首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Confocal microscopy is providing new and exciting opportunities for imaging cell structure and physiology in thick biological specimens, in three dimensions, and in time. The utility of confocal microscopy relies on its fundamental capacity to reject out-of-focus light, thus providing sharp, high-contrast images of cells and subcellular structures within thick samples. Computer controlled focusing and image-capturing features allow for the collection of through-focus series of optical sections that may be used to reconstruct a volume of tissue, yielding information on the 3-D structure and relationships of cells. Tissues and cells may also be imaged in two or three spatial dimensions over time. The resultant digital data, which encode the image, are highly amenable to processing, manipulation and quantitative analyses. In conjunction with a growing variety of vital fluorescent probes, confocal microscopy is yielding new information about the spatiotemporal dynamics of cell morphology and physiology in living tissues and organisms. Here we use mammalian brain tissue to illustrate some of the ways in which multidimensional confocal fluorescence imaging can enhance studies of biological structure and function.  相似文献   

2.
The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue's three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer.  相似文献   

3.
Photoactivated localization microscopy (PALM) and related fluorescent biological imaging methods are capable of providing very high spatial resolutions (up to 20 nm). Two major demands limit its widespread use on biological samples: requirements for photoactivatable/photoconvertible fluorescent molecules, which are sometimes difficult to incorporate, and high background signals from autofluorescence or fluorophores in adjacent focal planes in three-dimensional imaging which reduces PALM resolution significantly. We present here a high-resolution PALM method utilizing conventional EGFP as the photoconvertible fluorophore, improved algorithms to deal with high levels of biological background noise, and apply this to imaging higher order chromatin structure. We found that the emission wavelength of EGFP is efficiently converted from green to red when exposed to blue light in the presence of reduced riboflavin. The photon yield of red-converted EGFP using riboflavin is comparable to other bright photoconvertible fluorescent proteins that allow <20 nm resolution. We further found that image pre-processing using a combination of denoising and deconvolution of the raw PALM images substantially improved the spatial resolution of the reconstruction from noisy images. Performing PALM on Drosophila mitotic chromosomes labeled with H2AvD-EGFP, a histone H2A variant, revealed filamentous components of ∼70 nm. This is the first observation of fine chromatin filaments specific for one histone variant at a resolution approximating that of conventional electron microscope images (10–30 nm). As demonstrated by modeling and experiments on a challenging specimen, the techniques described here facilitate super-resolution fluorescent imaging with common biological samples.  相似文献   

4.
In this study we demonstrate a new noninvasive imaging method to monitor freezing processes in biological samples and to investigate life in the frozen state. It combines a laser scanning microscope with a computer-controlled cryostage. Nearinfrared (NIR) femtosecond laser pulses evoke the fluorescence of endogenous fluorophores and fluorescent labels due to multiphoton absorption.The inherent optical nonlinearity of multiphoton absorption allows 3D fluorescence imaging for optical tomography of frozen biological material in-situ. As an example for functional imaging we use fluorescence lifetime imaging (FLIM) to create images with chemical and physical contrast.  相似文献   

5.

Background

Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that environmental factors play in determining cell fate.

Results

We present an application that integrates visualization and quantitative analysis of 5-D (x,y,z,t,channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks.

Conclusions

By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image analysis algorithms with an interactive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-328) contains supplementary material, which is available to authorized users.  相似文献   

6.
Near-field illumination of a sample with visible light can resolve features well beyond the resolution of conventional, far-field microscopes. Near-field scanning optical microscopy (NSOM) then has the potential of extending the resolution of techniques such as fluorescent labeling, yielding images of cell structures and molecules on the nanoscale. However, major problems remain to be solved before NSOM can be easily used for wet biological samples. The most significant of these is control of the distance between near-field aperture and the sample surface. Hence, while NSOM promises much, its application to biology is about where electron microscopy was 40 or 50 years ago.  相似文献   

7.

Background and Aims

Automatic acquisition of plant architecture is a major challenge for the construction of quantitative models of plant development. Recently, 3-D laser scanners have made it possible to acquire 3-D images representing a sampling of an object''s surface. A number of specific methods have been proposed to reconstruct plausible branching structures from this new type of data, but critical questions remain regarding their suitability and accuracy before they can be fully exploited for use in biological applications.

Methods

In this paper, an evaluation framework to assess the accuracy of tree reconstructions is presented. The use of this framework is illustrated on a selection of laser scans of trees. Scanned data were manipulated by experienced researchers to produce reference tree reconstructions against which comparisons could be made. The evaluation framework is given two tree structures and compares both their elements and their topological organization. Similar elements are identified based on geometric criteria using an optimization algorithm. The organization of these elements is then compared and their similarity quantified. From these analyses, two indices of geometrical and structural similarities are defined, and the automatic reconstructions can thus be compared with the reference structures in order to assess their accuracy.

