首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emergence of seedlings, the length of roots and shoots, and the biomass of four dominant plant species and shore height were measured to investigate the growth strategy of these plants on the salt marsh of Mankyung River estuary. Four salt marsh plants showed a distinctive zonation, for example, Suaeda japonica was predominantly spread around the low salt marsh, Atriplex gmelini and Aster tripolium were in the middle, and S. asparagoides was in the upper part of the marsh. In terms of emergence of seedlings, S. japonica appeared first followed by A. gmelini, S. asparagoides, and A. tripolium. The growth strategies of halophytes were as follows: S. japonica germinated earlier than the other halophytes so that its root grew rapidly and extensively at the beginning of growth. This species adopted a continuous germination strategy, allowing growth whenever favorable conditions were provided. A. gmelini germinated later than S. japonica, as a quasi-simultaneous germination type, it showed the highest germination rate within the shortest time. Aster tripolium germinated later than any other halophyte. Since this species exhibited characteristics between the continuous germination type and the quasi-simultaneous germination type, it did not show a very high germination rate. Instead, it showed continuous germination and consistent growth of both above-ground and underground parts. Suaeda asparagoides showed an especially high emergence rate at the beginning of its growth. However, the high density retarded its growth until the middle stage. Its roots extended longer than the other halophytes, allowing it to grow well in the dry conditions of the upper marsh.  相似文献   

2.
Salinization is one of the most important factors affecting agricultural land in the world. Salinization occurs naturally in arid and semiarid regions where evaporation is higher than rainfall. Sugar beet yield declines with an increase in salinity, but the sensitivity to salts varies with salt composition in water and sugar beet growth stage. The aim of this study was to determine the effect of water salinity levels and salt composition on germination and seedling root length of four sugar beet cultivars (PP22, IC2, PP36, and 7233). The experiments were undertaken with irrigation water with two salt compositions (NaCl alone and mixture of MgSO4 + NaCl + Na2SO4 + CaCl2) in three replicates. Thirteen salinity levels with electrical conductivity (EC) of the irrigation water ranging from 0 to 30 dS/m were applied to each cultivar in both experiments. Seed germination percentage and seedling root length growth were determined in 13 days. Statistical analysis revealed that germination and root length were significantly affected by salt composition, cultivars and salinity levels. Regardless of salt composition, seed germination and seedling root length were significantly affected by the irrigation water with EC up to 8 dS/m and 4 dS/m, respectively. Except for cultivar PP22, the adverse effect of salinity of the irrigation water on seed germination and seedling root length was higher for NaCl alone than for the salt mixture, which refers to lower salt stress in field conditions with natural salt composition. Presented at the International Conference on Bioclimatology and Natural Hazards, Poľana nad Detvou, Slovakia, 17–20 September 2007.  相似文献   

3.
Juncus acutus and J. maritimus are two colonizers of coastal marsh rangeland with worldwide distribution. We tested the effect of salt, temperature, and photoperiod on the germination capacity of seeds of the two Juncus from the Rhône delta (south of France). We measured the first day of germination, the mean time, speed, and rate of germination on seeds subjected to five salinity levels, three Dark–Light temperatures and two D-L photoperiods (12–12 and 10–14). The 10–14 D-L photoperiod, although it corresponds to one of the two main germination periods of J. acutus and J. maritimus in the northern Mediterranean, has never been previously used to study their germination capacity. Analyses showed significant effects of salinity and temperature on the germination parameters tested, and for these two factors we found results comparable to those of previous studies. Salinity slowed down and reduced the germination process while spring temperatures had a positive effect. A surprising result was obtained by changing the D-L photoperiod from 12–12 to 10–14 which then largely buffered the negative effect of salt and high temperatures on germination. This capacity of J. acutus and J. maritimus to withstand salty conditions during the germination phase due to the spring photoperiod could be decisive in the ability of both species to colonize saline environments.  相似文献   

