory responses are, however, still unknown.

Methods

The present study was aimed at characterizing the effect of muscarinic receptor stimulation on cytokine secretion by human airway smooth muscle cells (hASMc) and to dissect the intracellular signalling mechanisms involved. hASMc expressing functional muscarinic M2 and M3 receptors were stimulated with the muscarinic receptor agonist methacholine, alone, and in combination with cigarette smoke extract (CSE), TNF-α, PDGF-AB or IL-1β.

Results

Muscarinic receptor stimulation induced modest IL-8 secretion by itself, yet augmented IL-8 secretion in combination with CSE, TNF-α or PDGF-AB, but not with IL-1β. Pretreatment with GF109203X, a protein kinase C (PKC) inhibitor, completely normalized the effect of methacholine on CSE-induced IL-8 secretion, whereas PMA, a PKC activator, mimicked the effects of methacholine, inducing IL-8 secretion and augmenting the effects of CSE. Similar inhibition was observed using inhibitors of IκB-kinase-2 (SC514) and MEK1/2 (U0126), both downstream effectors of PKC. Accordingly, western blot analysis revealed that methacholine augmented the degradation of IκBα and the phosphorylation of ERK1/2 in combination with CSE, but not with IL-1β in hASMc.

Conclusions

We conclude that muscarinic receptors facilitate CSE-induced IL-8 secretion by hASMc via PKC dependent activation of IκBα and ERK1/2. This mechanism could be of importance for COPD patients using anticholinergics.  相似文献   

8.
Each subtype of the muscarinic receptor family of G protein-coupled receptors is activated by similar concentrations of the neurotransmitter acetylcholine or closely related synthetic analogs such as carbachol. However, pharmacological selectivity can be generated by the introduction of a pair of mutations to produce Receptor Activated Solely by Synthetic Ligand (RASSL) forms of muscarinic receptors. These display loss of potency for acetylcholine/carbachol alongside a concurrent gain in potency for the ligand clozapine N-oxide. Co-expression of a form of wild type human M2 and a RASSL variant of the human M3 receptor resulted in concurrent detection of each of M2-M2 and M3-M3 homomers alongside M2-M3 heteromers at the surface of stably transfected Flp-InTM T-RExTM 293 cells. In this setting occupancy of the receptors with a muscarinic antagonist was without detectable effect on any of the muscarinic oligomers. However, selective agonist occupancy of the M2 receptor resulted in enhanced M2-M2 homomer interactions but decreased M2-M3 heteromer interactions. By contrast, selective activation of the M3 RASSL receptor did not significantly alter either M3-M3 homomer or M2-M3 heteromer interactions. Selectively targeting closely related receptor oligomers may provide novel therapeutic opportunities.  相似文献   

9.
Unno  Toshihiro  Matsuyama  Hayato  Komori  Seiichi 《Neurophysiology》2003,35(3-4):262-273
In various gastrointestinal smooth muscles, two different muscarinic receptor subtypes, M2 and M3, are expressed; these receptors are the target for the parasympathetic neurotransmitter acetylcholine. Although the number of M2 receptors is much greater than that of M3 receptors, the functional role of the former receptor subtype has yet to be fully defined, since pharmacological analyses of the contractile responses to acetylcholine and other muscarinic agonists have revealed that such responses are mediated extensively by the minor M3 subtype. The M3 receptor links to Ca2+ store release, and the released Ca2+ ions may contribute to the contraction. However, many studies indicated the importance of Ca2+ influx through voltage-gated Ca2+ channels, rather than Ca2+ release, in muscarinic contractions, since the contractile responses are markedly inhibited by Ca2+ channel blockers. The major M2 receptors link to the opening of cationic channels leading to the membrane depolarization, which in turn activates voltage-gated Ca2+ channels. Thus, there should be somewhere a point of contact between the M3- and M2-mediated signal transductions, as if M3 receptor stimulation is connected with membrane depolarization. Our electrophysiological and pharmacological findings suggest that the M2-mediated cationic channel opening and a resulting increase in the membrane electrical activity are the primary mechanism for mediating the contractile response to muscarinic agonists. An allosteric interaction between M2 and M3 receptors such that M3 activation intensifies the M2/cation channel pathway may account at least in part for the failure of many previous analyses to detect M2 participation in the contractile responses to full agonists.  相似文献   

