首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent advances have transformed our understanding of lipid droplets (LDs). Once regarded as inert lipid storage granules, LDs are now recognized as multi-functional organelles that affect many aspects of cell biology and metabolism. However, fundamental questions concerning the biogenesis and growth of LDs remain unanswered. Recent studies have uncovered novel modes of LD growth (including rapid/homotypic as well as slow/atypical LD fusion), and identified key proteins (e.g. Fsp27, seipin, FITM2 and perilipin 1) and lipids (e.g. phosphatidylcholine and phosphatidic acid) that regulate the size of LDs. Phospholipids appear to have an evolutionarily conserved role in LD growth. Protein factors may regulate LD expansion directly and/or indirectly through modulating the level and composition of phospholipids on LD surface.  相似文献   

2.
Despite the lipolysis-lipogenesis cycle being a fundamental process in adipocyte biology, very little is known about the morphological changes that occur during this process. The remodeling of lipid droplets to form micro lipid droplets (mLDs) is a striking feature of lipolysis in adipocytes, but once lipolysis ceases, the cell must regain its basal morphology. We characterized mLD formation in cultured adipocytes, and in primary adipocytes isolated from mouse epididymal fat pads, in response to acute activation of lipolysis. Using real-time quantitative imaging and electron tomography, we show that formation of mLDs in cultured adipocytes occurs throughout the cell to increase total LD surface area by ~30% but does not involve detectable fission from large LDs. Peripheral mLDs are monolayered structures with a neutral lipid core and are sites of active lipolysis. Electron tomography reveals preferential association of mLDs with the endoplasmic reticulum. Treatment with insulin and fatty acids results in the reformation of macroLDs and return to the basal state. Insulin-dependent reformation of large LDs involves two distinct processes: microtubule-dependent homotypic fusion of mLDs and expansion of individual mLDs. We identify a physiologically important role for LD fusion that is involved in a reversible lipolytic cycle in adipocytes.  相似文献   

3.
Rab GTPases are crucial regulators of membrane traffic. Here we have examined a possible association of Rab proteins with lipid droplets (LDs), neutral lipid-containing organelles surrounded by a phospholipid monolayer, also known as lipid bodies, which have been traditionally considered relatively inert storage organelles. Although we found close apposition between LDs and endosomal compartments labeled by expressed Rab5, Rab7, or Rab11 constructs, there was no detectable labeling of the LD surface itself by these Rab proteins. In contrast, GFP-Rab18 localized to LDs and immunoelectron microscopy showed direct association with the monolayer surface. Green fluorescent protein (GFP)-Rab18-labeled LDs underwent oscillatory movements in a localized area as well as sporadic, rapid, saltatory movements both in the periphery of the cell and toward the perinuclear region. In both adipocytes and non-adipocyte cell lines Rab18 localized to a subset of LDs. To gain insights into this specific localization, Rab18 was co-expressed with Cav3DGV, a truncation mutant of caveolin-3 shown to inhibit the catabolism and motility of lipid droplets. GFP-Rab18 and mRFP-Cav3DGV labeled mutually exclusive subpopulations of LDs. Moreover, in 3T3-L1 adipocytes, stimulation of lipolysis increased the localization of Rab18 to LDs, an effect reversed by beta-adrenergic antagonists. These results show that a Rab protein localizes directly to the monolayer surface of LDs. In addition, association with the LD surface was increased following stimulation of lipolysis and inhibited by a caveolin mutant suggesting that recruitment of Rab18 is regulated by the metabolic state of individual LDs.  相似文献   

