首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence now available supports the concept of close relationshipbetween the seymouriamorphs and diadectids, with the lattera specialized offshoot of the former. Diadectes itself clearlyis not a progenitor of Chelonia. The seymouriamorphdiadectidcomplex may be a sterile line, except for the gephyrostegidswhich, originating very early among seymouriamorphs, may haveled to true reptiles. There is some evidence, mostly highly tentative, that procolophonsand their probable descendants, the pareiasaurs, may have arisenfrom the non-gephyrostegid seymouriamorph stock. Chelonia couldhave found their ancestery within the procolophons or pareiasaurs.If this is the case, and only additional study can confirm ordeny it, then the concept of the Parareptilia, as proposed earlier(Olson, 1947), may retain much of its original meaning, withthe Diadectidae, however, far removed from the ancestry of theChelonia.  相似文献   

2.
While many morphological, physiological, and ecological characteristics of organisms scale with body size, some do not change under size transformation. They are called invariant. A recent study recommended five criteria for identifying invariant traits. These are based on that a trait exhibits a unimodal central tendency and varies over a limited range with body mass (type I), or that it does not vary systematically with body mass (type II). We methodologically improved these criteria and then applied them to life history traits of amphibians, Anura, Caudata (eleven traits), and reptiles (eight traits). The numbers of invariant traits identified by criteria differed across amphibian orders and between amphibians and reptiles. Reproductive output (maximum number of reproductive events per year), incubation time, length of larval period, and metamorphosis size were type I and II invariant across amphibians. In both amphibian orders, reproductive output and metamorphosis size were type I and II invariant. In Anura, incubation time and length of larval period and in Caudata, incubation time were further type II invariant. In reptiles, however, only number of clutches per year was invariant (type II). All these differences could reflect that in reptiles body size and in amphibians, Anura, and Caudata metamorphosis (neotenic species go not through it) and the trend toward independence of egg and larval development from water additionally constrained life history evolution. We further demonstrate that all invariance criteria worked for amphibian and reptilian life history traits, although we corroborated some known and identified new limitations to their application.  相似文献   

3.
Agricultural intensification and the associated factors, including land transformation, are among the major global threats affecting biodiversity especially herpetofauna. However, little information is available about how different factors shape herpetofauna species assemblages in agricultural landscape at different spatial scales from patch (125 – 250m) to the landscape (500 – 1000m). We assessed the diversity of amphibians and reptiles in areas under low and high degrees of agricultural intensification and explored different factors regulating diversity at different spatial scales using four sampling methods. Diversity and abundance of amphibians varied significantly between the two zones, but not for reptiles. Agricultural intensification index (AII), calculated based on agrochemical use and area under agriculture at 250m scale, seemed to affect amphibians both at patch as well as at 500m and 1000m landscape scales. The AII influenced reptilian diversity only at patch and 500m scales. Vicinity of natural forest had a stronger influence on reptilian abundance. Seminatural vegetation impacted herpetofauna diversities at larger spatial scales. The extent of water bodies influenced the reptilian abundance at 250m patch scale and amphibian abundance both at 250m and 1000m scale. Fallow lands affected only reptilian diversity at all spatial scales. Plantation affected amphibian at all scales but reptiles only at the landscape scale. Habitat heterogeneity regulated only amphibian diversity. These results highlight the fact that different patch and landscape-scale factors regulate the diversity of reptiles and amphibians differentially. Such scale-specific information will crucially inform future conservation action for the herpetofauna in the agricultural landscape.  相似文献   