4.
Methane emissions along a salt marsh salinity gradient   总被引:8,自引:4,他引:4  
The seasonal flux of methane to the atmosphere was measured at three salt marsh sites along a tidal creek. Average soil salinities at the sites ranged from 5 to 17 ppt and fluxes ranged from below detection limits (less than 0.3 mgCH4 m-2 d-1) to 259 mgCH4 m-2 d-1. Annual flux to the atmosphere was 5.6 gCH4 m-2 from the most saline site, 22.4 gCH4 m-2 from the intermediate site, and 18.2 gCH4 m-2 from the freshest of the three sites. Regression of the amount of methane in the soil with flux indicates that changes in this soil methane can account for 64% of the observed variation in flux. Data on pore water distributions of sulfate suggests that the activity of sulfate reducing bacteria is a primary control on methane flux in these transitional environments. Results indicate that relatively high emissions of methane from salt marshes can occur at soil salinities up to approximately 13 ppt. When these data are combined with other tidal marsh studies, annual CH4 flux to the atmosphere shows a strong negative correlation with the long term average soil salinity over a range from essentially fresh water to 26 ppt.  相似文献   

5.
鄂尔多斯台地盐沼滩涂湿地土壤细菌群落结构及特征   总被引:2,自引:0,他引:2  
依据植被分类法将鄂尔多斯高原盐沼滩涂湿地划分为肉质耐盐草甸(B)、苔草草甸(C)、禾草草甸(D)和杂类草草甸(E)等4个植被亚型,并以盐沼裸地(A)为对照样地,共计5种盐沼滩涂湿地景观类型。运用高通量测序技术分别研究其土壤细菌群落结构特征、分布情况,以及土壤盐分与土壤细菌之间的关系。结果表明:(1) 5种盐沼滩涂湿地的土壤细菌样品共12213条OTUs,属于45个门,122个纲,365个目,663个科,1375个属,2882个种。(2)变形菌门(26.19%)是盐沼滩涂湿地平均相对丰度最高的门,其次为放线菌门(17.15%),绿弯菌门(12.62%),芽单胞菌门(Gemmatimonadetes,11.23%),拟杆菌门(Bacteroidetes,9.38%),酸杆菌门(Acidobacteria,8.83%)厚壁菌门(Firmicutes,2.96%);芽单胞菌纲中的未定细菌(norank_c_Gemmatimonadetes)是丰度最高的属,平均丰度为5.75%。(3)鄂尔多斯盐沼滩涂湿地自西南向东北,空间位置相近的土壤细菌群落结构具有更大的相似性,随着土壤盐分变化,变形菌门相对...  相似文献   

6.
Contrary to our expectations, soil salinity and moisture explained little of the spatial variation in plant establishment in the upper intertidal marsh of three southern California wetlands, but did explain the timing of germination. Seedlings of 27 species were identified in 1996 and 1997. The seedlings were abundant (maximum densities of 2143/m2 in 1996 and 1819/m2 in 1997) and predominantly annual species. CCAs quantified the spatial variation in seedling density that could be explained by three groups of predictor variables: (1) perennial plant cover, elevation and soil texture (16% of variation), (2) wetland identity (14% of variation) and (3) surface soil salinity and moisture (2% of variation). Increasing the spatial scale of analysis changed the variables that best predicted patterns of species densities. Timing of germination depended on surface soil salinity and, to a lesser extent, soil moisture. Germination occurred after salinity had dropped below a threshold or, in some cases, after moisture had increased above a critical level. Between 32% and 92% of the seedlings were exotic and most of these occurred at lower soil salinity than native species. However, Parapholis incurva and Mesembryanthemum nodiflorum were found in the same environments as the native species. In 1997, the year of a strong El Niño/Southern Oscillation event with high rainfall and sea levels, the elevation distribution of species narrowed and densities of P. incurva and other exotic species decreased but densities of native and rare species did not change. The ‘regeneration niche’ of wetland plant communities includes the effects of multiple abiotic and biotic factors on both the spatial and temporal variations in plant establishment.  相似文献   

