首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the regulation of collagen post-translational modification in transformed cells were studied in three established human sarcoma cell lines and in chick-embryo fibroblasts freshly transformed by Rous sarcoma virus. The collagens synthesized by all but one of these and by all the control human and chick-embryo cell lines were almost exclusively of types I and/or III. The relative rate of collagen synthesis and the amounts of prolyl hydroxylase activity and immunoreactive protein were markedly low in all the transformed human cell lines. The other enzymes studied, lysyl hydroxylase, hydroxylysyl galactosyltransferase and galactosylhydroxylysyl glucosyltransferase, never showed as large a decrease in activity as did prolyl hydroxylase, suggesting a more efficient regulation of the last enzyme than of the three others. The chick-embryo fibroblasts freshly transformed by Rous sarcoma virus differed from the human sarcoma cells in that prolyl hydroxylase activity was distinctly increased, whereas the decreases in immunoreactive prolyl hydroxylase protein and the three other enzyme activities were very similar to those in the simian-virus-40-transformed human fibroblasts. It seems possible that this increased prolyl hydroxylase activity is only a temporary phenomenon occurring shortly after the transformation, and may be followed by a decrease in activity later. The newly synthesized collagens of all the transformed cells that produced almost exclusively collagen types I and/or III had high extents of lysyl hydroxylation, and there was also an increase in the ratio of glycosylated to non-glycosylated hydroxylysine. The data suggest that one critical factor affecting modification is the rate of collagen synthesis, which affects the ratio of enzyme to substrate in the cell.  相似文献   

2.
Antibodies to pure lysyl hydroxylase from whole chick embryos were prepared in rabbits and used for immunological characterization of this enzyme of collagen biosynthesis. In double immunodiffusion a single precipitation line was seen between the antiserum and crude or pure chick-embryo lysyl hydroxylase. The antiserum effectively inhibited chick-embryo lysyl hydroxylase activity, whether measured with the biologically prepared protocollagen substrate or a synthetic peptide consisting of only 12 amino acids. This suggests that the antigenic determinant was located near the active site of the enzyme molecule. Essentially identical amounts of the antiserum were required for 40% inhibition of the same amount of lysyl hydroxylase activity units from different chick-embryo tissues synthesizing various genetically distinct collagen types. In double immunodiffusion a single precipitation line of complete identity was found between the antiserum and the purified enzyme from whole chick embryos and the crude enzymes from chick-embryo tendon, cartilage and kidneys. These results do not support the hypothesis that lysyl hydroxylase has collagen-type-specific or tissue-specific isoenzymes with markedly different specific activities or immunological properties. The antibodies to chick-embryo lysyl hydroxylase showed a considerable degree of species specificity when examined either by activity-inhibition assay or by double immuno-diffusion. Nevertheless, a distinct, although weak, cross-reactivity was found between the chick-embryo enzyme and those from all mammalian tissues tested. The antiserum showed no cross-reactivity against prolyl 3-hydroxylase, hydroxylysyl galactosyl-transferase or galactosylhydroxylysyl glucosyltransferase in activity-inhibition assays, whereas a distinct cross-reactivity was found against prolyl 4-hydroxylase. Furthermore, antiserum to pure prolyl 4-hydroxylase inhibited lysyl hydroxylase activity. These findings suggest that there are structural similarities between these two enzymes, possibly close to or at their active sites.  相似文献   