10.
Summary Studies with the atypical muscarinic antagonist pirenzepine provide convincing evidence for the classification of muscarinic acetylcholine receptors (mAChRs) into two subtypes, M1 and M2. The present study examines the heterogeneity of the M2 subtype employing the newly developed competitive muscarinic antagonist, AFDX-116. Comparison of the binding affinities of pirenzepine, atropine, and AFDX-116 to mAChRs in microsomes from the rabbit cerebral cortex, heart, and iris smooth muscle shows that iris mAChRs, which are pharmacologically of the M2 subtype, can be distinguished from M2 cardiac receptors based on their affinity for AFDX-116. These results are consistent with the hypothesis that the M2 receptor subtype consists of a heterogeneous population of receptors.Abbreviations mAChRs Muscarinic Acetylcholine Receptors - CCh Carbachol - NMS N-Methylscopolamine - AFDX-116 11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6Hpyrido[2,3-b][1,4]benzodiazepine-6-one  相似文献   

11.
Extracellular matrix (ECM) accumulation plays a key role in the progression of bladder outlet obstruction (BOO). Muscarinic receptors have been widely reported to serve as pivotal regulators in lung tissue remodeling. However, the influence of them on human bladder smooth muscle cells (HBSMCs) and the underlying molecular mechanisms have not yet been evaluated. The purposes of the present study are to investigate the effect of muscarinic receptors on the synthesis of ECM in HBSMCs and the involvement of intracellular signal transducers. The results indicated that M1-M5 muscarinic receptors were all encoded in HBSMCs. The expression rank order was M2 > M1 > M5 > M3 > M4. The gene and protein expression of collagen I (COL1), TIMP-1, and TIMP-2 was carbachol (CCH) concentration-dependently enhanced. The synthesis of COL1 in the supernatant of cell culture medium was significantly elevated by exposure to CCH. The CCH-induced protein expression of COL1, TIMP-1, and TIMP-2, however, was obviously reduced by the pretreatment of muscarinic receptor antagonists, atropine, and M3-preferring antagonist (1,1-dimethyl-4-diphenyl-acetoxypiperidinium iodide [4-DAMP]). Furthermore, ERK1/2 was activated by 100 µM CCH when compared with the control group and the pretreatment of ERK1/2 inhibitor significantly suppressed the synthesis of COL1 induced by 100 µM CCH. Besides, CCH-induced phosphorylation of ERK1/2 was remarkably restrained by the pretreatment of 4-DAMP. All in all, these findings demonstrated that M3 receptor can modulate extracellular matrix synthesis via the ERK1/2 signaling pathway, which may provide potential novel therapeutic targets for BOO.  相似文献   

12.
Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane (BuTAC) exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects of BuTAC in primates. To this end, we investigated the effects of BuTAC on d-amphetamine-induced behaviour in antipsychotic-naive Cebus paella monkeys. Possible adverse events of BuTAC, were evaluated in the same monkeys as well as in monkeys sensitized to antipsychotic-induced extrapyramidal side effects. The present data suggests that, the muscarinic receptor ligand BuTAC exhibits antipsychotic-like behaviour in primates. The behavioural data of BuTAC as well as the new biochemical data further substantiate the rationale for the use of muscarinic M1/M2/M4-preferring receptor agonists as novel pharmacological tools in the treatment of schizophrenia.  相似文献   

13.
MT1 and MT2, polypeptides from green mamba venom, known to bind to muscarinic cholinoceptors, behave like muscarinic agonists in an inhibitory avoidance task in rats. We have further characterised their functional effects using different preparations. MT1 and MT2 behaved like relatively selective muscarinic M1 receptor agonists in rabbit vas deferens, but their effects were not reversed by washing or prevented by muscarinic antagonists, although allosteric modulators altered responses to MT1. Radioligand binding experiments indicated that both toxins irreversibly inhibited [3H]N-methylscopolamine binding to cloned muscarinic M1 and M4 receptors, and reduced binding to M5 subtype with lower affinity, while they reversibly inhibited the binding of [3H]prazosin to rat cerebral cortex and vas deferens, with 20 fold lower affinity. High concentrations of MT1 reversibly blocked responses of vas deferens to noradrenaline. MT1 and MT2 appear to irreversibly activate muscarinic M1 receptors at a site distinct from the classical one, and to have affinity for some -adrenoceptors.  相似文献   

14.