4.
The skull and jaw musculature as guides to the ancestry of salamanders   总被引:4,自引:0,他引:4  
The fossil record provides no evidence supporting a unique common ancestry for frogs, salamanders and apodans. The ancestors of the modern orders may have diverged from one another as recently as 250 million years ago, or as long ago as 400 million years according to current theories of various authors. In order to evaluate the evolutionary patterns of the modern orders it is necessary to determine whether their last common ancestor was a rhipidistian fish, a very primitive amphibian, a labyrimhodom or a ‘lissamphibian’. The broad cranial similarities of frogs and salamanders, especially the dominance of the braincase as a supporting element, can be associated with the small size of the skull in their immediate ancestors. Hynobiids show the most primitive cranial pattern known among the living salamander families and “provide a model for determining the nature of the ancestors of the entire order. Features expected in ancestral salamanders include: (1) Emargination of the cheek; (2) Movable suspensorium formed by the quadrate, squamosal and pterygoid; (3) Occipital condyle posterior to jaw articulation; (4) Distinct prootic and opisthotic; (5) Absence ol otic notch; (6) Stapes forming a structural link between braincase and cheek. In the otic region, cheek and jaw suspension, the primitive salamander pattern (resembles most closely the microsaurs among known Paleozoic amphibians, and shows no significant features in common with either ancestral frogs or the majority of labyrinth odonts. The basic pattern of the adductor jaw musculature is consistent within both frogs and salamanders, but major differences are evident between the two groups. The dominance of the adductor mandibulae externus in salamanders can be associated with the open cheek in all members of that order, and the small size of this muscle in frogs can be associated with the large otic notch. The spread of different muscles over the otic capsule, the longus head ol the adductor mandibulae posterior in frogs and the superficial head of the adductor mandibulae internus in salamanders, indicates that fenestration of the skull posterodorsal to the orbit occurred separately in the ancestors of the two groups. Reconstruction of the probable pattern of the jaw musculature in Paleozoic amphibians indicates that frogs and salamanders might have evolved from a condition hypothesized for primitive labyrinthodonts, but the presence of a large otic notch in dissorophids suggests specialization toward the anuran, not the urodele condition. The presence of either an einarginated cheek or an embayment of the lateral surface of the dentary and the absence of an otic notch in microsaurs indicate a salamander-like distribution of die adductor jaw muscles. The ancestors of frogs and salamanders probably diverged from one another in the early Carboniferous, Frogs later evolved from small labyrinthodonts and salamanders from microsaurs. Features considered typical of lissamphibians evolved separately in the two groups in the late Permian andTriassic.  相似文献   

5.
Microsaurs are Paleozoic lepospondylous Amphibia with slenderbodies and weak limbs. Their solidly roofed skulls lack oticnotches, have large supratemporals widely separating the squamosalfrom parietal, and double occipital condyles. The stapes consistsof a large footplate and extremely short columella. Vertebraelack intercentra. Originally based on a reptile, Hylonomus lyelli,by Dawson in 1863, the Order Microsauria has long been restrictedto these small amphibians (Romer, 1950). Repeated confusionbetween primitive captorhinomorph reptiles and microsaurs steinsfrom superficial similarities between both skulls and vertebrae.This confusion and occasional microsaur-like vertebrae in earlyCarboniferous deposits have led to suggestions that microsaursare reptilian ancestors (cf. Vaughn, 1962). Captorhinomorphs differ from microsaurs in their small supratemporalbone, single occipital condyle, stapes with long columella reachinga pit in the quadrate and bearing a dorsal process, and dorsalintercentra. Captorhinomorph ancestors were probably not labyrinthodonts,as Vaughn (1960) has pointed out, but they could not have hadthe characteristic specializations of microsaurs. Their sourcemust be sought in forms much closer to crossopterygian fish. Microsaurs resemble both urodeles and gymnophionans in theirdouble occipital joint and otic region. They differ from Lissamphibiain the absence of a non-calcified zone in the teeth. At present,no criteria indicate decisively which structures developed convergently.Microsaurs are possibly but not demonstrably related to theancestry of modern salamanders and caecilians.  相似文献   