3.
《Luminescence》2002,17(3):141-149
In this study, the effects of exogenous lysophospholipids—lysophosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine and lysophosphatidylserine—on the kinetics of reactive oxygen species (ROS) production by human neutrophils are described. The ROS production by human neutrophils was monitored by luminol‐amplified chemiluminescence after cell stimulation with the chemotactic tripeptide, fMLP, or with the phorbol ester, PMA. The interaction of lysophospholipids with the membrane of human neutrophils was additionally tested by mass spectrometry. Lysophosphatidylcholine showed the most pronounced effect on the chemiluminescence pattern, as well as the intensity of the fMLP and PMA‐stimulated cells, whereas lysophosphatidic acid showed a slight priming effect when fMLP was used for stimulation. In the case of fMLP‐stimulated cells, lysophosphatidylcholine inhibited the first phase and enhanced the second phase of chemiluminescence, whereas the chemiluminescence of PMA‐stimulated neutrophils was inhibited in a concentration‐dependent manner. We conclude that lysophosphatidylcholine is able to interact with protein kinase C‐dependent signalling pathways leading to NADPH oxidase activation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The glycosylations of hydroxylysine during collagen biosynthesis in isolated chick-embryo tendon cells were studied by using pulse-chase labelling experiments with [14C]-lysine. The hydroxylation of lysine and the glycosylations of hydroxylysine continued after a 5 min pulse label for up to about 10 min during the chase period. These data differ from those obtained previously in isolated chick-embryo cartilage cells, in which, after a similar 5 min pulse label, these reactions continued during the chase period for up to about 20 min. The collagen synthesized by the isolated chick-embryo tendon cells differed markedly from the type I collagen of adult tissues in its degree of hydroxylation of lysine residues and glycosylations of hydroxylysine residues. When the isolated tendon cells were incubated in the presence of L-azetidine-2-carboxylic acid, the degree of glycosylations of hydroxylysine during the first 10 min of the chase period was identical with that in cells incubated without thcarboxylic acid for at least 60 min, whereas no additional glycosylations took place in the control cells after the 10 min time-point. As a consequence, the collagen synthesized in the presence of this compound contained more carbohydrate than did the collagen synthesized by the control cells. Additional experiments indicated that azetidine-2-carboxylic acid did not increase the collagen glycosyltransferase activities in the tendon cells or the rate of glycosylation reactions when added directly to the enzyme incubation mixture. Control experiments with colchicine indicated that the delay in the rate of collagen secretion, which was observed in the presence of azetidine-2-carboxylic acid, did not in itself affect the degree of glycosylations of collagen. The results thus suggest that the increased glycosylations were due to inhibition of the collagen triple-helix formation, which is known to occur in the presence of azetidine-2-carboxylic acid.  相似文献   

5.
Collagen galactosyltransferase was purified 50-150-fold from chick-embryo extract. The tissue homogenate was prepared in the presence of Triton X-100, since the addition of the detergent doubled the enzyme activity in the homogenate and the extract. Three species of the enzyme activity with different molecular weights were recovered on gel filtration, the mol.wts. being about 450000, 200000 and 50000. Collagen galactosyltransferase activity was strongly inhibited by p-mercuribenzoate, and stimulated by the addition of dithiothreitol to the incubation system. Studies on substrate requirements indicated that denatured citrate-soluble collagen is a more effective substrate than gelatinized insoluble collagen, as judged from their Km values. Experiments on three peptide fractions prepared from citrate-soluble collagen indicated that a fraction with an average mol.wt. of 500-600 contained peptides large enough to meet a minimun requirement for interaction with the enzyme. However, longer peptides were clearly better substrates. When native and heat-denatured citrate-soluble collagens were compared as substrates, practically no synthesis of galactosylhydroxylysine was found with native collagen. This finding suggests that the triple-helical conformation of collagen prevents the galactosylation of hydroxylysine residues.  相似文献   