4.
Cytoplasmic lipid droplets (LDs) are found in all types of plant cells; they are derived from the endoplasmic reticulum and function as a repository for neutral lipids, as well as serving in lipid remodelling and signalling. However, the mechanisms underlying the formation, steady‐state maintenance and turnover of plant LDs, particularly in non‐seed tissues, are relatively unknown. Previously, we showed that the LD‐associated proteins (LDAPs) are a family of plant‐specific, LD surface‐associated coat proteins that are required for proper biogenesis of LDs and neutral lipid homeostasis in vegetative tissues. Here, we screened a yeast two‐hybrid library using the Arabidopsis LDAP3 isoform as ‘bait’ in an effort to identify other novel LD protein constituents. One of the candidate LDAP3‐interacting proteins was Arabidopsis At5g16550, which is a plant‐specific protein of unknown function that we termed LDIP (LDAP‐interacting protein). Using a combination of biochemical and cellular approaches, we show that LDIP targets specifically to the LD surface, contains a discrete amphipathic α‐helical targeting sequence, and participates in both homotypic and heterotypic associations with itself and LDAP3, respectively. Analysis of LDIP T‐DNA knockdown and knockout mutants showed a decrease in LD abundance and an increase in variability of LD size in leaves, with concomitant increases in total neutral lipid content. Similar phenotypes were observed in plant seeds, which showed enlarged LDs and increases in total amounts of seed oil. Collectively, these data identify LDIP as a new player in LD biology that modulates both LD size and cellular neutral lipid homeostasis in both leaves and seeds.  相似文献   

5.
Most cells store metabolic energy in lipid droplets (LDs). LDs are composed of a hydrophobic core, covered by a phospholipid monolayer, and functionalized by a specific set of proteins. Formation of LDs takes place in the endoplasmic reticulum (ER), where neutral lipid biosynthetic enzymes are located. Recent evidence indicate that this process is confined to specific ER subdomains, where proteins meet to initiate LD assembly. The lipodystrophy protein Seipin, is emerging as a major coordinator of LD biogenesis. Seipin forms a large oligomeric toroidal structure, which traps neutral lipids to promote LD nucleation. Here, we discuss the role of LD biogenesis factors that associate with Seipin to assemble functional LDs.  相似文献   

6.
Jambunathan S  Yin J  Khan W  Tamori Y  Puri V 《PloS one》2011,6(12):e28614
Fat Specific Protein 27 (FSP27), a lipid droplet (LD) associated protein in adipocytes, regulates triglyceride (TG) storage. In the present study we demonstrate that FSP27 plays a key role in LD morphology to accumulate TGs. We show here that FSP27 promotes clustering of the LDs which is followed by their fusion into fewer and enlarged droplets. To map the domains of FSP27 responsible for these events, we generated GFP-fusion constructs of deletion mutants of FSP27. Microscopic analysis revealed that amino acids 173-220 of FSP27 are necessary and sufficient for both the targeting of FSP27 to LDs and the initial clustering of the droplets. Amino acids 120-140 are essential but not sufficient for LD enlargement, whereas amino acids 120-210 are necessary and sufficient for both clustering and fusion of LDs to form enlarged droplets. In addition, we found that FSP27-mediated enlargement of LDs, but not their clustering, is associated with triglyceride accumulation. These results suggest a model in which FSP27 facilitates LD clustering and then promotes their fusion to form enlarged droplets in two discrete, sequential steps, and a subsequent triglyceride accumulation.  相似文献   

7.
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.  相似文献   

8.
Both the endoplasmic reticulum (ER) and lipid droplets (LDs) are key players in lipid handling. In addition to this functional connection, the two organelles are also tightly linked due to the fact that the ER is the birthplace of LDs. LDs have an atypical architecture, consisting of a neutral lipid core that is covered by a phospholipid monolayer. LD biogenesis starts with neutral lipid synthesis in the ER membrane and formation of small neutral lipid lenses between its leaflets, followed by budding of mature LDs toward the cytosol.Several ER proteins have been identified that are required for efficient LD formation, among them seipin, Pex30, and FIT2. Recent evidence indicates that these LD biogenesis factors might cooperate with specific lipids, thus generating ER subdomains optimized for LD assembly. Intriguingly, LD biogenesis reacts dynamically to nutrient stress, resulting in a spatial reorganization of LD formation in the ER.  相似文献   

9.
Lipid droplets (LDs) are key cellular organelles involved in lipid storage and mobilisation. While the major signalling cascades and many of the regulators of lipolysis have been identified, the cellular interactions involved in lipid mobilisation and release remain largely undefined. In non-adipocytes, LDs are small, mobile and interact with other cellular compartments. In contrast, adipocytes primarily contain very large, immotile LDs. The striking morphological differences between LDs in adipocytes and non-adipocytes suggest that key differences must exist in the manner in which LDs in different cell types interact with other organelles. Recent studies have highlighted the complexity of LD interactions, which can be both homotypic, with each other, and heterotypic, with other organelles. The molecules involved in these interactions are also now emerging, including Rab proteins, key regulators of membrane traffic, and caveolin, an integral membrane protein providing a functional link between the cell surface and LDs. Here we summarise recent insights into the cell biology of the LD particularly focussing on the homotypic and heterotypic interactions in both adipocytes and non-adipocytes. We speculate that these interactions may involve inter-organelle membrane contact sites or a hemi-fusion type mechanism to facilitate lipid transfer.  相似文献   

