共查询到20条相似文献,搜索用时 15 毫秒
1.
IκB kinase (IKK) complex, the master kinase for NF-κB activation, contains two kinase subunits, IKKα and IKKβ. In addition to mediating NF-κB signaling by phosphorylating IκB proteins during inflammatory and immune responses, the activation of the IKK complex also responds to various stimuli to regulate diverse functions independently of NF-κB. Although these two kinases share structural and biochemical similarities, different sub-cellular localization and phosphorylation targets between IKKα and IKKβ account for their distinct physiological and pathological roles. While IKKβ is predominantly cytoplasmic, IKKα has been found to shuttle between the cytoplasm and the nucleus. The nuclear-specific roles of IKKα have brought increasing complexity to its biological function. This review highlights major advances in the studies of the nuclear functions of IKKα and the mechanisms of IKKα nuclear translocation. Understanding the nuclear activity is essential for targeting IKKα for therapeutics. 相似文献
2.
Activation of NF-κB by alloferon through down-regulation of antioxidant proteins and IκBα 总被引:1,自引:0,他引:1
Ryu MJ Anikin V Hong SH Jeon H Yu YG Yu MH Chernysh S Lee C 《Molecular and cellular biochemistry》2008,313(1-2):91-102
Alloferon is a 13-amino acid peptide isolated from the bacteria-challenged larvae of the blow fly Calliphora vicina. The pharmaceutical value of the peptide has been well demonstrated by its capacity to stimulate NK cytotoxic activity and interferon (IFN) synthesis in animal and human models, as well as to enhance antiviral and antitumor activities in mice. Antiviral and the immunomodulatory effectiveness of alloferon have also been supported clinically proved in patients suffering with herpes simplex virus (HSV) and human papilloma virus (HPV) infections. To elucidate molecular response to alloferon treatment, we initially screened a model cell line in which alloferon enhanced IFN synthesis upon viral infection. Among the cell lines tested, Namalva was chosen for further proteomic analysis. Fluorescence difference gel electrophoresis (DIGE) revealed that the levels of a series of antioxidant proteins decreased after alloferon treatment, while at least three glycolytic enzymes and four heat-shock proteins were increased in their expression levels. Based on the result of our proteomic analysis, we speculated that alloferon may activate the NF-kappaB signaling pathway. IkappaB kinase (IKK) assay, Western blot analysis on IkappaBalpha and its phosphorylated form at Ser 32, and an NF-kappaB reporter assay verified our proteomics-driven hypothesis. Thus, our results suggest that alloferon potentiates immune cells by activating the NF-kappaB signaling pathway through regulation of redox potential. Since NF-kappaB activation is involved in IFN synthesis, our results provide further clues as to how the alloferon peptide may stimulate IFN synthesis. 相似文献
3.
Inhibitor of NF-κB (IκB) is an important member of Rel/NF-κB signaling pathway, which is an important mediator of immune responses in innate immune system. In this study, the IκB cDNA of hard clam Meretrix meretrix (designated as Mm-IκB) was cloned and characterized. The full-length cDNA of Mm-IκB was of 2098 bp, containing a 5' untranslated region (UTR) of 123 bp, a 3' UTR of 810 bp with a poly (A) tail, and an open reading frame (ORF) of 1164 bp encoding a polypeptide of 387 amino acids. The high similarity of Mm-IκB with other IκBs from invertebrates indicated that Mm-IκB should be a member of IκB family. Similar to most IκBs, Mm-IκB possessed all conserved features critical for the fundamental structure and function of IκBs, such as five ankyrin repeats and a conserved degradation motif (DS(44)RYSS(48)). Two PEST domains and a phosphorylation site motif (S(367)EEE(370)) at the C-terminus of Mm-IκB were identified. By quantitative real-time RT-PCR analysis, mRNA level of Mm-IκB was found to be most abundantly expressed in the tissues of mantle, gill and hepatopancreas, weakly expressed in muscle, foot and haemocyte. The Mm-IκB gene expression was significantly up-regulated at 24 h in haemocyte and at 12 h in gill after Vibrio anguillarum challenge, respectively. The results suggested the involvement of Mm-IκB in response against bacterial infection and further highlighted its functional importance in the immune system of M. meretrix. 相似文献
4.
Juvekar A Manna S Ramaswami S Chang TP Vu HY Ghosh CC Celiker MY Vancurova I 《Molecular cancer research : MCR》2011,9(2):183-194
Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters. 相似文献
5.
Masahiro Kumeta Yuya Hirai Shige H. Yoshimura Tsuneyoshi Horigome Kunio Takeyasu 《Experimental cell research》2013,319(20):3226-3237
To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do not take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. 相似文献
6.