Key Results

The evaluation framework that was developed was successful at capturing the variation in similarities between two structures as different levels of noise were introduced. The framework was used to compare three different reconstruction methods taken from the literature, and allowed sensitive parameters of each one to be determined. The framework was also generalized for the evaluation of root reconstruction from 2-D images and demonstrated its sensitivity to higher architectural complexity of structure which was not detected with a global evaluation criterion.

Conclusions

The evaluation framework presented quantifies geometric and structural similarities between two structures. It can be applied to the characterization and comparison of automatic reconstructions of plant structures from laser scanner data and 2-D images. As such, it can be used as a reference test for comparing and assessing reconstruction procedures.  相似文献   

8.
Confocal microscopy is an excellent method for studying the localization of fluorescent stains. Used in this way, superior 3D images can be obtained from multiple optical sections with very shallow depth of field. The main advantage of this technique is that the sample is not damaged. We have taken serial confocal sections of hair and via specific image enhancement routines have obtained high-quality 3D images enabling the visualization of cuticle scale and its pattern of distribution. This has been done on various types of hair: bleached, permed and in certain pathological conditions. This first step will allow us to characterize the hair surface in terms of its roughness, and the distribution and form of cuticular scale, parameters that have potential in the assessment of dermocosmetic efficacy.  相似文献   

9.
Conventional flow cytometry (FC) methods report optical signals integrated from individual cells at throughput rates as high as thousands of cells per second. This is further combined with the powerful utility to subsequently sort and/or recover the cells of interest. However, these methods cannot extract spatial information. This limitation has prompted efforts by some commercial manufacturers to produce state-of-the-art commercial flow cytometry systems allowing fluorescence images to be recorded by an imaging detector. Nonetheless, there remains an immediate and growing need for technologies facilitating spatial analysis of fluorescent signals from cells maintained in flow suspension. Here, we report a novel methodological approach to this problem that combines micro-fluidic flow, and microelectrode dielectric-field control to manipulate, immobilize and image individual cells in suspension. The method also offers unique possibilities for imaging studies on cells in suspension. In particular, we report the system's immediate utility for confocal "axial tomography" using micro-rotation imaging and show that it greatly enhances 3-D optical resolution compared with conventional light reconstruction (deconvolution) image data treatment. That the method we present here is relatively rapid and lends itself to full automation suggests its eventual utility for 3-D imaging cytometry.  相似文献   

10.
Structured illumination microscopy (SIM) with axially optical sectioning capability has found widespread applications in three-dimensional live cell imaging in recent years, since it combines high sensitivity, short image acquisition time, and high spatial resolution. To obtain one sectioned slice, three raw images with a fixed phase-shift, normally 2π/3, are generally required. In this paper, we report a data processing algorithm based on the one-dimensional Hilbert transform, which needs only two raw images with arbitrary phase-shift for each single slice. The proposed algorithm is different from the previous two-dimensional Hilbert spiral transform algorithm in theory. The presented algorithm has the advantages of simpler data processing procedure, faster computation speed and better reconstructed image quality. The validity of the scheme is verified by imaging biological samples in our developed DMD-based LED-illumination SIM system.  相似文献   

11.
Recent advances in imaging have led to high-resolution computerized tomography (CT) scanning with exquisitely detailed slice images of the skull and three-dimensional (3-D) surface reconstructions using computer software. It is possible to use CT scans to acquire morphologic information about the skull in a convenient digital form and to derive 3-D measurements from surface reconstruction images. Unfortunately, no effort has been made to date to test the validity of these measurements on laboratory specimens, and no compelling evidence is available from phantom studies to indicate the nature and magnitude of the errors inherent in the measurement technique. We have performed a pilot study to quantify the morphology of the skull based on surface features that can be found in CT scans and 3-D reconstructions. Comparative measurements were obtained from five skulls (two normal and three with dysmorphology) with calipers and a 3-D electromagnetic digitizer. These measurements were statistically compared with those based on original CT scan slices and reformatted 3-D images. It is concluded that 3D-CT measurement techniques are superior to those in which measurements are obtained directly from the original CT slices; 3-D CT methods, however, must be significantly improved before measurements based on these techniques can be used in studies that require a high degree of precision. The results are used to indicate the most fruitful areas of future study.  相似文献   