10.
Lipid droplets (LDs) are storage organelles consisting of a neutral lipid core surrounded by a phospholipid monolayer and a set of LD-specific proteins. Most LD components are synthesized in the endoplasmic reticulum (ER), an organelle that is often physically connected with LDs. How LD identity is established while maintaining biochemical and physical connections with the ER is not known. Here, we show that the yeast seipin Fld1, in complex with the ER membrane protein Ldb16, prevents equilibration of ER and LD surface components by stabilizing the contact sites between the two organelles. In the absence of the Fld1/Ldb16 complex, assembly of LDs results in phospholipid packing defects leading to aberrant distribution of lipid-binding proteins and abnormal LDs. We propose that the Fld1/Ldb16 complex facilitates the establishment of LD identity by acting as a diffusion barrier at the ER–LD contact sites.  相似文献   

11.
Lipid droplets (LDs), the major intracellular storage sites for neutral lipids, consist of a neutral lipid core surrounded by a phospholipid monolayer membrane. In addition to their function in lipid storage, LDs participate in lipid biosynthesis and recently were implicated in proteasomal protein degradation and autophagy. To identify components of the protein degradation machinery on LDs, we studied several candidates identified in previous LD proteome analyses. Here, we demonstrate that the highly conserved and broadly expressed ancient ubiquitous protein 1 (AUP1) localizes to LDs, where it integrates into the LD surface in a monotopic fashion with both termini facing the cytosol. AUP1 contains a C-terminal domain with strong homology to a domain known as G2BR, which binds E2 ubiquitin conjugases. We show that AUP1, by means of its G2BR domain, binds to Ube2g2. This binding is abolished by deletion or mutation of the G2BR domain, although the LD localization of AUP1 is not affected. The presence of the AUP1-Ube2g2 complex at LDs provides a direct molecular link between LDs and the cellular ubiquitination machinery.  相似文献   

12.
Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process.  相似文献   

13.
对脂肪滴的新认识   总被引:1,自引:0,他引:1  
早在 1674 年, van Leeuwenhoeck 就首次在牛奶里发现了脂肪滴 . 从那以后, 300 多年过去了,有关脂肪滴的许多根本问题仍然没有得到解决 . 迄今,除有为数不多的几个脂肪滴表面蛋白被发现外,人类对脂肪滴的认识仍停留在其作为中性脂贮存器上 . 为了更好地认识脂肪滴,我们以及其他几个研究小组分别从不同细胞中纯化了脂肪滴,然后使用质谱蛋白分析对这些脂肪滴的蛋白质进行了蛋白质组学研究,从中发现了两组非常有意义的功能蛋白 . 一组是与脂肪合成及代谢有关的酶,另一组则是与膜转运有关的蛋白质 . 尽管这些实验使用了不同的细胞,而且是由不同实验室分别完成的,但结果却非常相似 . 这些发现表明,脂肪滴有可能是一种具有生理代谢活性的非常复杂的细胞器 . 同时,它有可能参与细胞内的脂肪合成、代谢及转运 . 这篇综述将重点介绍近年来的脂肪滴蛋白质组学研究进展,以及由此推测的脂肪滴的生理功能 . 如果读者希望了解脂肪滴的其他方面内容,请阅读 Denis Murphy 发表于 2001 年的一篇非常完整的综述 .  相似文献   