Background

In peripheral airways, acetylcholine induces contraction via activation of muscarinic M2-and M3-receptor subtypes (M2R and M3R). Cholinergic hypersensitivity is associated with chronic obstructive pulmonary disease and asthma, and therefore the identification of muscarinic signaling pathways are of great therapeutic interest. A pathway that has been shown to be activated via MR and to increase [Ca2+]i includes the activation of sphingosine kinases (SPHK) and the generation of the bioactive sphingolipid sphingosine 1-phosphate (S1P). Whether the SPHK/S1P signaling pathway is integrated in the muscarinic control of peripheral airways is not known.

Methods

To address this issue, we studied precision cut lung slices derived from FVB and M2R-KO and M3R-KO mice.

Results

In peripheral airways of FVB, wild-type, and MR-deficient mice, SPHK1 was mainly localized to smooth muscle. Muscarine induced a constriction in all investigated mouse strains which was reduced by inhibition of SPHK using D, L-threo-dihydrosphingosine (DHS) and N, N-dimethyl-sphingosine (DMS) but not by N-acetylsphingosine (N-AcS), a structurally related agent that does not affect SPHK function. The initial phase of constriction was nearly absent in peripheral airways of M3R-KO mice when SPHK was inhibited by DHS and DMS but was unaffected in M2R-KO mice. Quantitative RT-PCR revealed that the disruption of the M2R and M3R genes had no significant effect on the expression levels of the SPHK1-isoform in peripheral airways.

Conclusion

These results demonstrate that the SPHK/S1P signaling pathway contributes to cholinergic constriction of murine peripheral airways. In addition, our data strongly suggest that SPHK is activated via the M2R. Given the important role of muscarinic mechanisms in pulmonary disease, these findings should be of considerable therapeutic relevance.  相似文献   

15.

Background

Sustained agonist-promoted ubiquitination of β-arrestin has been correlated with increased stability of the GPCR – β-arrestin complex. Moreover, abrogation of β-arrestin ubiquitination has been reported to inhibit receptor internalization with minimal effects on receptor degradation.

Results

Herein we report that agonist activation of M1 mAChRs produces a sustained β-arrestin ubiquitination but no stable co-localization with β-arrestin. In contrast, sustained ubiquitination of β-arrestin by activation of M2 mAChRs does result in stable co-localization between the M2 mAChR and β-arrestin. Internalization of receptors was unaffected by proteasome inhibitors, but down-regulation was significantly reduced, suggesting a role for the ubiquitination machinery in promoting down-regulation of the receptors. Given the ubiquitination status of β-arrestin following agonist treatment, we sought to determine the effects of β-arrestin ubiquitination on M1 and M2 mAChR down-regulation. A constitutively ubiquitinated β-arrestin 2 chimera in which ubiquitin is fused to the C-terminus of β-arrestin 2 (YFP-β-arrestin 2-Ub) significantly increased agonist-promoted down-regulation of both M1 and M2 mAChRs, with the effect substantially higher on the M2 mAChR. Based on this observation, we were interested in examining the effects of disruption of potential ubiquitination sites in the β-arrestin sequence on receptor down-regulation. Agonist-promoted internalization of the M2 mAChR was not affected by expression of β-arrestin lysine mutants lacking putative ubiquitination sites, β-arrestin 2K18R, K107R, K108R, K207R, K296R, while down-regulation and stable co-localiztion of the receptor with this β-arrestin lysine mutant were significantly reduced. Interestingly, expression of β-arrestin 2K18R, K107R, K108R, K207R, K296R increased the agonist-promoted down-regulation of the M1 mAChR but did not result in a stable co-localiztion of the receptor with this β-arrestin lysine mutant.

Conclusion

These findings indicate that ubiquitination of β-arrestin has a distinct role in the differential trafficking and degradation of M1 and M2 mAChRs.  相似文献   

16.
17.
Abstract

Our previous data indicate that M3 muscarinic receptors mediate carbachol induced bladder contractions. The data presented here were obtained by selective alkylation of M3 receptors with 4-DAMP mustard and suggest that the M2 receptor subtype may be involved in inhibition of β-adrenergic receptor induced relaxation, therefore, allowing recontraction. Alkylation resulted in 85% of M3 receptors and 65% of M2 receptors unable to bind radioligand as demonstrated by subtype selective immunoprecipitation. Rat bladder strips subjected to our alkylation procedure contracted submaximally, and direct carbachol contractions were inhibited by antagonists with affinities consistent with M3 receptor mediated contraction. In contrast, the affinities of antagonists for inhibition of carbachol induced recontractions following isoproterenol stimulated relaxation in the presence of 90 mM KCI, indicated a contractile function for the M2 receptor that was not observed in control strips. In conclusion, these studies demonstrate a possible role for the M2 subtype in bladder smooth muscle contraction.  相似文献   