7.
VA mycorrhizal colonization of four species of pioneer salt marsh plants including two species of chenopodiaceae at the terminal Gangetic delta in India, is reported. Five common species of VAM fungi were recorded from rhizosphere soils of the plant species. Population of spores of VAM fungi and effective inoculum potential of these fungi in rhizosphere soils as determined by the MPN-method were rather low.  相似文献   

8.
崇明东滩南部滩面高程、土壤盐度在空间上呈明显的梯度变化规律。高程整体西高东低、北高南低, 盐度东北高、西南低, 两者共同限制着盐沼植物在空间上的分布。该文围绕崇明东滩南部主要植被类群及其空间分布, 探讨了土壤盐度、潮滩高程两大环境因子与植物种群分布的对应关系。基于2013年夏、秋季植被空间网格采样和空间插值, 分析了东滩南部植物的空间分布现状, 发现不同植物类群在高程和土壤盐度上存在极显著的差异(p < 0.01)。高程差异: 莎草科类群主要分布于高程区间2.93-4.07 m的低潮滩, 禾本科主要集中分布在高程3.13-4.31 m的中、高潮滩; 盐度差异: 海三棱藨草(Scirpus mariqueter)和互花米草(Spartina alterniflora)优势种群植被覆盖区表层30 cm的平均土壤盐度为(3.2 ± 0.6) g·kg-1, 显著高于其他类群植物分布区的平均土壤盐度(2.0 ± 0.3) g·kg-1 (p < 0.01)。崇明东滩湿地生态系统的关键种兼先锋种——海三棱藨草, 分布高程介于2.53-3.97 m, 而互花米草能适应海三棱藨草80%的高程区间, 两者在高程上存在竞争关系。统计数据显示, 研究区域中近90%的海三棱藨草分布在研究区东北部, 土壤盐度范围为1.6-4.5 g·kg-1, 海三棱藨草、互花米草能较好地适应该空间内的盐度胁迫, 两种植物在此交替出现。但是在高程和土壤盐度的综合作用下, 互花米草的生长状况更好, 因此该区的海三棱藨草很可能会被互花米草逐步取代。对各类群植被分布和优势面积的研究发现, 海三棱藨草总分布面积为294 hm2, 优势群落面积120 hm2, 海三棱藨草仅占莎草科植物总优势面积的15.7%, 占研究区总面积的6.9%, 在6种主要植物(芦苇(Phragmites australis)、白茅(Imperata cylindrica)、互花米草、糙叶薹草(Carex scabrifolia)、藨草(Scirpus triqueter)、海三棱藨草)中比重最小, 这给保护区内海三棱藨草种群的恢复和保护带来极大的挑战。  相似文献   

9.
The germination response to NaCl treatments has been studied in Melilotus seed populations collected from saline and non-saline soils in the Guadalquivir delta. The rank orders for salt tolerance and seed weight were the same in the threeMelilotus species living in this area:Melilotus messanensis>M. segetalis>M. indica. Within the species, differences in germination response to salinity were found inM. indica (6 populations) andM. segetalis (8 populations). The relationship between salt tolerance during germination and salinity of maternal habitat is discussed.  相似文献   