6.
Summary Many characters differentiate amphibian from reptilian genomes. The former have, on the average, larger and more variable genome sizes, a greater repetitive DNA percentage, and a higher interspersion level among DNAs with different degrees of repetitivity. Reptiles have more reduced and uniform genome sizes, a repetitive DNA percentage generally lower than 50%, and a lower interspersion level. Other differences can be observed in the chromosome banding and in the correlations between genome size and other morphometric and functional parameters of the cell.The differences found in amphibians and reptiles seem to indicate that in these two vertebrate classes there is a different tendency toward or tolerance of the accumulation and preservation of genetically dispensable DNA fractions. This might depend either on a different propensity toward genic amplification or on the appearance, in reptiles, of stricter and more efficient constraints regulating genome size.  相似文献   

7.
The interrelationships within the clade comprised of turtles, pareiasaurs, and procolophonid-like taxa are investigated via a cladistic analysis incorporating 56 characters. A single most parsimonious tree was found (80 steps, c. i. = 0·8) in which the successive outgroups to turtles are: pareiasaurs, Sclerosaurus, lanthanosuchids, procolophonoids (=Owenetta, Barasaurus and procolophonids), and nyctiphruretians (= nycteroleterids). Thus, as suggested recently by other workers (Reisz, in Fischman, 1993) turtles are the highly modified survivors of a radiation of poorly-known reptiles commonly called ‘parareptiles’. Pareiasaurs are united with turtles on the basis of twenty unambiguous derived features which are absent in other basal amniotes (=‘primitive reptiles’) and reptiliomorph amphibians: for example, the medially located choana, enlarged foramina palatinum posterius, blunt cultriform process, fully ossified medial wall of the prootic, opisthotic-squamosal suture, lateral flange of exoccipital, loss of ventral cranial fissure, thickened braincase floor, ‘pleurosphenoid’ ossification, reduced presacral count, acromion process, trochanter major, reduced fifth pedal digit, and presence of transverse processes on most caudals. Recent phylogenetic proposals linking turtles with captorhinids, with dicynodonts, and with procolophonoids are evaluated. None of the proposed traits supporting the first two hypotheses is compelling. The procolophonoid hypotheses is supported by only one synapomorphy (the slender stapes). All other synapomorphies proposed in favour of the above groupings either occur in many other primitive amniotes, or are not primitive for turtles, or are not primitive for the proposed chelonian sister-group. Nyctiphruretus and Lanthanosuchids and nycteroleterids, often considered to be seymouriamorph amphibians, are demonstrated unequivocally to be amniotes. The ‘rhipaeosaurs’, currently considered to be pareiasaur relatives, are shown to be a heterogenous assemblage of seymouriamorphs, therapsids and nycteroleterids. The phylogeny proposed here indicates that many of the traits of the earliest known turtle, Proganochelys, previously interpreted as unique specialisations, also occur in pareiasaurs and other near outgroups of turtles, and must instead represent the primitive chelonian condition: for example, the wide parietals and the short quadrate flange of the pterygoid. The sequence of acquisition of chelonian traits is discussed: many features once thought to be diagnostic of turtles actually characterize larger groupings of procolophonomorphs, and must have evolved long before the chelonian shell appeared. These traits include most of the chelonian-pareiasaur synapomorphies listed above, and many others which characterize more inclusive groupings found in this analysis. In putting Proganochelys much closer to the main line of chelonian evolution, in elucidating the sequence of acquisition of chelonian traits, and in reducing greatly the number of differences between turtles and their nearest relatives, this study helps bridge one of the major gaps in the fossil record. The failure of previous cladistic analyses to identify correctly the nearest relatives of turtles is attributed to biased character selection, caused by an over-reliance on cranial characters deemed ‘important’ by earlier workers, and by a tendency to shoehorn ‘parareptile’ taxa into phylogenies derived from analyses restricted to ‘mainstream’ groups such as synapsids, diapsids, turtles, and ‘captorhinomorphs’. Many of the synapomorphies that resolve turtle origins are postcranial, and the three nearest outgroups to turtles are all highly bizarre groups which were dismissed as ‘too specialized’ by early workers and continued to be inadequately assessed even by workers using a cladistic framework.  相似文献   