18.
Studies have demonstrated the presence of allosteric binding sites on each of the muscarinic acetylcholine receptor (mAChR) subtypes. Since most drugs targeting muscarinic receptors bind to the highly conserved orthosteric binding site, they fail to achieve appreciable subtype selectivity. Targeting non-conserved allosteric sites may provide a new way of enhancing selectivity for individual subtypes of muscarinic receptor. Tetra(ethyleneglycol)(3-methoxy-1,2,5-thiadiazol-4-yl)[3-(1-methyl-1,2,5,6-tetrahydropyrid-3-yl)-1,2,5-thiadiazol-4-yl] ether, CDD-0304 (10), was found to be a M1/2/4 selective muscarinic agonist and might prove useful in treating the symptoms associated with schizophrenia (J. Med. Chem. 2003, 46, 4273). It was hypothesized that the observed subtype selectivity demonstrated by 10 may be due to its ability to function as a bitopic ligand (J. Med. Chem. 2006, 49, 7518). To further investigate this possibility, a novel series of compounds was synthesized using a 1,2,5-thiadiazole moiety along with varying lengths of a polyethylene glycol linker and terminal groups, for evaluation as potential allosteric modulators of muscarinic receptors. Preliminary biological studies were performed using carbachol to stimulate M1 and M5 receptors. No significant agonist activity was observed at either M1 or M5 receptors for any of the compounds. Compound 18, 2-(4-methoxy-1,2,5-thiadiazol-3-yloxy)-N,N-dimethylethanamine fumarate (CDD-0361F) was found to block the effects of carbachol at M5 muscarinic receptors.  相似文献   

19.
20.
The effects of the organophosphorus anticholinesterase paraoxon on the binding of radioactive ligands to the M3 subtype of the muscarinic receptor and receptor-coupled synthesis of second messengers in intact rat submaxillary gland (SMG) cells were investigated. The binding of [3H]quinuclidinyl benzilate ([3H]QNB) was most sensitive to atropine and the M3-specific antagonist 4-DAMP followed by pirenzepine and least sensitive to the cardioselective M2 antagonist AFDX116. This, and the binding characteristics of [3H]4-DAMP, confirmed that the muscarinic receptors in this preparation are of the M3 subtype. Activation of these muscarinic receptors by carbamylcholine (CBC) produced both stimulation of phosphoinositide (PI) hydrolysis and inhibition of cAMP synthesis, suggesting that this receptor subtype couples to both effector systems. Paraoxon (100 μM) reduced Bmax of [3H]4-DAMP binding from 27 ± 4 to 13 ± 3 fmol/mg protein with nonsignificant change in affinity, suggesting noncompetitive inhibition of binding by paraoxon. Like the agonist CBC, paraoxon inhibited the forskolininduced cAMP formation in SMG cells with an EC50 of 200 nM, but paraoxon was > 500 fold more potent than CBC. However, while the inhibition by CBC was counteracted by 2 μM atropine, that by paraoxon was unaffected by up to 100 μM atropine. It suggested that this effect of paraoxon was not via binding to the muscarinic receptor. Paraoxon did not affect β-adrenoreceptor function in the preparation, since it did not affect the 10 μM isoproterenol-induced cAMP synthesis, which was inhibited totally by 10 μM propranolol and partially by CBC. Paraoxon had a small but significant effect on CBC-stimulated PI metabolism in the SMG cells. It is suggested that paraoxon binds to two different sites in these SMG cells. One is an allosteric site on the M3 muscarinic receptor which affects ligand binding and may modulate receptor function. The other site may be on the Gi proteinadenylyl cyclase system, and produces CBC-like action, that is, inhibition of the forskolin-stimulated [3H]cAMP synthesis, and is unaffected by atropine inhibition of the muscarinic receptor. This adds to the complexity of paraoxon actions on muscarinic receptors and their effector systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号