首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ras GTPase-activating protein p120GAP is a multidomain protein consisting of a variety of noncatalytic domains that may be involved in its regulation. RACK1 is a membrane-associated protein that binds the C2 domain of PKC and is related in sequence to the beta subunit of heterotrimeric G-proteins which has been implicated in binding to PH domains. Because p120GAP contains both PH and C2/CaLB domains we determined whether it is also a RACK1 binding protein. Coimmunoprecipitation experiments indicate that p120GAP associates with RACK1, whereas PH or C2/CaLB domain deletion mutants do not. A fusion protein containing the GAP PH domain bound to endogenous RACK1 in lysates in a concentration-dependent manner and directly associated with recombinant RACK1. Finally, serine/threonine phosphorylation appears to be involved in regulating this association. These results suggest that p120GAP and RACK1 interact in vivo in a manner dependent upon both the PH and C2/CaLB domains of GAP.  相似文献   

2.
The GTPase activating protein, p120GAP, contains an amino acid sequence motif called the Ca2+-dependent lipid binding domain (CaLB) which mediates a protein-protein interaction between p120GAP and annexin VI and also binds to negatively charged phospholipids. Because membrane association of p120GAP is important for the regulation of p21 Ras activity, we have studied the roles played by Ca2+, phospholipids and annexin VI in the membrane association of p120GAP. Here we demonstrate that a truncated CaLB domain GST fusion protein (GSTGAP618-632), lacking the ability to bind to phospholipids, is able to bind to rat fibroblast membranes in a Ca2+- and concentration-dependent manner. In addition, this fusion protein also binds to annexin VI in an amino acid sequence specific but Ca2+ independent manner. Also, when bound to annexin VI in the presence of Ca2+, this fusion protein has the ability to co-bind to phosphatidylserine vesicles. Thus, annexin VI may simultaneously mediate an interaction with p120GAP and also an interaction with membrane phospholipids. This may in part explain the mechanism by which p120GAP associates with membranes in response to Ca2+ elevation and suggests the potential importance of annexin VI in the regulation of p21 Ras and the role CaLB domains may play in the specific recognition of cellular membranes.  相似文献   

3.
Galpha(i)-coupled receptor stimulation results in epidermal growth factor receptor (EGFR) phosphorylation and MAPK activation. Regulators of G protein signaling (RGS proteins) inhibit G protein-dependent signal transduction by accelerating Galpha(i) GTP hydrolysis, shortening the duration of G protein effector stimulation. RGS16 contains two conserved tyrosine residues in the RGS box, Tyr(168) and Tyr(177), which are predicted sites of phosphorylation. RGS16 underwent phosphorylation in response to m2 muscarinic receptor or EGFR stimulation in HEK 293T or COS-7 cells, which required EGFR kinase activity. Mutational analysis suggested that RGS16 was phosphorylated on both tyrosine residues (Tyr(168) Tyr(177)) after EGF stimulation. RGS16 co-immunoprecipitated with EGFR, and the interaction did not require EGFR activation. Purified EGFR phosphorylated only recombinant RGS16 wild-type or Y177F in vitro, implying that EGFR-mediated phosphorylation depended on residue Tyr(168). Phosphorylated RGS16 demonstrated enhanced GTPase accelerating (GAP) activity on Galpha(i). Mutation of Tyr(168) to phenylalanine resulted in a 30% diminution in RGS16 GAP activity but completely eliminated its ability to regulate G(i)-mediated MAPK activation or adenylyl cyclase inhibition in HEK 293T cells. In contrast, mutation of Tyr(177) to phenylalanine had no effect on RGS16 GAP activity but also abolished its regulation of G(i)-mediated signal transduction in these cells. These data suggest that tyrosine phosphorylation regulates RGS16 function and that EGFR may potentially inhibit Galpha(i)-dependent MAPK activation in a feedback loop by enhancing RGS16 activity through tyrosine phosphorylation.  相似文献   