8.
The intensification of agriculture has significant environmental consequences. This intensification entails the simplification and homogenisation of the landscape, which leads to strong negative impacts at ecosystem level, including declines in animal biodiversity. The purpose of this study was to assess the effect of different land uses on reptilian and amphibian biodiversity patterns at a regional scale by analysing a large database on the presence of amphibians and reptiles in Andalusia (southern Spain). GIS techniques and the Ecological-Niche Factor Analysis (ENFA) were applied in order to assess whether the habitat was suitable for each reptilian and amphibian species, when the land use variables were excluded. The incongruence between the potential and the observed species richness was then correlated with the main types of land use in Andalusia. Our results showed that irrigated and unirrigated olive groves were associated with a biodiversity deficit of amphibians and reptiles respectively, whereas natural forests and pastures, along with more heterogeneous crops areas, were more suitable. A clustering analysis showed that generalist species were related to olive groves whereas rare and specialist species were related to land uses related to natural vegetation. In summary, our results indicate that large areas covered by olives groves harbour less amphibian and reptilian diversity, thus suggesting that agro-environmental schemes should be carried to promote the species richness in these crops.  相似文献   

9.
Habitat loss and fragmentation threaten a large proportion of terrestrial biodiversity, and identifying the ecological traits associated with extinction proneness is of widespread interest. We used a multivariate statistical approach to identify combinations of ecological traits that best allowed us to identify extinction-prone amphibians and reptiles in a fragmented landscape in north-eastern Bolivia. Extinction-prone amphibians were rare and did not utilize the savannah matrix separating forest islands, whereas extinction-prone reptiles were trophically specialized. Rarity and matrix aversion are among the most widely reported correlates to extinction proneness, and we argue that an increased understanding of their role as drivers of extinction processes is necessary. We suggest that the absence of reptilian vertebrate predators may exacerbate trophic cascades in habitat patches.  相似文献   

10.
本研究利用2013至2016年湖南壶瓶山国家级自然保护区巡护监测数据,评估壶瓶山保护区两栖爬行动物多样性水平。壶瓶山保护区在8个监测站点布设了25条两栖爬行动物调查样线,进行常规监测,其中,日间样线14条,夜间样线11条,日间样线平均长度4 km,夜间样线平均长度0.75 km。每个月,每条样线平均调查3次。4年共调查到62种两栖爬行动物,占湖南省两栖爬行动物总种数的38.04%。逐月计算各监测站点的alpha多样性指数和整个保护区的beta多样性指数,按季节比较不同站点间物种组成的Hellinger距离。结果显示,保护区不同位置间、不同的监测站点间以及年际间的两栖爬行动物多样性没有显著差异,提示保护区环境具有相对稳定性。但是,个别位于实验区或邻近实验区的站点,物种组成有着剧烈的波动,表明人为活动影响了两栖爬行动物的分布。另外,保护区两栖爬行动物的物种组成与多样性有着显著的季节差异,这与两栖爬行动物的生物学特性有关。以上结果说明,壶瓶山保护区两栖爬行动物的多样性结构具有稳定性和敏感性的特点,可以考虑用作保护区生物多样性水平的监测指标。  相似文献   

11.
Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6–100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of ranaviruses and the emergence of pathogen pollution via animal trade of ectothermic vertebrates.  相似文献   