6.
The activities of four intracellular enzymes of collagen biosynthesis were assayed in freshly isolated rat peritoneal macrophages and mast cells and compared with the same enzymes in freshly isolated chick-embryo tendon cells. The macrophages were found to contain activities of all four enzymes, those of prolyl and lysyl hydroxylase being 7 and 12% respectively of those in the tendon cells when expressed per cell or 3 and 4% when expressed per unit of soluble cell protein. The corresponding values for hydroxylysyl galactosyltransferase and galactosylhydroxylysyl glucosyltransferase activities were about 82 and 68% or 32 and 24% respectively. When the macrophages were incubated in suspension with [(14)C]proline, they synthesized a small but significant amount of non-diffusible hydroxy[(14)C]proline. The synthesis per cell was only about 0.1% of that formed by the tendon cells, and its distribution between the cells and the medium also differed from that in the tendon cells. The hydroxy[(14)C]proline synthesized by the macrophages may be present in the Clq subcomponent of the complement, but its amount was too small to allow any characterization of the protein. All four enzyme activities, and in particular the two hydroxylysyl glycosyltransferase activities, seem to be present in macrophages in a large excess compared with the very low rate of synthesis of hydroxy-proline-containing polypeptide chains. The mast cell extract was found to inhibit all four enzyme activities, but even when corrected for this inhibition, prolyl and lysyl hydroxylase activities in the mast cells were less than 0.08% and the two hydroxylysyl glycosyltransferase activities less than 1% of those in the tendon cells. The intracellular enzyme pattern of collagen biosynthesis in the mast cells is thus completely or virtually completely repressed.  相似文献   

7.
Antibodies were prepared against chick-embryo galactosylhydroxylysyl glucosyltransferase and further purified by immunoaffinity chromatography. The antibodies gave a single precipitation line of identity by double immunodiffusion against crude or pure chick-embryo glucosyltransferase. The ability of the antibody to precipitate the transferase was not altered by destroying the secondary structure of the enzyme. The antibody also inhibited the enzyme activity. The degree of inhibition was higher with denatured citrate-soluble rat skin collagen as the substrate than with gelatinized rat skin insoluble collagen or free galactosylhydroxylysine. The cross-reactivity of the glucosyltransferase between different species was low when studied by double immunodiffusion or inhibition kinetics. The antiserum showed no detectable cross-reactivity against other intracellular enzymes of collagen biosynthesis. A line of complete identity was found in double immunodiffusion between the transferases from whole chick embryos and chick embryo tendon, kidney and cartilage. Inhibition by the antiserum of the enzyme from chick embryo tissues synthesizing different collagen types was relatively similar. The data do not support the hypothesis that galactosylhydroxylysyl glucosyltransferase has isoenzymes with markedly different specific activities or immunological properties.  相似文献   

8.
Collagen synthesis and the activities of prolyl hydroxylase, lysyl hydroxylase, collagen galactosyltransferase and collagen glucosyltransferase were studied in isolated chick-embryo tendon cells after the administration of cortisol acetate to the chick embryos. When the steroid was injected 1 day before isolation of the tendon cells, collagen synthesis was decreased, even though the enzyme activities were not changed. When cortisol acetate was given as repeated injections over a period of 4 days, both collagen synthesis and the enzyme activities decreased. The hydroxylase activities decreased even more than the two collagen glycosyltransferase activities, both in isolated cells and in whole chick embryos. The amount of prolyl hydroxylase protein diminished to the same extent as the enzyme activity, indicating that cortisol acetate inhibits enzyme synthesis. The inhibitory effect of cortisol acetate on collagen synthesis and on the enzyme activities was partially reversible in 3 days. Total protein synthesis was completely restored within this time. Only massive doses of cortisol acetate inhibited collagen synthesis in vitro. Additional experiments indicated that cortisol acetate did not decrease the rate of the enzyme reactions when added directly to the enzyme incubation mixtures. The results suggest that cortisol acetate decreases collagen synthesis both by its direct effect on collagen polypeptide-chain synthesis and by decreasing the activities of enzymes involved in post-translational modifications.  相似文献   