4.
In previous studies examining the potential role of pp60c-src in cellular proliferation, we demonstrated that C3H10T1/2 murine embryo fibroblasts overexpressing transfected chicken genomic c-src displayed an epidermal growth factor (EGF)-induced mitogenic response which was 200 to 500% of the response exhibited by parental control cells (Luttrell et al., Mol. Cell. Biol. 8:497-501, 1988). In order to examine specific structural and functional requirements for pp60c-src in this event, 10T1/2 cells were transfected with chicken c-src genes encoding pp60c-src deficient in tyrosine kinase activity (pm430), myristylation, (pm2A), or a domain hypothesized to modulate the interaction with substrates or regulatory components (dl155). Neomycin-resistant clonal cell lines overexpressing each of the mutated c-src genes were assayed for EGF mitogenic responsiveness by measuring [3H]thymidine incorporation into acid-precipitable material or into labeled nuclei. The results were compared with those obtained with lines overexpressing the cDNA form of wild-type (wt) c-src or control cells transfected with the neomycin resistance gene only. As previously described for cells overexpressing wt genomic c-src (Luttrell et al., 1988), clones overexpressing wt cDNA c-src also exhibited enhanced EGF mitogenic responses ranging from approximately 300 to 400% of the control cell response. In contrast, clones overexpressing unmyristylated, modulation-defective, or kinase-deficient c-src not only failed to support an augmented response to EGF but also exhibited EGF responses lower than that of the control cells. Furthermore, there were no significant differences in the mitogenic responses to 10% fetal calf serum among any of the cells tested. These results indicate that pp60(c-scr) can potentiate mitogenic signaling generated by EGF but not all growth factors. This potentiation requires the utilization of pp60(c-scr) myristylation, and modulatory and tyrosine kinase domains and can me mediated by cDNA-encoded as well as by genome-encoded wt pp60(c-scr).  相似文献   

5.
p62 is a highly tyrosyl phosphorylated protein that was first identified in immunoprecipitates of the GTPase-activating protein (GAP) of p21ras from cells transformed by oncogenic nonreceptor tyrosine kinases or stimulated through tyrosine kinase receptors (C. Ellis, M. Moran, F. McCormick, and T. Pawson, Nature 343:377-381, 1991). In this article we describe a highly related 62-kDa protein that becomes tyrosyl phosphorylated and associated with phospholipase C gamma (PLC gamma) in C3H10T1/2 cells stimulated with epidermal growth factor (EGF) or transformed by v-src. GAP-associated and PLC gamma-associated p62 comigrated in one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and exhibited nearly identical phosphotryptic peptide patterns. That the association of p62 with PLC gamma was direct and not mediated through binding of GAP-p62 to PLC gamma or to the EGF receptor (and coprecipitation of the receptor with PLC gamma) was demonstrated by (i) the inability to detect GAP in PLC gamma immunocomplexes or PLC gamma in GAP immunocomplexes, (ii) the association of p62 with PLC gamma in v-src-transformed cells in the absence of EGF stimulation, and (iii) in vitro solution binding and direct blotting of p62 with a glutathione S-transferase fusion protein containing the Src homology 2 (SH2) domains of PLC gamma. Unlike GAP, whose N-terminal SH2 mediates the interaction between GAP and p62, PLC gamma was found to require both its N- and C-terminal SH2 regions for p62 binding. These studies demonstrate that a protein identical to or highly related to GAP-associated p62 binds PLC gamma and suggest a means by which "cross-talk" between PLC gamma- and GAP-mediated signalling may occur.  相似文献   