Carina Proença Marisa Freitas Daniela Ribeiro Eduardo F. T. Oliveira Joana L. C. Sousa Sara M. Tomé 《Journal of enzyme inhibition and medicinal chemistry》2017,32(1):1216-1228
α-Glucosidase inhibitors are described as the most effective in reducing post-prandial hyperglycaemia (PPHG) from all available anti-diabetic drugs used in the management of type 2 diabetes mellitus. As flavonoids are promising modulators of this enzyme’s activity, a panel of 44 flavonoids, organised in five groups, was screened for their inhibitory activity of α-glucosidase, based on in vitro structure–activity relationship studies. Inhibitory kinetic analysis and molecular docking calculations were also applied for selected compounds. A flavonoid with two catechol groups in A- and B-rings, together with a 3-OH group at C-ring, was the most active, presenting an IC50 much lower than the one found for the most widely prescribed α-glucosidase inhibitor, acarbose. The present work suggests that several of the studied flavonoids have the potential to be used as alternatives for the regulation of PPHG. 相似文献
7.
8.
9.
Regenerating rat liver DNA polymerases: disimilitude or relationship between nuclear and cytoplasmic enzymes? 总被引:2,自引:1,他引:2
下载免费PDF全文

The possible relationship between the nuclear and cytoplasmic DNA polymerases of regenerating rat liver was studied by sucrose gradient analysis, salt dissociation, and with specific inhibitors. After aqueous subcellular fractionation and removal of the nuclear membranes, three species of DNA-dependent DNA polymerases were characterized: 1) a DNA polymerase-beta in the nuclei. 2) a DNA polymerase-alpha in the cytosol which was not dissociated at high salt concentrations; and 3) an intermediate form in the cytosol and in the Triton wash containing the nuclear membranes. The latter form behaved like DNA polymerase-alpha et low salt concentration but was dissociated at high salt concentrations to a low molecular weight species with properties like DNA polymerase-beta (resistance to inhibition by N-ethylmaleimide, heparin and KCL). In vitro reassociation experiments suggest that this intermediate form corresponds to the association of DNA polymerase-beta with a membrane component or cytoplasmic protein(s) which appear(s) in regenerating rat liver. 相似文献
10.
Daniel Schraivogel Susann G. Schindler Johannes Danner Elisabeth Kremmer Janina Pfaff Stefan Hannus Reinhard Depping Gunter Meister 《Nucleic acids research》2015,43(15):7447-7461
MicroRNAs (miRNAs) guide Argonaute (Ago) proteins to distinct target mRNAs leading to translational repression and mRNA decay. Ago proteins interact with a member of the GW protein family, referred to as TNRC6A-C in mammals, which coordinate downstream gene-silencing processes. The cytoplasmic functions of TNRC6 and Ago proteins are reasonably well established. Both protein families are found in the nucleus as well. Their detailed nuclear functions, however, remain elusive. Furthermore, it is not clear which import routes Ago and TNRC6 proteins take into the nucleus. Using different nuclear transport assays, we find that Ago as well as TNRC6 proteins shuttle between the cytoplasm and the nucleus. While import receptors might function redundantly to transport Ago2, we demonstrate that TNRC6 proteins are imported by the Importin-β pathway. Finally, we show that nuclear localization of both Ago2 and TNRC6 proteins can depend on each other suggesting actively balanced cytoplasmic Ago – TNRC6 levels. 相似文献
11.
The IκB kinase (IKK) complex is the signal integration hub for NF-κB activation. Composed of two serine-threonine kinases (IKKα and IKKβ) and the regulatory subunit NEMO (also known as IKKγ), the IKK complex integrates signals from all NF-κB activating stimuli to catalyze the phosphorylation of various IκB and NF-κB proteins, as well as of other substrates. Since the discovery of the IKK complex components about 15 years ago, tremendous progress has been made in the understanding of the IKK architecture and its integration into signaling networks. In addition to the control of NF-κB, IKK subunits mediate the crosstalk with other pathways, thereby extending the complexity of their biological function. This review summarizes recent advances in IKK biology and focuses on emerging aspects of IKK structure, regulation and function. 相似文献
12.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(2):370-374
Carbonic anhydrases (CAs, EC 4.2.1.1) are inhibited by sulfonamides, inorganic anions, phenols, salicylic acid derivatives (acting as drug or prodrugs). A novel class of CA inhibitors (CAIs), interacting with the CA isozymes I and II (cytosolic) in a different manner, is reported here. Kinetic measurements allowed us to identify thiazolidin-based compounds as submicromolar-low micromolar inhibitors of these two CA isozymes. Molecular docking studies of a set of such inhibitors within CA I and II active site allowed us to understand the inhibition mechanism. This new class of inhibitors bind differently compared to other classes of inhibitors known to date: they were found between the phenol-binding site, filling thus the middle of the enzyme cavity. 相似文献
13.