14.
Dysregulation of lipid homeostasis leads to the development of metabolic disorders including obesity, diabetes, cardiovascular disease and cancer. Lipid droplets (LDs) are subcellular organelles vital in the maintenance of lipid homeostasis by coordinating lipid synthesis, lipid storage, lipid secretion and lipolysis. Under fed condition, free fatty acids (FFAs) are remodeled and esterified into neutral lipids by lipogenesis and stored in the LDs. The lipid storage capacity of LDs is controlled by its growth via local lipid synthesis or by LD fusion. During fasting, neutral lipids are hydrolyzed by lipolysis, released as FFAs and secreted to meet energy demand. C ell death‐i nducing D NA fragmentation factor alpha (DFFA)‐like e ffector (CIDE) family proteins composed of Cidea, Cideb and Cidec/Fsp27 are ER‐ and LD‐associated proteins and have emerged as important regulators of lipid homeostasis. Notably, when localized on the LDs, CIDE proteins enrich at the LD‐LD contact sites (LDCSs) and control LD fusion and growth. Here, we summarize these recent advances made on the role of CIDE proteins in the regulation of lipid metabolism with a particular focus on the molecular mechanisms underlying CIDE‐mediated LD fusion and growth.  相似文献   

15.
During the adipogenic differentiation process of mesenchymal stem cells, lipid droplets (LDs) grow slowly by transferring lipids between each other. Recent findings hint at the possibility that a fusion pore is involved. In this study, we analyze lipid transfer data obtained in long-term label-free microscopy studies in the framework of a Hagen-Poiseuille model. The data obtained show a LD fusion process in which the lipid transfer directionality depends on the size difference between LDs, whereas the respective rates depend on the size difference and additionally on the diameter of the smaller LDs. For the data analysis, the viscosity of the transferred material has to be known. We demonstrate that a viscosity-dependent molecular rotor dye can be used to measure LD viscosities in live cells. On this basis, we calculate the diameter of a putative lipid transfer channel which appears to have a direct dependence on the diameter of the smaller of the two participating LDs.  相似文献   

16.
Lipid droplets (LDs) are common organelles observed in Eucaryota. They are multifunctional organelles (involved in lipid storage, metabolism, and trafficking) that originate from endoplasmic reticulum (ER). LDs consist of a neutral lipid core, made up of diacyl- and triacylglycerols (DAGs and TAGs) and cholesterol esters (CEs), surrounded by a phospholipid monolayer and proteins, which are necessary for their structure and dynamics.Here, we report the protein and lipid composition as well as characterization and dynamics of grass snake (Natrix natrix) skeletal muscle LDs at different developmental stages. In the present study, we used detailed morphometric, LC-MS, quantitative lipidomic analyses of LDs isolated from the skeletal muscles of the snake embryos, immunofluorescence, and TEM.Our study also provides a valuable insight concerning the LDs' multifunctionality and ability to interact with a variety of organelles. These LD features are reflected in their proteome composition, which contains scaffold proteins, metabolic enzymes signalling polypeptides, proteins necessary for the formation of docking sites, and many others. We also provide insights into the biogenesis and growth of muscle LDs goes beyond the conventional mechanism based on the synthesis and incorporation of TAGs and LD fusion. We assume that the formation and functioning of grass snake muscle LDs are based on additional mechanisms that have not yet been identified, which could be related to the unique features of reptiles that are manifested in the after-hatching period of life, such as a reptile-specific strategy for energy saving during hibernation.  相似文献   

17.
摘要 目的:研究细胞内脂滴含量的变化对肥胖、糖尿病等代谢性疾病发生发展的影响。方法:建立高内涵脂滴三维成像和定量分析系统,获得脂滴三维动态表型参数,例如细胞内脂滴的总体积量、脂滴平均体积、单一细胞内脂滴平均数量等指标。选择HeLa、AML-12、COS-7和3T3-L1四种细胞系进行油酸、基因沉默、酶活性抑制剂的处理,量化处理后四种细胞内的脂滴数量与大小的表型差异。结果:在加入油酸情况下,细胞随油酸浓度增加而生成更多、更大的脂滴,但AML-12细胞只有展现增加脂滴数量的变化表型;在HeLa细胞中进行19种中性脂合成通路上关键基因的转录表达沉默,发现需要同时双敲降两种甘油三酯合成酶DGAT1和DGAT2才能显着降低细胞内脂滴总体积储存量,但在COS-7细胞中只需要单敲降DGAT1即可降低脂滴存量;进一步使用了DGAT1/2抑制剂处理四种细胞后,发现对抑制剂响应可区分为两类细胞分组(HeLa、AML-12与COS-7、3T3-L1)的脂滴存量表型差异,其原因是DGAT1和DGAT2的转录表达谱在这两类细胞分组中的不同。结论:建立了高内涵脂滴三维成像和定量分析系统,量化了四种细胞系的脂滴数量与大小的表型差异,揭示了细胞的脂滴脂储存方式与蛋白酶表达谱的关系。  相似文献   