6.
GTPase-activating protein (GAP) stimulates the ability of p21ras to hydrolyze GTP to GDP. Since GAP is phosphorylated by a variety of activated or oncogenic protein-tyrosine kinases, it may couple tyrosine kinases to the Ras signaling pathway. The epidermal growth factor (EGF) receptor cytoplasmic domain phosphorylated human GAP in vitro within a single tryptic phosphopeptide. The same GAP peptide was also apparently phosphorylated on tyrosine in EGF-stimulated rat fibroblasts. Circumstantial evidence suggested that residue 460 might be the site of GAP tyrosine phosphorylation. This possibility was confirmed by phosphorylation of a synthetic peptide corresponding to the predicted tryptic peptide containing Tyr-460. Alteration of Tyr-460 to phenylalanine by site-directed mutagenesis diminished the in vitro phosphorylation of a bacterial GAP polypeptide by the EGF receptor. We conclude that Tyr-460 is a site of GAP tyrosine phosphorylation by the EGF receptor in vitro and likely in vivo. GAP Tyr-460 is located immediately C terminal to the second GAP SH2 domain, suggesting that its phosphorylation might have a role in regulating protein-protein interactions.  相似文献   

7.
Members of the Ras superfamily of signaling proteins modulate fundamental cellular processes by cycling between an active GTP-bound conformation and an inactive GDP-bound form. Neurofibromin, the protein product of the NF1 tumor suppressor gene, and p120GAP are GTPase-activating proteins (GAPs) for p21(Ras) (Ras) and negatively regulate output by accelerating GTP hydrolysis on Ras. Neurofibromin and p120GAP differ markedly outside of their conserved GAP-related domains (GRDs), and it is therefore unknown if the respective GRDs contribute functional specificity. To address this question, we expressed the GRDs of neurofibromin and p120GAP in primary cells from Nf1 mutant mice in vitro and in vivo. Here we show that expression of neurofibromin GRD, but not the p120GAP GRD, restores normal growth and cytokine signaling in three lineages of primary Nf1-deficient cells that have been implicated in the pathogenesis of neurofibromatosis type 1 (NF1). Furthermore, utilizing a GAP-inactive mutant NF1 GRD identified in a family with NF1, we demonstrate that growth restoration is a function of NF1 GRD GAP activity on p21(Ras). Thus, the GRDs of neurofibromin and p120GAP specify nonoverlapping functions in multiple primary cell types.  相似文献   

8.
Pleckstrin homology (PH) domains are protein modules that bind with varying degrees of affinity and specificity membrane phosphoinositides. Previously we have shown that although the PH domains of the Ras GTPase-activating proteins GAP1m and GAP1IP4BP are 63% identical at the amino acid level they possess distinct phosphoinositide-binding profiles. The GAP1m PH domain binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), whereas the domain from GAP1IP4BP binds PtdIns(3,4,5)P3 and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) equally well. These phosphoinositide specificities are translated into distinct subcellular localizations. GAP1m is cytosolic and undergoes a rapid PtdIns(3,4,5)P3-dependent association with the plasma membrane following growth factor stimulation. In contrast, GAP1IP4BP is constitutively associated, in a PtdIns(4,5)P2-dependent manner, with the plasma membrane (Cozier, G. E., Lockyer, P. J., Reynolds, J. S., Kupzig, S., Bottomley, J. R., Millard, T., Banting, G., and Cullen, P. J. (2000) J. Biol. Chem. 275, 28261-28268). In the present study, we have used molecular modeling to identify residues in the GAP1IP4BP PH domain predicted to be required for high affinity binding to PtdIns(4,5)P2. This has allowed the isolation of a mutant, GAP1IP4BP-(K591T), which while retaining high affinity for PtdIns(3,4,5)P3 has a 6-fold reduction in its affinity for PtdIns(4,5)P2. Importantly, GAP1IP4BP-(K591T) is predominantly localized to the cytosol and undergoes a PtdIns(3,4,5)P3-dependent association with the plasma membrane following growth factor stimulation. We have therefore engineered the phosphoinositide-binding profile of the GAP1IP4BP PH domain, thereby emphasizing that subtle changes in PH domain structure can have a pronounced effect on phosphoinositide binding and the subcellular localization of GAP1IP4BP.  相似文献   