10.
Ice rafting of salt marsh peat is a recurrent phenomenon in north temperate regions. This process was simulated in a northern New England salt marsh to test several hypotheses concerning the effects of peat transport from high to low intertidal heights on the growth and mortality of key sessile organisms: the ribbed mussel Geukensia demissa (Dillwyn), the fucoid alga Fucus vesiculosus L. var. spiralis (Farlow) and the cordgrass Spartina alterniflora (Loisel.). Growth rates increased when Geukensia and Fucus were transported to the lower intertidal; however, Spartina died when similarly transported. Predation pressure (primarily from Carcinus maenus L.) on Geukensia was greater when it was rafted to the lower intertidal zone than in the upper intertidal habitat and was size specific; mussels >3.5cm reached a size-escape from crab predation.A winter survey of dislodged mussels revealed that 72% of the mussels collected were dead and 86% had been overgrown by large Fucus plants, >2.5 × the natural frequency of Fucus overgrowth (32%). In marsh habitats where hard substratum is rare, 91% of the Fucus were growing on Geukensia. A dislodgement experiment showed that a significantly greater percentage of Geukensia was dislodged after ice-out when Fucus was attached to the shell than those mussels without Fucus overgrowth. In the spring, a population survey conducted in the salt marsh examined densities, biomass and population structure of Geukensia, as well as densities, percent cover and biomass of Fucus. Values obtained in the foremarsh were compared to those from the peat islands recently rafted to the tidal flats. Both biomass and densities of Geukensia were similar in the two areas; however, the size-frequency distributions of the mussels were different. Since fewer large mussels, Fucus and Fucus-overgrown mussels were found on the newly transported peat islands, this pattern appears to reflect dislodgement of larger Geukensia by attached algae during ice transport. Two ice-related sources of mortality were identified for Geukensia: (1) Fucus overgrowth acted as a vector for mussel dislodgement and was an indirect source of mortality; and (2) ice crushing was a direct source of mortality for non-overgrown mussels.  相似文献   

11.
Ruber  E.  Gilbert  A.  Montagna  P A.  Gillis  G.  Cummings  E. 《Hydrobiologia》1994,292(1):497-503
Populations of microcrustaceans were studied for 24 months in two New Jersey high salt marsh impoundments, and in three separate 14 month studies of high salt marsh pools in northeastern Massachusetts.In Massachusetts high marsh pools, dominants were all harpacticoids: Amphiascus pallidus, Cletocamptus deitersi, Harpacticus chelifer, Mesochra lilljeborgii, Metis jousseaumei, and Nitokra lacustris. The cyclopoids Apocyclops spartinus, Halicyclops sp. and the calanoid Eurytemora affinis were also numerically important. While there was extensive overlap, dominants varied to some extent from year to year and among the three studies. The New Jersey saline impoundment fauna showed extreme dominance (low equitability) in the first summer, somewhat less in the second and much less in the third. Total microcrustacean densities also declined each year. Variation in Apocyclops spartinus densities was the major factor, as this species comprised in three consecutive summers, 95, 85 and 51% of the total zooplankton at one station. Diversity as species richness was highest in a New Jersey freshwater impoundment which compared well with South Carolina salt marsh values. Impoundment diversity which was very low, and comparable with that found in a New Jersey Spartina patens marsh, increased each year becoming progressively more like that found in the Massachusetts pools.Vegetation changed significantly in the New Jersey impoundments over the three years. Spartina patens died-off in the first summer, while S. alterniflora gradually declined each year. A visit to the site twenty years later showed all emergent vegetation to be gone. These successional zooplankton and vegetation changes, together with the possible consequences of interrupted marsh-bay exchanges should be considered before undertaking any coastal mosquito control involving permanent flooding.  相似文献   

12.
Understanding habitat selection by breeding birds and their newly fledged young can be an essential aspect of the conservation of vulnerable species. During 2015–2017, we examined nest site selection of Worthington's marsh wren (Cistothorus palustris griseus) and MacGillivray's seaside sparrow (Ammospiza maritima macgillivraii), and fledgling habitat use by Worthington's marsh wren, 2 imperiled species in northeast Florida, USA. We compared vegetation at unused points to vegetation at nests of both subspecies and at locations used by radio-tagged marsh wren fledglings. Vegetation was taller and stem counts were greater at nest sites compared to unused points. Worthington's marsh wrens also used nest sites with a greater proportion of tall-form smooth cordgrass (Spartina alterniflora) than was observed at unused points. Worthington's marsh wren fledglings also used locations with taller, denser vegetation, but vegetation use changed with fledgling age and tidal stage; older fledglings more frequently used areas with short-form smooth cordgrass and bare ground (and more so during low tides). In contrast, so few nests and nestlings were in black needlerush (Juncus roemerianus) that we could not consider it in our analysis despite its prevalence within our study sites. Our results indicate that tall, dense cordgrass is an important habitat component for these subspecies during the nesting and fledgling life stages in southeastern Atlantic salt marshes.  相似文献   