12.
The adaptation to land from amphibians to amniotes was accompanied by drastic changes of the integument, some of which might be reconstructed by studying the formation of the stratum corneum during embryogenesis. As the first amniotes were reptiles, the present review focuses on past and recent information on the evolution of reptilian epidermis and the stratum corneum. We aim to generalize the discussion on the evolution of the skin in amniotes. Corneous cell envelopes were absent in fish, and first appeared in adult amphibian epidermis. Stem reptiles evolved a multilayered stratum corneum based on a programmed cell death, intensified the production of matrix proteins (e.g., HRPs), corneous cell envelope proteins (e.g., loricrine-like, sciellin-like, and transglutaminase), and complex lipids to limit water loss. Other proteins were later produced in association to the soft or hairy epidermis in therapsids (e.g., involucrin, profilaggrin-filaggrin, trichohyalin, trichocytic keratins), or to the hard keratin of hairs, quills, horns, claws (e.g., tyrosine-rich, glycine-rich, sulphur-rich matrix proteins). In sauropsids special proteins associated to hard keratinization in scales (e.g., scale beta-keratins, cytokeratin associated proteins) or feathers (feather beta-keratins and HRPs) were originated. The temporal deposition of beta-keratin in lepidosaurian reptiles originated a vertical stratified epidermis and an intraepidermal shedding layer. The evolutions of the horny layer in Therapsids (mammals) and Saurospids (reptiles and birds) are discussed. The study of the molecules involved in the dermo-epidermal interactions in reptilian skin and the molecular biology of epidermal proteins are among the most urgent future areas of research in the biology of reptilian skin.  相似文献   

13.
Madagascar has become a model region for testing hypotheses of species diversification and biogeography, and many studies have focused on its diverse and highly endemic herpetofauna. Here we combine species distribution models of a near-complete set of species of reptiles and amphibians known from the island with body size data and a tabulation of herpetofaunal communities from field surveys, compiled up to 2008. Though taxonomic revisions and novel distributional records arose since compilation, we are confident that the data are appropriate for inferring and comparing biogeographic patterns among these groups of organisms. We observed species richness of both amphibians and reptiles was highest in the humid rainforest biome of eastern Madagascar, but reptiles also show areas of high richness in the dry and subarid western biomes. In several amphibian subclades, especially within the Mantellidae, species richness peaks in the central eastern geographic regions while in reptiles different subclades differ distinctly in their richness centers. A high proportion of clades and subclades of both amphibians and reptiles have a peak of local endemism in the topographically and bioclimatically diverse northern geographic regions. This northern area is roughly delimited by a diagonal spanning from 15.5°S on the east coast to ca. 15.0°S on the west coast. Amphibian diversity is highest at altitudes between 800–1200 m above sea-level whereas reptiles have their highest richness at low elevations, probably reflecting the comparatively large number of species specialized to the extended low-elevation areas in the dry and subarid biomes. We found that the range sizes of both amphibians and reptiles strongly correlated with body size, and differences between the two groups are explained by the larger body sizes of reptiles. However, snakes have larger range sizes than lizards which cannot be readily explained by their larger body sizes alone. Range filling, i.e., the amount of suitable habitat occupied by a species, is less expressed in amphibians than in reptiles, possibly reflecting their lower dispersal capacity. Taxonomic composition of communities assessed by field surveys is largely explained by bioclimatic regions, with communities from the dry and especially subarid biomes distinctly differing from humid and subhumid biomes.  相似文献   

14.
The fossil record of vertebrates in the late Paleozoic and early Mesozoic is investigated in an attemp to evaluate their participation in the Permo-Triassic faunal crisis. On the whole the record of the marine fishes is similar to that of marine invertebrates with a pronounced diversity minimum at the end of the Permian. On the other hand, the fresh-water and euryhaline fishes, together with the amphibians, seem to have experienced minimal diversity somewhat earlier in the Permian and apparently were on the increase at the Permo-Triassic boundary. The major peculiarity in the reptilian record is a great burst of both first appearances and apparent extinctions in the Dzhulfian Stage in Africa; local causes are suspected. Seemingly the Permo-Triassic faunal crisis was mainly a marine event for which a marine cause or causes should be sought.  相似文献   