9.
GAP1(m) is a member of the GAP1 family of Ras GTPase-activating proteins (GAPs) [1]. In vitro, it has been shown to bind inositol 1, 3,4,5-tetrakisphosphate (IP4), the water-soluble inositol head group of the lipid second messenger phosphatidylinositol 3,4, 5-trisphosphate (PIP3) [2] [3]. This has led to the suggestion that GAP1(m) might function as a PIP3 receptor in vivo [4]. Here, using rat pheochromocytoma PC12 cells transiently transfected with a plasmid expressing a chimera of green fluorescent protein fused to GAP1(m) (GFP-GAP1(m)), we show that epidermal growth factor (EGF) induces a rapid (less than 60 seconds) recruitment of GFP-GAP1(m) from the cytosol to the plasma membrane. This recruitment required a functional GAP1(m) pleckstrin homology (PH) domain, because a specific point mutation (R629C) in the PH domain that inhibits IP4 binding in vitro [5] totally blocked EGF-induced GAP1(m) translocation. Furthermore, the membrane translocation was dependent on PI 3-kinase, and the time course of translocation paralleled the rate by which EGF stimulates the generation of plasma membrane PIP3 [6]. Significantly, the PIP3-induced recruitment of GAP1(m) did not appear to result in any detectable enhancement in its basal Ras GAP activity. From these results, we conclude that GAP1(m) binds PIP3 in vivo, and it is recruited to the plasma membrane, but does not appear to be activated, following agonist stimulation of PI 3-kinase.  相似文献   

10.
11.
When cells enzymatically isolated from fetal rat calvaria (RC cells) are cultured in vitro in the presence of ascorbic acid and Na beta-glycerophosphate, discrete three-dimensional nodules form with the histologic, immunohistochemical, and ultrastructural characteristics of bone (Bellows et al; Calcified Tissue International 38:143-154, 1986; Bhargava et al., Bone, 9:155-163, 1988). Quantitation of the number of bone nodules that forms provides a colony assay for osteoprogenitor cells present in the RC population (Bellows and Aubin, Develop. Biol., 133:8-13, 1989). Continuous culture with either epidermal growth factor (EGF) or transforming growth factor beta (TGF-beta) results in dose-dependent inhibition of bone nodule formation; however, the former causes increased proliferation and saturation density, while the latter reduces both parameters. Addition of EGF (48 h pulse, 2-200 ng/ml) to RC cells at day 1 after plating results in increased proliferation and population saturation density and an increased number of bone nodules formed. Similar pulses at confluence and in postconfluent multilayered cultures when nodules first begin forming (approx. day 11) inhibited bone nodule formation and resulted in a smaller stimulation of cell proliferation. Forty-eight hour pulses of TGF-beta (0.01-1 ng/ml) reduced bone nodule formation and proliferation at all times examined, with pulses on day 1 causing maximum inhibition. The effects of pulses with TGF-beta and EGF on inhibition of nodule formation are independent of the presence of serum in the culture medium during the pulse. The data suggest that whereas EGF can either stimulate or inhibit the formation of bone nodules depending upon the time and duration of exposure, TGF-B inhibits bone nodule formation under all conditions tested. Moreover, these effects on osteoprogenitor cell differentiation do not always correlate with the effects of the growth factors on RC cell proliferation.  相似文献   

12.
Receptors coupled to G(i/o) proteins stimulate the mitogen-activated protein kinase (MAPK) cascade. The intracellular pathways linking the alpha chains of these G proteins to MAPK activation are not completely understood. One of the signaling molecules which has been suggested to act downstream of Galpha(i/o) is the small G protein Rap1. We investigated the role of Rap1 in MAPK stimulation by Galpha(o) in Chinese hamster ovary (CHO) cells. Our previous results have shown that in this cell system activated Galpha(o) strongly potentiates the MAPK response to the epidermal growth factor (EGF) receptor. Rap1 regulation was examined in cells transfected with Rap1 and wild-type Galpha(o) or the activated mutant Galpha(o)-Q205L. Immunocytochemical analysis detected both Rap1 and the Galpha(o) subunit at the plasma membrane as well as on perinuclear cytoplasmic vesicles. Expression of wild-type Galpha(o) had no significant effect on the levels of activated Rap1. In contrast, Galpha(o)-Q205L virtually abolished the activation of Rap1 induced by EGF. Further experiments showed that MAPK stimulation by EGF was greatly inhibited by expression of activated Rap1, suggesting that Rap1 inhibition could mediate the effect of Galpha(o) on the MAPK cascade. However, Galpha(o)-Q205L efficiently inhibited the activation of Rap1 induced by fibroblast growth factor (FGF). We have previously found that the ability of FGF to activate MAPK is not modified by Galpha(o). In addition, expression of the GAP protein RAP1GAPII blocked Rap1 activation without affecting EGF- or FGF-dependent MAPK stimulation. These findings provide evidence for independent regulation of Rap1 and MAPK by the G(o )alpha chain.  相似文献   