9.
The effect of glucose and calcium on the activities of the phosphatidylinositol cycle enzymes, CDP-diglyceride inositol transferase, diacylglycerokinase, and lysophosphatidylcholine 2-acyltransferase in rat pancreatic islets was studied. Calcium inhibited the activity of CDP-diglyceride inositol transferase but had no effect on lysophosphatidylcholine 2-acyltransferase and diacylglycerokinase activities. Upon preincubation of islets in a concentration of glucose known to stimulate insulin release, the activity of lysophosphatidylcholine 2-acyltransferase, but not that of diacylglycerokinase or the CDP-diglyceride inositol transferase, was stimulated. Subcellular fractionation of pancreatic islets showed that secretory granule membranes were enriched in CDP-diglyceride inositol transferase, whereas lysophosphatidylcholine 2-acyltransferase activity was highest in the microsomal membranes. The activation of 2-acyltransferase by incubating islets in insulinotropic glucose, and the calcium sensitivity of CDP-diglyceride inositol transferase, suggest that these enzymes may have roles in regulation of insulin secretion.  相似文献   

10.
Human growth hormone (GH) has recently been found to stimulate osteoclastic resorption, cysteine-proteinase and metalloproteinase activities (MMP-2 and MMP-9) in vitro via insulin-like growth factor-I (IGF-I) produced by stromal cells. The present study investigated the effects of two extracellular matrix components (vitronectin and type-I collagen) on hGH- and hIGF-1-stimulated osteoclastic resorption and proteinase activities in a rabbit bone cell model. After 4 days of rabbit bone cell culture on dentin slices with vitronectin coating, hGH and hIGF-1 stimulated bone resorption and hIGF-1 upmodulated cysteine-proteinase activities. MMP-2 expression (but not resorption, cathepsin or MMP-9 activities) was upmodulated by hGH and hIGF-1 on dentin slices coated with type I collagen as compared to those without coating. Then, vitronectin was synergistic with hIGF-1 in the regulation of cysteine-proteinase production whereas collagen showed synergy with hGH and hIGF-1 in the regulation of MMP-2 production. Anti-alphavbeta3 totally abolished the effects of hGH and hIGF-1 on metalloproteinase release, but had no influence on cathepsin release. The results suggest that cysteine-proteinase modulation is not mediated by alphavbeta3 integrin (strongly expressed on osteoclastic surface) whereas the resorption process and metalloproteinase modulation are clearly mediated by this integrin. Our finding about the collagen coating also suggests that hGH- and hIGF-1-stimulated MMP-2 activity are mediated, along with alphavbeta3 integrin, by another adhesion molecule.  相似文献   

11.
Aqueous ethanol extract of a tunicate which was previously found to exert antitumor and immunosuppressive activities in vivo was tested for its effect on normal human lymphocytes in vitro. The extract suppressed the uptake of tritiated thymidine by lymphocytes stimulated with mitogen. This suppressive effect did not require continuous presence of the extract. Treatment of lymphocytes prior to mitogenic stimulation resulted in suppressive effect. The fact that suppression by the extract could also be achieved 24 hr after exposure to mitogen, an interval which was found to suffice for the attainment of maximal commitment for blastogenic transformation indicates that Ete can act at a stage subsequent to the binding of the lectin and elicitation of a mitogenic signal(s).  相似文献   

12.
F A Grsser  K Mann    G Walter 《Journal of virology》1987,61(11):3373-3380
The effect of phosphorylation on the ability of simian virus 40 large T antigen to stimulate DNA synthesis in vitro was tested. Treatment of affinity-purified large T antigen with calf intestinal alkaline phosphatase resulted in the removal of 70 to 80% of the phosphate residues. Only serine-bound phosphate residues were affected. Phosphatase-treated large T antigen stimulated in vitro DNA synthesis fourfold over the untreated control. The stimulation was strongest at early times of DNA replication. At later times, DNA replication proceeded at equal rates with dephosphorylated and untreated large T antigen. The ATPase activity of large T antigen was not affected by phosphatase treatment. The origin-binding activity of large T antigen was tested over a wide range of large T antigen to DNA ratios, including DNA excess, and in the presence and absence of carrier DNA. Under no condition was an effect of dephosphorylation of large T antigen on its DNA-binding activity observed. These findings might indicate that phosphorylation at serine residues modulates the interaction of large T antigen with cellular factors. During DNA synthesis large T antigen was substantially rephosphorylated by kinases in the HeLa cell extract. As shown by two-dimensional peptide mapping, this phosphorylation occurred at all known in vivo sites. No phosphatase and protease activities were detectable in the HeLa cell extract.  相似文献   