15.
Sex-determining mechanisms in reptiles can be divided into two convenient classifications: genotypic (GSD) and environmental (ESD). While a number of types of GSD have been identified in a wide variety of reptilian taxa, the expression of ESD in the form of temperature-dependent sex determination (TSD) in three of the five major reptilian lineages has drawn considerable attention to this area of research. Increasing interest in sex-determining mechanisms in reptiles has resulted in many data, but much of this information is scattered throughout the literature and consequently difficult to interpret. It is known, however, that distinct sex chromosomes are absent in the tuatara and crocodilians, rare in amphisbaenians (worm lizards) and turtles, and common in lizards and snakes (but less than 20% of all species of living reptiles have been karyotyped). With less than 2 percent of all reptilian species examined, TSD apparently is absent in the tuatara, amphisbaenians and snakes; rare in lizards, frequent in turtles, and ubiquitous in crocodilians. Despite considerable inter- and intraspecific variation in the threshold temperature (temperature producing a 1:1 sex ratio) of gonadal sex determination, this variation cannot confidently be assigned a genetic basis owing to uncontrolled environmental factors or to differences in experimental protocol among studies. Laboratory studies have identified the critical period of development during which gonadal sex determination occurs for at least a dozen species. There are striking similarities in this period among the major taxa with TSD. Examination of TSD in the field indicates that sex ratios of hatchlings are affected by location of the nests, because some nests produce both sexes whereas the majority produce only one sex. Still, more information is needed on how TSD operates under natural conditions in order to fully understand its ecological and conservation implications. TSD may be the ancestral sex-determining condition in reptiles, but this result remains tentative. Physiological investigations of TSD have clarified the roles of steroid hormones, various enzymes, and H-Y antigen in sexual differentiation, whereas molecular studies have identified several plausible candidates for sex-determining genes in species with TSD. This area of research promises to elucidate the mechanism of TSD in reptiles and will have obvious implications for understanding the basis of sex determination in other vertebrates. Experimental and comparative investigations of the potential adaptive significance of TSD appear equally promising, although much work remains to be performed. The distribution of TSD within and among the major reptilian lineages may be related to the life span of individuals of a species and to the biogeography of these species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Abstract: Recent investigations into Permian aged floras from China have highlighted the widespread occurrence of callistophytalean pteridosperms that challenge previous understanding of their spatial and temporal distribution and diversity. In China, the group spans the Permian period and constitutes a distinctive but rare component in many peat‐forming environments. The stratigraphically earliest callistophytalean occurs in the Asselian‐Sakmarian stages with fossils from the Taiyuan Formation of northern China including ovules of Callospermarion undulatum in coal ball assemblages, and ovulate fronds of Norinosperma shanxiensis and synangiate fronds of Norinotheca shanxiensis in adpression assemblages. More abundant in the fossil records are adpression remains from the Roadian‐Wordian stages with the Lower Shihhotse Formation preserving abundant vegetative and ovulate remains of Emplectopteris triangularis that is now considered to represent a callistophytalean. The youngest callistophytalean recognised is from the Wuchaipingian‐Changhsingian stages with the Xuanwei Formation of southern China containing a single stem of Callistophyton boyssetii that provides indisputable evidence of the group in the lead up to the end‐Permian mass extinction. These accounts are augmented by analysis of pollen records that demonstrate the callistophytalean pollen genus Vesicaspora to be widespread through palynological assemblages from the Permian period in both North and South China, including the Upper Shihhotse Formation, Shihchienfeng Group, Xuanwei Formation, and possibly also in the mid‐Pennsylvanian Benxi Formation. Although macrofossil specimens are uncommon elements in the assemblages that contain them, they demonstrate the continuity of callistophytalean pteridosperms from the Pennsylvanian sub‐period into the early Guadalupian epoch of the Permian in North China and into the Lopingian epoch of the Permian in South China. Of the species present, both Callistophyton boyssetii and Callospermarion undulatum are known from the Pennsylvanian–earliest Permian age floras of Euramerica, whereas Norinosperma, Norinotheca and Emplectopteris appear to represent endemic Cathaysian elements. Results imply that callistophytalean pteridosperms can no longer be excluded from theories of post‐Carboniferous plant evolution and floristics, appearing to have played an important role in both Permian and Carboniferous aged plant communities. The presence of Vesicaspora in several formations from which macro‐remains have not been identified is a hopeful indicator that further callistophytalean pteridosperms are yet to be found.  相似文献   