12.
We describe a wide-field fluorescence microscope setup which combines HiLo microscopy technique with the use of a two-color fluorescent probe. It allows one-shot fluorescence optical sectioning of thick biological moving sample which is illuminated simultaneously with a flat and a structured pattern at two different wavelengths. Both homogenous and structured fluorescence images are spectrally separated at detection and combined similarly with the HiLo microscopy technique. We present optically sectioned full-field images of Xenopus laevis embryos acquired at 25 images/s frame rate.  相似文献   

13.
基于VTK的医学图像三维可视化系统   总被引:1,自引:0,他引:1  
医学图像的三维可视化可以通过可视化工具包(VTK)提供的API实现。VTK是医学图像可视化的开法工具包,它把可视化的算法封装起来,利用简单的代码生成所需图形。基于VTK的医学图像三维可视化系统阐述了如何借助VTKAPI读入二维医学图像序列、操作二维图像、重建三维图像以及进行三维图像可视化的全套方案,为临床医生的诊断、治疗提供了有益的途径。  相似文献   

14.
BACKGROUND: Detection of fluorescent probes by fluorescence in situ hybridization in cells with preserved three-dimensional nuclear structures (3D-FISH) is useful for studying the organization of chromatin and localization of genes in interphase nuclei. Fast and reliable measurements of the relative positioning of fluorescent spots specific to subchromosomal regions and genes would improve understanding of cell structure and function. METHODS: 3D-FISH protocol, confocal microscopy, and digital image analysis were used. RESULTS: New software (Smart 3D-FISH) has been developed to automate the process of spot segmentation and distance measurements in images from 3D-FISH experiments. It can handle any number of fluorescent spots and incorporate images of 4',6-diamino-2-phenylindole counterstained nuclei to measure the relative positioning of spot loci in the nucleus and inter-spot distance. Results from a pilot experiment using Smart 3D-FISH on ENL, MLL, and AF4 genes in two lymphoblastic cell lines were satisfactory and consistent with data published in the literature. CONCLUSION: Smart 3D-FISH should greatly facilitate image processing and analysis of 3D-FISH images by providing a useful tool to overcome the laborious task of image segmentation based on user-defined parameters and decrease subjectivity in data analysis. It is available as a set of plugins for ImageJ software.  相似文献   

15.
Two‐photon laser scanning fluorescence microscopy (TPM) has been shown to be advantageous for imaging optically turbid media such as human skin. The ability of performing three‐dimensional imaging without presectioning of the samples makes the technique not only suitable for noninvasive diagnostics but also for studies of topical delivery of xenobiotics. Here, TPM is used as a method to visualize both autofluorescent and exogenous fluorophores in skin. Samples exposed to sulforhodamine B have been scanned from two directions to investigate attenuation effects. It is shown that optical effects play a major role. Thus, TPM is excellent for visualizing the localization and distribution of fluorophores in human skin, although quantification might be difficult. Furthermore, an image‐analysis algorithm has been implemented to facilitate interpretation of TPM images of autofluorescent features of nonmelanoma skin cancer obtained ex vivo. The algorithm was designed to detect cell nuclei and currently has a sensitivity and specificity of 82% and 78% to single cell nuclei. However, in order to detect multinucleated cells, the algorithm needs further development. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
As a hybrid optical microscopic imaging technology, photoacoustic microscopy images the optical absorption contrasts and takes advantage of low acoustic scattering of biological tissues to achieve high-resolution anatomical and functional imaging. When combined with other imaging modalities, photoacoustic microscopy-based multimodal technologies can provide complementary contrast mechanisms to reveal complementary information of biological tissues. To achieve intrinsically and precisely registered images in a multimodal photoacoustic microscopy imaging system, either the ultrasonic transducer or the light source can be shared among the different imaging modalities. These technologies are the major focus of this minireview. It also covered the progress of the recently developed penta-modal photoacoustic microscopy imaging system featuring a novel dynamic focusing technique enabled by OCT contour scan.  相似文献   

17.
Deconvolution algorithms are widely used in conventional fluorescence microscopy, but they remain difficult to apply to deep imaging systems such as confocal and two-photon microscopy, due to the practical difficulty of measuring the system's point spread function (PSF), especially in biological experiments. Since a separate PSF measurement performed under the design optical conditions of the microscope cannot reproduce the true experimental conditions prevailing in situ, the most natural approach to solve the problem is to extract the PSF from the images themselves. We investigate here the approach of cropping an approximate PSF directly from the images, by exploiting the presence of small structures within the samples under study. This approach turns out to be practical in many cases, allowing significantly better restorations than with a design PSF obtained by imaging fluorescent beads in gel. We demonstrate the advantages of this approach with a number of deconvolution experiments performed both on artificially blurred and noisy test images, and on real confocal images taken within an in vitro preparation of the mouse hearing organ.  相似文献   