13.
Proteins of the p120 family have been implicated in the regulation of cadherin-based cell adhesion, but their relative importance in this process and their mechanism of action have remained less clear. Three papers in this issue suggest that p120 plays a key role in maintaining normal levels of cadherin in mammalian cells, and that it may do so by regulating cadherin trafficking (Chen et al., 2003; Davis et al., 2003; Xiao et al., 2003).  相似文献   

14.
15.
The carboxyl-terminal domain of phospholipase C-beta is required for its stimulation by Galpha(q) and for its Galpha(q)-specific GTPase-activating protein (GAP) activity. We subjected this domain to a combination of deletion and alanine/glycine scanning mutagenesis to detect mutations that would inhibit either responsiveness to G(q) or G(q) GAP activity. Most mutations that altered either response or GAP activity diminished both in parallel. Many of these mutations map at the interface at which the carboxyl-terminal domain was recently shown to form a dimer (Singer, A. U., et al. (2001) Nat. Struct. Biol., 9, 32-36). Most others clustered in an area that is a plausible Galpha(q) binding site. In addition, one mutation that differentially inhibited GAP activity relative to responsiveness to Galpha(q) mapped in this region at a location modeled to be in close contact with the switch II region of Galpha(q). This is the site at which RGS proteins are thought to exert their GAP activity. Last, a deletion mutation differentially inhibited the response of phospholipase C-beta1 to Galpha(q) without blocking GAP activity. Its location in the molecule suggests that moving the attachment point of the catalytic domain can disrupt its ability to be activated by Galpha(q).  相似文献   

16.
p120-RasGAP (Ras GTPase activating protein) plays a key role in the regulation of Ras-GTP bound by promoting GTP hydrolysis via its C-terminal catalytic domain. The p120-RasGAP N-terminal part contains two SH2, SH3, PH (pleckstrin homology) and CaLB/C2 (calcium-dependent phospholipid-binding domain) domains. These protein domains allow various functions, such as anti-/pro-apoptosis, proliferation and also cell migration depending of their distinct partners. The p120-RasGAP domain participates in protein–protein interactions with Akt, Aurora or RhoGAP to regulate functions described bellow. Here, we summarize, in angiogenesis and cancer, the various functional roles played by p120-RasGAP domains and their effector partners in downstream signaling.  相似文献   

17.
The mitogen-activated protein kinase (MAPK) network is a conserved signalling module that regulates cell fate by transducing a myriad of growth-factor signals. The ability of this network to coordinate and process a variety of inputs from different growth-factor receptors into specific biological responses is, however, still not understood. We investigated how the MAPK network brings about signal specificity in PC-12 cells, a model for neuronal differentiation. Reverse engineering by modular-response analysis uncovered topological differences in the MAPK core network dependent on whether cells were activated with epidermal or neuronal growth factor (EGF or NGF). On EGF stimulation, the network exhibited negative feedback only, whereas a positive feedback was apparent on NGF stimulation. The latter allows for bi-stable Erk activation dynamics, which were indeed observed. By rewiring these regulatory feedbacks, we were able to reverse the specific cell responses to EGF and NGF. These results show that growth factor context determines the topology of the MAPK signalling network and that the resulting dynamics govern cell fate.  相似文献   