13.
Prolyl 3-hydroxylase activity and the extent of collagen proline 3-hydroxylation were studied in six transformed and three control human cell lines. In the transformed cell lines, the enzyme activity was markedly high in two, similar to that in control cells in two and significantly low in two. The extent of proline 3-hydroxylation was markedly high in cell lines with high enzyme activity, but it was also significantly high in some transformed cell lines with enzyme activities similar to those in the controls. The results thus suggest that, in addition to the amount of enzyme activity present, the rate of collagen synthesis also affects the extent of proline 3-hydroxylation in the newly synthesized collagen. The effect of acute cell transformation on prolyl 3-hydroxylase and 4-hydroxylase activities was studied by infecting chick-embryo fibroblasts with Rous sarcoma virus mutant NY68, temperature-sensitive for transformation. At the permissive temperature prolyl 3-hydroxylase activity showed a more rapid increase and decrease than did prolyl 4-hydroxylase activity, the maximal activity for both enzymes being about 2.5 times that in the control chick fibroblasts. When the transformed cells were shifted to the non-permissive temperature the decays in the elevated enzyme activities were similar, suggesting identical half-lives.  相似文献   

14.
Our group has shown that numerous factors can influence how tissue engineered tendon constructs respond to in vitro mechanical stimulation. Although one study showed that stimulating mesenchymal stem cell (MSC)-collagen sponge constructs significantly increased construct linear stiffness and repair biomechanics, a second study showed no such effect when a collagen gel replaced the sponge. While these results suggest that scaffold material impacts the response of MSCs to mechanical stimulation, a well-designed intra-animal study was needed to directly compare the effects of type-I collagen gel versus type-I collagen sponge in regulating MSC response to a mechanical stimulus. Eight constructs from each cell line (n=8 cell lines) were created in specially designed silicone dishes. Four constructs were created by seeding MSCs on a type-I bovine collagen sponge, and the other four were formed by seeding MSCs in a purified bovine collagen gel. In each dish, two cell-sponge and two cell-gel constructs from each line were then mechanically stimulated once every 5 min to a peak strain of 2.4%, for 8 h/day for 2 weeks. The other dish remained in an incubator without stimulation for 2 weeks. After 14 days, all constructs were failed to determine mechanical properties. Mechanical stimulation significantly improved the linear stiffness (0.048+/-0.009 versus 0.015+/-0.004; mean+/-SEM (standard error of the mean ) N/mm) and linear modulus (0.016+/-0.004 versus 0.005+/-0.001; mean+/-SEM MPa) of cell-sponge constructs. However, the same stimulus produced no such improvement in cell-gel construct properties. These results confirm that collagen sponge rather than collagen gel facilitates how cells respond to a mechanical stimulus and may be the scaffold of choice in mechanical stimulation studies to produce functional tissue engineered structures.  相似文献   

15.
16.
Crude preparations of lysyl hydroxylase were extracted from chick-embryo tendons synthesizing exclusively type I collagen, chick-embryo sterna synthesizing exclusively type II collagen and HT-1080 sarcoma cells synthesizing exclusively type IV collagen. No differences were found in the Km values for Fe2+, 2-oxoglutarate and ascorbate between these three enzymes preparations. Similarly no differences were found in the Km values for type I and type II protocollagens and the rate at which type IV protocollagen is hydroxylated between these enzyme preparations. The extent to which type I protocollagen could be hydroxylated by the three enzymes was likewise identical. These data strongly argue against the existence of collagen-type-specific lysyl hydroxylase isoenzymes.  相似文献   