13.
The salt marsh grass Distichlis spicata was regenerated from tissue culture and propagated in a greenhouse. Selected regenerants, along with selections from six wild populations, were grown for two years in a common garden flood-irrigated thrice weekly with tidal creek water. Selected wild and regenerated plants were also planted in a created salt marsh. Significant differences among regenerant and wild population selections were found in several functionally important salt marsh plant characteristics, including potential detritus production, belowground organic matter production, canopy structure, and decomposition rate. A combination of characteristics not found in the wild populations was evident in a regenerated line that exhibited both a high detritus production potential and a high decomposition rate. The amount of variation that occurred among regenerants from one parental line via somaclonal variation was similar to that which occurred among the wild population selections. Results of this study suggest that tissue culture may provide a means of producing marsh grasses with specific characteristics for directing the functional development of newly created salt marshes.  相似文献   

14.
不同发育时间的互花米草盐沼对大型底栖动物群落的影响   总被引:8,自引:0,他引:8  
2004-2006年对长江口崇明东滩湿地芦苇(Phragmites australis)盐沼和不同发育时间的互花米草(Spartina alterniflora)盐沼的大型底栖动物群落特征进行分析研究.结果表明:互花米草盐沼发育初期,大型底栖动物群落以腹足类为主,物种丰富度(D=2.18)和多样性(H′=2.19)均低于芦苇盐沼(D=2.61, H′=2.29);随着时间的推移,互花米草与本地生物逐渐形成互动和稳定的格局,大型底栖动物群落组成中多毛类的种类逐渐上升(由3种变为6种),物种数和物种丰富度也上升,从而逐步形成新的大型底栖动物群落,物种丰富度(D=2.70)和多样性(H′=2.48)逐渐上升并高于芦苇盐沼(D=2.19, H′=2.09);从大型底栖动物群落的重新形成到稳定阶段,需要若干年的时间.  相似文献   

15.
16.
The hydrological regime is the dominant factor associated with the degradation and restoration of inland salt marshes in Northeast China. This study investigates whether alternate flooding–drought conditions could be used to actively restore degraded inland salt marshes with the native plant Phragmites australis. Pot experiments were designed to examine changes in the growth and physiology of P. australis, as well as the saline–alkaline soil characteristics, in response to different hydrological regimes, alternate flooding–drought treatments, and single treatments of moisture, flooding, and drought. After 4 months of treatments, the P. australis population that grew in alternate flooding–drought conditions exhibited substantially more biomass accumulation and less Na+ absorption compared with the single treatments of moisture, flooding, and drought. Photosynthesis physiology served as regulating and adaptive responses to different water regimes, with increased values after the short‐term flooding, long‐term drought, and flooding–drought cycles. In addition, the saline–alkaline soil properties changed in response to the flooding–drought cycles. The flooding–drought cycles increased organic matter and total nitrogen contents, but decreased pH, electrical conductivity, and saline ion levels. Plant growth and saline–alkaline soil were improved by flooding–drought cycles (not drought–flooding cycles), which suggests that this may be an effective approach for restoration inland salt marshes.  相似文献   

17.
Extreme environments are characterised by wide variations in physical factors. Tidal flats and their adjacent salt marshes along the North Sea coast experience this type of variability on a daily, seasonal and annual basis. Plants and animals living in these extreme environments have to adapt to these, at times rapid, changes. This can be done by developing specific physiological responses which often encompass the synthesis of unusual chemicals. A number of salt marsh plants have traditionally been used for medical, nutritional or even industrial purposes. Here, examples are presented for these plants.  相似文献   