18.
Although there have been many reports on the relationship between activation of telomerase and carcinogenesis, the role of telomerase in normal cellular growth is still unclear. In this study, we analyzed the relationship between upregulation of telomerase activity and cell cycle progression during the liver regeneration process by using an in vivo mouse two-thirds partial hepatectomy (PH) model as well as by using in vitro hepatocyte culture systems. Furthermore, we also investigated the effects of growth factors on telomerase activity during liver regeneration and the influence of MAPK pathway inhibitors (MEK inhibitors PD98059 and U0126; p38 MAPK inhibitor SB203580) on the telomerase activity of regenerating hepatocytes in vitro. An upregulation of the telomerase activity was found at 24 h after PH, and thereafter an increase in the S-phase fraction was observed at 36-48 h. There was no remarkable change in the telomere length after PH. Preoperative treatment with EGF and HGF increased the in vivo telomerase activity. In a hepatocyte primary culture, the upregulation of the telomerase activity required the presence of EGF, and this upregulation was accelerated by the addition of HGF. A remarkable activation of p44/42 MAPK was seen but no such activation of p38 MAPK was observed at 48 h after PH. Although SB203580 had no effect on the telomerase activity of regenerating hepatocytes, treatment with MEK inhibitors (PD 98059, U0126) significantly repressed the telomerase activity. In conclusion, the telomerase activity is upregulated before hepatocytes enter the S phase, and both EGF and HGF play important roles in this step. In addition, the activation of the p44/42 MAPK pathway seems to play an essential role in telomerase upregulation during the liver regeneration process.  相似文献   

19.
探讨p38蛋白激酶信号传导通路在细胞中的特异性作用机制。应用共聚焦激光扫描技术观察心肌细胞中p38蛋白激酶的分布及LPS对其分布的影响。结果提示未受刺激静止的及EGF刺激的心肌细胞中,p38在胞浆和胞核中荧光强度呈散性分布。LPS刺激30分钟后,细胞核区的荧光强度明显增强,而胞浆区域的荧光强度降低,心肌细胞受LPS刺激激活后,其p38蛋白激酶由胞浆转位到胞核。  相似文献   

20.
PRIP-1 was isolated as a novel inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] binding protein with a domain organization similar to phospholipase C-delta1 (PLC-delta1) but lacking the enzymatic activity. Further studies revealed that the pleckstrin homology (PH) domain of PRIP-1 is the region responsible for binding Ins(1,4,5)P3. In this study we aimed to clarify the role of PRIP-1 at the physiological concentration in Ins(1,4,5)P3-mediated Ca2+ signaling, as we had previously used COS-1 cells overexpressing PRIP-1 (Takeuchi et al., 2000, Biochem J 349:357-368). For this purpose we employed PRIP-1 knock out (PRIP-1-/-) mice generated previously (Kanematsu et al., 2002, EMBO J 21:1004-1011). The increase in free Ca2+ concentration in response to purinergic receptor stimulation was lower in primary cultured cortical neurons prepared from PRIP-1-/- mice than in those from wild type mice. The relative amounts of [3H]Ins(1,4,5)P3 measured in neurons labeled with [3H]inositol was also lower in cells from PRIP-1-/- mice. In contrast, PLC activities in brain cortex samples from PRIP-1-/- mice were not different from those in the wild type mice, indicating that the hydrolysis of Ins(1,4,5)P3 is enhanced in cells from PRIP-1-/- mice. In vitro analyses revealed that type1 inositol polyphosphate 5-phosphatase physically interacted with a PH domain of PRIP-1 (PRIP-1PH) and its enzyme activity was inhibited by PRIP-1PH. However, physical interaction with these two proteins did not appear to be the reason for the inhibition of enzyme activity, indicating that binding of Ins(1,4,5)P3 to the PH domain prevented its hydrolyzation. Together, these results indicate that PRIP-1 plays an important role in regulating the Ins(1,4,5)P3-mediated Ca2+ signaling by modulating type1 inositol polyphosphate 5-phosphatase activity through binding to Ins(1,4,5)P3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号