17.
Introducing mesenchymal stem cell (MSC)-seeded collagen constructs into load-protected wound sites in the rabbit patellar and Achilles tendons significantly improves their repair outcome compared to natural healing of the unfilled defect. However, these constructs would not be acceptable alternatives for repairing complete tendon ruptures because they lack the initial stiffness at the time of surgery to resist the expected peak in vivo forces thereafter. Since the stiffness of these constructs has also been shown to positively correlate with the stiffness of the subsequent repairs, improving initial stiffness by appropriate selection of in vitro culture conditions would seem crucial. In this study we examined the individual and combined effects of collagen scaffold type, construct length, and mechanical stimulation on in vitro implant stiffness. Two levels each of scaffold material (collagen gel vs. collagen sponge), construct length (short vs. long), and mechanical stimulation (stimulated vs. non-stimulated) were examined. Our results indicate that all three treatment factors influenced construct linear stiffness. Increasing the length of the construct had the greatest effect on the stiffness compared to introducing mechanical stimulation or changing the scaffold material. A significant interaction was also found between length and stimulation. Of the eight groups studied, longer, stimulated, cell-sponge constructs showed the highest in vitro linear stiffness. We now plan in vivo studies to determine if higher stiffness constructs generate higher stiffness repairs 12 weeks after surgery and if in vitro construct stiffness continues to correlate with in vivo repair parameters like linear stiffness.  相似文献   

18.
Fibronectin isolated from human plasma and from the extracellular matrices of cell monolayers mediates the attachment in vitro and spreading of trypsin-treated cells on a collagen substratum. Fibronectin-dependent kinetics of cellular attachment to collagen were studied for several adherent cell types. It was shown that trypsin-treated human umbilical-cord cells, mouse sarcoma CMT81 cells, endothelial cells, and human fibroblasts from a patient with Glanzmann's disease were completely dependent on fibronectin for their attachment to collagen, whereas guinea-pig and monkey smooth-muscle cells and chick-embryo secondary fibroblasts displayed varying degrees of dependence on fibronectin for their attachment. Radiolabelled human plasma fibronectin possessed similar affinity for collagen types I, II and III from a variety of sources. The fibronectin bound equally well to the collagens with or without prior urea treatment. However, in the fibronectin-mediated adhesion assay using PyBHK fibroblasts, a greater number of cells adhered and more spreading was observed on urea-treated collagen. Fibronectin extracted from the extracellular matrix of chick-embryo fibroblasts and that purified from human plasma demonstrated very similar kinetics of complexing to collagencoated tissue-culture dishes. Fibronectin from both sources bound to collagen in the presence of 0.05–4.0m-NaCl and over the pH range 2.6–10.6. The binding was inhibited when fibronectin was incubated with 40–80% ethylene glycol, the ionic detergents sodium dodecyl sulphate and deoxycholate, and the non-ionic detergents Nonidet P-40, Tween 80 and Triton X-100, all at a concentration of 0.1%. From these results we proposed that fibronectin–collagen complexing is mainly attributable to hydrophobic interactions.  相似文献   

19.
20.
The histogenesis of bone tissue is strongly influenced by physical forces, including magnetic fields. Recent advances in tissue engineering has permitted the generation of three dimensional bone-like constructs. We have investigated the effects of electromagnetic stimulation on human osteoblast cells grown in a hydrophobic polyurethane scaffold. Bone-like constructs were stimulated by pulsed electromagnetic fields in a bioreactor. Proliferation, bone protein expression and calcified matrix production by osteoblasts were measured using histochemical methods. In stimulated cultures, the number of cells was significantly higher compared to static (control) cultures. In both stimulated and control cultures, cells were immunoreactive to osteoblast markers, including type-I collagen, osteocalcin and osteopontin, thus suggesting that the expression of bone-related markers was maintained throughout the in vitro experiments. Morphometric analysis of von Kossa-stained sections revealed that stimulation with electromagnetic field significantly increased matrix calcification. The data lend support to the view that the application of a magnetic field can be used to stimulate cell growth in bone-like constructs in vitro. This finding may be of interest for the production of biomaterials designed for clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号