18.
The present relationship between sea level and the zonation of salt marsh vegetation is discussed in terms of the salt marshes of the Essex and Kent coasts. These marshes are already decreasing in area as a result of a number of different environmental pressures, including the sinking of the land relative to the sea, at a rate of about 3 mm per year, the result of isostatic adjustment following the last glaciation. Because most British salt marshes are backed by a sea wall the marshes can not respond to rising sea levels by migrating landwards, thus increasing the impact of sea level change. In view of this and of the importance of salt marshes as protection for the sea walls themselves, a conceptual model has been developed, of the likely impact of climate change and the resulting sea level rise, on British salt marsh vegetation. The basis of this approach is the assumption that a rise in sea level will cause the drowning of certain existing vegetation zones and their subsequent replacement by new vegetation types appropriate to the changed sea level. Estimates have been made of the likely impact of rises in sea level of 0.5, 1.0 and 1.5 metres on the five major vegetation zones identified in East Anglia. The validity of this approach is discussed, together with the likely additive effect of present degenerative changes observed in the Essex salt marshes. It is estimated that over the next 60 years a sea level rise of only 0.5 m, when existing degeneration is taken to account, would cause a loss of over 40% of the present area of salt marsh in Essex and probably also in Kent. These losses would mainly effect the higher salt marsh vegetation zones which would be replaced by pioneer communities. These predictions would be greatly magnified by larger rises in sea level. The wider ecological implication of these changes and some possible remedial measures are considered. These predictions are discussed in relation to the situation in the rest of East Anglia and for Britain as a whole.  相似文献   

19.
Inland salt marshes are rare habitats in the Great Lakes region of North America, formed on salt deposits from the Silurian period. These patchy habitats are abiotically stressful for the freshwater invertebrates that live there, and provide an opportunity to study the relationship between stress and diversity. We used morphological and COI metabarcoding data to assess changes in diversity and composition across both space (a transect from the salt seep to an adjacent freshwater area) and time (three sampling seasons). Richness was significantly lower at the seep site with both datatypes, while metabarcoding data additionally showed reduced richness at the freshwater transect end, consistent with a pattern where intermediate levels of stress show higher diversity. We found complementary, rather than redundant, patterns of community composition using the two datatypes: not all taxa were equally sequenced with the metabarcoding protocol. We identified taxa that are abundant at the salt seep of the marsh, including biting midges (Culicoides) and ostracods (Heterocypris). We conclude that (as found in other studies) molecular and morphological work should be used in tandem to identify the biodiversity in this rare habitat. Additionally, salinity may be a driver of community membership in this system, though further ecological research is needed to rule out alternate hypotheses.  相似文献   

20.
种间相互作用是影响湿地植物群落构建的关键因子,其形式、强度和机制可能随着生长发育的过程而发生改变。种子萌发是植物生命周期的关键环节,一定程度上决定了植物种群分布和群落结构。野外种子萌发过程受到邻近同种或异种种子间相互作用的影响,但对于种子萌发过程中种内、种间相互作用强度及其影响因素的了解仍十分有限。该研究通过培养皿萌发实验探讨了种子密度(每皿80粒、每皿160粒)及比例(单种、3:1混种、2:2混种、1:3混种)对互花米草(Spartina alterniflora)、海三棱藨草(Scirpus×mariqueter)、芦苇(Phragmites australis)种子萌发率、平均萌发时间的影响,并采用相对邻株效应(RNE)评估了这3个物种的种内、种间相互作用强度。结果表明,密度对互花米草、海三棱藨草、芦苇种子的萌发率均有一定的促进作用。与互花米草混种时,芦苇种子在占比最低(25%)处理下的平均萌发时间显著长于单种及其他混种比例处理。3种植物种子的竞争能力没有明确的等级关系,存在非传递性竞争,萌发时海三棱藨草相对互花米草具有一定的竞争优势,互花米草相对芦苇具有一定优势,而芦苇的竞争能...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号