18.
Optical microscopy is one of the most contributive tools for cell biology in the past decades. Many microscopic techniques with various functions have been developed to date, i.e., phase contrast microscopy, differential interference contrast (DIC) microscopy, confocal microscopy, two photon microscopy, superresolution microscopy, etc. However, person who is in charge of an experiment has to select one of the several microscopic techniques to achieve an experimental goal, which makes the biological assay time-consuming and expensive. To solve this problem, we have developed a microscopic system with various functions in one instrument based on the optical Fourier transformation with a lens system for detection while focusing on applicability and user-friendliness for biology. The present instrument can arbitrarily modulate the pupil function with a micro mirror array on the Fourier plane of the optical pathway for detection. We named the present instrument DiMPS (Distinct optical Modulated Pupil function System). The DiMPS is compatible with conventional fluorescent probes and illumination equipment, and gives us a Fourier-filtered image, a pseudo-relief image, and a deep focus depth. Furthermore, DiMPS achieved a resolution enhancement (pseudo-superresolution) of 110 nm through the subtraction of two images whose pupil functions are independently modulated. In maximum, the spatial and temporal resolution was improved to 120 nm and 2 ms, respectively. Since the DiMPS is based on relay optics, it can be easily combined with another microscopic instrument such as confocal microscope, and provides a method for multi-color pseudo-superresolution. Thus, the DiMPS shows great promise as a flexible optical microscopy technique in biological research fields.  相似文献   

19.
The properties of an optical microscope are analyzed and analytically evaluated with a simple and effective model in order to understand the true meaning, limitations, and real capabilities of a defocusing technique. Major emphasis is given to the applications related to microscopic objects of biological interest using fluorescence and absorption light microscopy. A procedure for three-dimensional viewing is analyzed and discussed.  相似文献   

20.
Electronic light microscopy: present capabilities and future prospects   总被引:5,自引:3,他引:2  
Electronic light microscopy involves the combination of microscopic techniques with electronic imaging and digital image processing, resulting in dramatic improvements in image quality and ease of quantitative analysis. In this review, after a brief definition of digital images and a discussion of the sampling requirements for the accurate digital recording of optical images, I discuss the three most important imaging modalities in electronic light microscopy-video-enhanced contrast microscopy, digital fluorescence microscopy and confocal scanning microscopy-considering their capabilities, their applications, and recent developments that will increase their potential. Video-enhanced contrast microscopy permits the clear visualisation and real-time dynamic recording of minute objects such as microtubules, vesicles and colloidal gold particles, an order of magnitude smaller than the resolution limit of the light microscope. It has revolutionised the study of cellular motility, and permits the quantitative tracking of organelles and gold-labelled membrane bound proteins. In combination with the technique of optical trapping (optical tweezers), it permits exquisitely sensitive force and distance measurements to be made on motor proteins. Digital fluorescence microscopy enables low-light-level imaging of fluorescently labelled specimens. Recent progress has involved improvements in cameras, fluorescent probes and fluorescent filter sets, particularly multiple bandpass dichroic mirrors, and developments in multiparameter imaging, which is becoming particularly important for in situ hybridisation studies and automated image cytometry, fluorescence ratio imaging, and time-resolved fluorescence. As software improves and small computers become more powerful, computational techniques for out-of-focus blur deconvolution and image restoration are becoming increasingly important. Confocal microscopy permits convenient, high-resolution, non-invasive, blur-free optical sectioning and 3D image acquisition, but suffers from a number of limitations. I discuss advances in confocal techniques that address the problems of temporal resolution, spherical and chromatic aberration, wavelength flexibility and cross-talk between fluorescent channels, and describe new optics to enhance axial resolution and the use of two-photon excitation to reduce photobleaching. Finally, I consider the desirability of establishing a digital image database, the BioImage database, which would permit the archival storage of, and public Internet access to, multidimensional image data from all forms of biological microscopy. Submission of images to the BioImage database would be made in coordination with the scientific publication of research results based upon these data. In the context of electronic light microscopy, this would be particularly useful for three-dimensional images of cellular structure and video sequences of dynamic cellular processes, which are otherwise hard to communicate. However, it has the wider significance of allowing correlative studies on data obtained from many different microscopies and from sequence and crystallographic investigations. It also opens the door to interactive hypermedia access to the multidimensional image data, and multimedia publishing ventures based upon this.Presented at the XXXVII Symposium of the Society for Histochemistry, 23 September 1995, Rigi Kaltbad, Switzerland  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号