18.
Lipid droplets (LDs) are ubiquitous cellular organelles for lipid storage which are composed of a neutral lipid core bounded by a protein decorated phospholipid monolayer. Although lipid storage is their most obvious function, LDs are far from inert as they participate in maintaining lipid homeostasis through lipid synthesis, metabolism, and transportation. Furthermore, they are involved in cell signaling and other molecular events closely associated with human disease such as dyslipidemia, obesity, lipodystrophy, diabetes, fatty liver, atherosclerosis, and others. The last decade has seen a great increase in the attention paid to LD biology. Regardless, many fundamental features of LD biology remain obscure. In this review, we will discuss key aspects of LD biology including their biogenesis, growth and regression. We will also summarize the current knowledge about the role LDs play in human disease, especially from the perspective of the dynamics of the associated proteins. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   

19.
In many different cell types neutral lipids can be stored in lipid droplets (LDs). Nowadays, LDs are viewed as dynamic organelles, which store and release fatty acids depending on energy demand (LD dynamics). Proteins like perilipin 2 (PLIN2) and PLIN5 decorate the LD membrane and are determinants of LD lipolysis and fat oxidation, thus affecting LD dynamics. Trained athletes and type 2 diabetes (T2D) patients both have high levels of intramyocellular lipid (IMCL). While IMCL content scales negatively with insulin resistance, athletes are highly insulin sensitive in contrast to T2D patients, the so-called athlete's paradox. Differences in LD dynamics may be an underlying factor explaining the athlete's paradox. We aimed to quantify PLIN2 and PLIN5 content at individual LDs as a reflection of the ability to switch between fatty acid release and storage depending on energy demand. Thus, we developed a novel fluorescent super-resolution microscopy approach and found that PLIN2 protein abundance at the LD surface was higher in T2D patients than in athletes. Localization of adipocyte triglyceride lipase (ATGL) to the LD surface was lower in LDs abundantly decorated with PLIN2. While PLIN5 abundance at the LD surface was similar in athletes and T2D patients, we have observed previously that the number of PLIN5 decorated LDs was higher in athletes, indicating more LDs in close association with mitochondria. Thus, in athletes interaction of LDs with mitochondria was more pronounced and LDs have the protein machinery to be more dynamic, while in T2D patients the LD pool is more inert. This observation contributes to our understanding of the athlete's paradox.  相似文献   

20.
Synthesis, storage, and turnover of triacylglycerols (TAGs) in adipocytes are critical cellular processes to maintain lipid and energy homeostasis in mammals. TAGs are stored in metabolically highly dynamic lipid droplets (LDs), which are believed to undergo fragmentation and fusion under lipolytic and lipogenic conditions, respectively. Time lapse fluorescence microscopy showed that stimulation of lipolysis in 3T3-L1 adipocytes causes progressive shrinkage and almost complete degradation of all cellular LDs but without any detectable fragmentation into micro-LDs (mLDs). However, mLDs were rapidly formed after induction of lipolysis in the absence of BSA in the culture medium that acts as a fatty acid scavenger. Moreover, mLD formation was blocked by the acyl-CoA synthetase inhibitor triacsin C, implicating that mLDs are synthesized de novo in response to cellular fatty acid overload. Using label-free coherent anti-Stokes Raman scattering microscopy, we demonstrate that LDs grow by transfer of lipids from one organelle to another. Notably, this lipid transfer between closely associated LDs is not a rapid and spontaneous process but rather occurs over several h and does not appear to require physical interaction over large LD surface areas. These data indicate that LD growth is a highly regulated process leading to the heterogeneous LD size distribution within and between individual cells. Our findings suggest that lipolysis and lipogenesis occur in parallel in a cell to prevent cellular fatty acid overflow. Furthermore, we propose that formation of large LDs requires a yet uncharacterized protein machinery mediating LD interaction and lipid transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号