17.
18.
A comparison between genome size and some phenotypic parameters, such as developmental length and metabolic rate, showed in reptiles a nucleotypic correlation similar to the one observed in birds and mammals. Indeed, like homeotherms, reptiles exhibit a highly significant, inverse correlation of genome size with metabolic rate but unlike amphibians, no relationship with developmental length. Several lines of evidence suggest that these nucleotypic correlations are influenced by body temperature, which also affects the guanine + cytosine nuclear percentage, and that they play an important role in the adaptation of these amniotes. However, the reptilian suborders exhibit differences in the quantitative and compositional characters of the genome that do not completely correspond to differences in the phenotypic parameters commonly involved in the nucleotypic effect. Thus, additional factors could have influenced genome size in this class. These data could be explained with the model of Hartl and Petrov, who observed an inverse correlation between genome size, non-coding portion of the genome and rate of DNA loss and hypothesized a strong role for different spectra of spontaneous insertions and deletions (indels) in the variations of genome size. It is thus reasonable to surmise that variations in the reptilian genome were initially influenced by different indels spectra typical of the diverse lineages, possibly related to different chromosome compartmentalizations. The consequent size increases or decreases would have influenced various morphological and functional cell parameters, and through these some phenotypic characteristics of the whole organism, especially the metabolic rate, very important for environmental adaptation and thus subject to natural selection. Through this "nucleotypic" bond, natural selection would also have controlled genome size variations.  相似文献   

19.
Otolithic membrane of utricles, saccules, and lagena of amphibians (Bufo bufo, Xenopus laevis, Rana temporaria) and reptiles (Teratoscincus scincus, Agama sanguinolenta, Ophisaurus apodus, Caiman crocodilus) were studied using light and scanning electron microscopy. Otolithic membrane in various otolithic organs in all studied animals was found to differ by shape, size, structure, and composition of otoconia. Otolithic membrane of utricle of amphibians and reptiles represents a thin plate of non-uniform structure. Otolithic apparatus in saccule represents a large cobble-stone-like conglomerate of otoconia. Otolithic membrane of lagena looks like a bent plate and is poorly differentiated in amphibians, but well differentiated in reptiles. Thus, transition of vertebrates to the earth surface was accompanied by a fundamental reorganization of otolithic membrane structure. Otolithic membrane containing constantly growing large otolith (in fish) was replaced by a thin structurally differentiated otolithic membrane that ceases its growth at early stages of ontogenesis. However, this replacement did not occur simultaneously in all otolithic organs. The changes initially involved otolithic membrane of utricle. Saccule of amphibians and reptiles has a typical compositional otolith. In the course of further phylogenetic development of tetrapods the process of structural differentiation of otolithic membrane was enhanced and otoliths were completely lost. In parallel, there proceeded a process of replacement of prismatic and spindle-shaped aragonitic otoconia by calcitic barrel-shaped otoconia. The data obtained confirm our hypothesis put forward earlier about two directions of evolution of otolithic membrane.  相似文献   

20.
The general structural patterns of jaw adductors in all orders of extant amphibians and reptiles, and also polypteriforms, crossopterygians (coelacanth), and dipnoans, are compared. The pterygoideus muscles probably developed independently and in parallel in gymnophions and amniotes from the profound pseudotemporalis muscle, which was present in their fishlike ancestors and was retained in caudate and anuran amphibians. The functional causes of the development of pterygoideus muscles in the majority of tetrapod groups and the absence of these muscles in Urodela and Anura are discussed. The anterior pterygoideus muscle of crocodiles is homologous to the pseudotemporalis (superficial) muscle of other reptiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号