Elicitins form a family of 10-kDa holoproteins secreted by various Phytophthora species. The large-scale purification of parasiticein, a novel elicitin secreted by P. parasitica, led to the determination of its sequence. We have compared the necrotic activities and the primary and secondary structures (determined through circular dichroism) of four elicitins. On tobacco plants, they could be classified into two classes: a, comprising capsicein and parasiticein (less necrotic), and , comprising cryptogein and cinnamomin (very toxic with a necrosis threshold of 0.1 g per leaf). The features of elicitin structure which might be involved in the interaction of elicitins with the leaf target cells and that could explain the different necrosis-inducing properties of the two proteins are investigated. About 75% sequence identity was observed between the four elicitins: only two short terminal regions are heterologous, while the central core is mainly conserved. The circular-dichroism spectra showed that the secondary structure of the elicitins was largely conserved. All of them consisted of approx. 50% -helix with little or no -structure. Comparisons of the complete sequences, amino-acid compositions, isoelectric points, hydropathy indices and the secondary-structure predictions correlated with the necrotic classification. Alpha elicitins corresponded to acidic molecules with a valine residue at position 13, while elicitins were basic with a lysine at this position, which appeared to be a putative active site responsible for necrosis induction.Abbreviations CD
circular dichroism
- RPLC
reversed-phase liquid chromatography
- SDS-PAGE
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
The authors are indebted to Dr. A. Van Dorrselaer (Laboratoire de Chimie Organique des Substances Naturelles, Strasbourg, France) for mass-spectrometry measurements. They are grateful to their staff in Versailles, more particularly to Marc Sallantin for electrophoreses, to Françoise Beauvais for biological-activity determinations and to Monique Mansion and Christian Ouali for their skilful technical assistance. 相似文献
14.
15.
The class of ß-lactam antibiotics has proven highly efficient in targeting bacterial penicillin-binding proteins (PBP) leading to the blocking of the bacterial cell wall synthesis. However, the benefit of these drugs is limited because of bacterial resistance mechanisms; the most widespread resistance involves ß-lactamase enzymes (ßLACT) that inactivate ß-lactam-based molecules. We focused on PBPs and ßLACTs from enterobacteria, and performed a detailed in silico study of PBPs whose inactivation is lethal for the bacteria and of ßLACTs that have a PBP-type catalytic mechanism. The comparison of the sequences and structures of PBPs and ßLACTs shows an almost perfect conservation of the catalytic site, and a high spatial resemblance of the whole functional cavity despite a very low overall sequence identity. Some notable differences in the functional cavity were observed in the vicinity of the catalytic site: four tyrosines are well conserved in the PBPs, whereas the residues occurring at equivalent positions in the ßLACT families present other physicochemical properties. These tyrosines are thus good candidates to be targeted in designing new antibiotic molecules with increased affinity and specificity for PBPs, with the goal of overcoming drug resistance. Our analysis also identified residues that have similar characteristics in most ßLACT families and different properties in PBPs; these are interesting targets for new ligands that specifically inhibit ßLACT proteins. The in silico approach presented here can be extended to other protein systems in view of guiding and improving rational drug design. 相似文献
17.
《Bioorganic & medicinal chemistry》2014,22(4):1285-1302
We recently reported on a series of retinoid-related molecules containing an adamantyl group, a.k.a. adamantyl arotinoids (AdArs), that showed significant cancer cell growth inhibitory activity and activated RXRα (NR2B1) in transient transfection assays while devoid of RAR transactivation capacity. We have now explored whether these AdArs could also bind and inhibit IKKβ, a known target that mediates the induction of apoptosis and cancer cell growth inhibition by related AdArs containing a chalcone functional group. In addition, we have prepared and evaluated novel AdArs that incorporate a central heterocyclic ring connecting the adamantyl-phenol and the carboxylic acid at the polar termini. Our results indicate that the majority of the RXRα activating compounds lacked IKKβ inhibitory activity. In contrast, the novel heterocyclic AdArs containing a thiazole or pyrazine ring linked to a benzoic acid motif were potent inhibitors of both IKKα and IKKβ, which in most cases paralleled significant growth inhibitory and apoptosis inducing activities. 相似文献
18.
《International journal of biological macromolecules》1986,8(2):89-96
A method to identify β-sheets in globular proteins from extended strands, using only α-carbon positions, has been developed. The strands that form β-sheets are picked up by means of simple distance criteria. The method has been tested by applying it to three proteins with accurately known secondary structures. It has also been applied to ten other proteins wherein only α-carbon coordinates are available, and the list of β-sheets obtained. The following points are worth noting: (i) The sheets identified by the algorithm are found to agree satisfactorily with the reported ones based on backbone hydrogen bonding, wherever this information is available. (ii) β-Strands that do not form parts of any sheet are a common feature of protein structures. (iii) Such isolated β-strands tend to be short. (iv) The conformation corresponding to the preferred right-handed twist of the sheet is overwhelmingly observed in both the sheet-forming and isolated β-strands. 相似文献
19.
20.
NF-κB is an important regulator of immunity and inflammation, and its activation pathway has been studied extensively. The mechanisms that downregulate the activity of NF-κB have also received a lot of attention, particularly since its activity needs to be terminated to prevent chronic inflammation and subsequent tissue damage. The COMMD family has been identified as a new group of proteins involved in NF-κB termination. All ten COMMD members share the structurally conserved carboxy-terminal motif, the COMM domain, and are ubiquitously expressed. They seem to play distinct and non-redundant roles in various physiological processes, including NF-κB signaling. In this review, we describe the mechanisms and proteins involved in the termination of canonical NF-κB signaling, with a specific focus on the role of the COMMD family in the down-modulation of NF-κB. 相似文献