首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared the effects of glial cell line-derived neurotrophic factor (GDNF) on dorsal root ganglion (DRG) sensory neurons to that of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3). All of these factors were retrogradely transported to sub-populations of sensory neuron cell bodies in the L4/L5 DRG of neonatal rats. The size distribution of 125I-GDNF-labeled neurons was variable and consisted of both small and large DRG neurons (mean of 506.60 μm2). 125I-NGF was preferentially taken up by small neurons with a mean cross-sectional area of 383.03 μm2. Iodinated BDNF and NT-3 were transported by medium to large neurons with mean sizes of 501.48 and 529.27 μm2, respectively. A neonatal, sciatic nerve axotomy-induced cell death model was used to determine whether any of these factors could influence DRG neuron survival in vivo. GDNF and NGF rescued nearly 100% of the sensory neurons. BDNF and NT-3 did not promote any detectable level of neuronal survival despite the fact that they underwent retrograde transport. We examined the in vitro survival-promoting ability of these factors on neonatal DRG neuronal cultures derived from neonatal rats. GDNF, NGF, and NT-3 were effective in vitro, while BDNF was not. The range of effects seen in the models described here underscores the importance of testing neuronal responsiveness in more than one model. The biological responsiveness of DRG neurons to GDNF in multiple models suggests that this factor may play a role in the development and maintenance of sensory neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 22–32, 1997.  相似文献   

2.
Gale Z  Cooper PR  Scheven BA 《Cytokine》2012,57(2):276-281
Little is known about the role of neurotrophic growth factors in bone metabolism. This study investigated the short-term effects of glial cell line-derived neurotrophic factor (GDNF) on calvarial-derived MC3T3-E1 osteoblasts. MC3T3-E1 expressed GDNF as well as its canonical receptors, GFRα1 and RET. Addition of recombinant GDNF to cultures in serum-containing medium modestly inhibited cell growth at high concentrations; however, under serum-free culture conditions GDNF dose-dependently increased cell proliferation. GDNF effects on cell growth were inversely correlated with its effect on alkaline phosphatase (AlP) activity showing a significant dose-dependent inhibition of relative AlP activity with increasing concentrations of GDNF in serum-free culture medium. Live/dead and lactate dehydrogenase assays demonstrated that GDNF did not significantly affect cell death or survival under serum-containing and serum-free conditions. The effect of GDNF on cell growth was abolished in the presence of inhibitors to GFRα1 and RET indicating that GDNF stimulated calvarial osteoblasts via its canonical receptors. Finally, this study found that GDNF synergistically increased tumor necrosis factor-α (TNF-α)-stimulated MC3T3-E1 cell growth suggesting that GDNF interacted with TNF-α-induced signaling in osteoblastic cells. In conclusion, this study provides evidence for a direct, receptor-mediated effect of GDNF on osteoblasts highlighting a novel role for GDNF in bone physiology.  相似文献   

3.
To clarify whether glial cell line-derived neurotrophic factor (GDNF) receptor alpha-1 (GFRalpha1), the glycosylphosphatidylinositol (GPI)-linked coreceptor for GDNF, is also a functional coreceptor for artemin (ART), we have studied receptor binding, signaling, and neuronal survival. In cell-free binding studies, GFRalpha1-Ig displayed strong preferential binding to GDNF, though in the presence of soluble RET, weak binding to ART could also be detected. However, using GFRalpha1-transfected NB41A3 cells, ART showed no detectable competition against the binding of (125)I-labeled GDNF. Moreover, ART failed to induce phosphorylation of extracellular signal-related kinase (ERK) and Akt in these cells and was >10(4)-fold less potent than GDNF in stimulating RET phosphorylation. When rat primary dorsal root ganglion (DRG) neurons were used, only the survival promoting activity of GDNF and not that of ART was blocked by an anti-GFRalpha1 antibody. These results indicate that although ART can interact weakly with soluble GFRalpha1 constructs under certain circumstances in vitro, in cell-based functional assays GFRalpha1 is at least 10 000-fold selective for GDNF over ART. The extremely high selectivity of GFRalpha1 for GDNF over ART and the low reactivity of ART for this receptor suggest that GFRalpha1 is not likely to be a functional coreceptor for ART in vivo.  相似文献   

4.
5.
6.
We previously reported that serotonin (5-HT) increased glial cell line-derived neurotrophic factor (GDNF) release in a 5-HT2 receptor (5-HT2R) and mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK)-dependent manner in rat C6 glioma cells (C6 cells), a model of astrocytes. We herein found that 5-HT-induced rapid ERK phosphorylation was blocked by 5-HT2R antagonists in C6 cells. We therefore examined 5-HT-induced ERK phosphorylation to reveal the mechanism of 5-HT-induced GDNF mRNA expression. As 5-HT-induced ERK phosphorylation was blocked by inhibitors for Gαq/11 and fibroblast growth factor receptor (FGFR), but not for second messengers downstream of Gαq/11, 5-HT2R-mediated FGFR transactivation was suggested to be involved in the ERK phosphorylation. Although FGFR1 and 2 were functionally expressed in C6 cells, 5-HT selectively phosphorylated FGFR2. Indeed, small interfering RNA for FGFR2, but not for FGFR1, blocked 5-HT-induced ERK phosphorylation. As Src family tyrosine kinase inhibitors and microtubule depolymerizing agents blocked 5-HT-induced FGFR2 phosphorylation, Src family tyrosine kinase and stabilized microtubules were suggested to act upstream of FGFR2. Finally, 5-HT-induced GDNF mRNA expression was also inhibited by the blockade of 5-HT2R, FGFR, and Src family tyrosine kinase. In conclusion, our findings suggest that 5-HT induces GDNF mRNA expression via 5-HT2R-mediated FGFR2 transactivation in C6 cells.  相似文献   

7.
Adult rat retinal ganglion cells (RGC) undergo degeneration after optic nerve transection. Studies have shown that exogenously applied neurotrophic factors such as brain-derived neurotrophic factor (BDNF) can attenuate axotomy-induced as well as developmental RGC death. Here, we examined whether glial cell line-derived neurotrophic factor (GDNF), a known neurotrophic factor for dopaminergic neurons and motor neurons, could provide neurotrophic support to RGC in adult rats. We determined whether RGC could retrogradely transport GDNF from their target tissue. After injection into the superior colliculus of adult rats, 125I-GDNF was retrogradely transported to contralateral eyes but not to ipsilateral eyes. The transport of 125I-GDNF could be blocked by coinjection of excess unlabeled GDNF, indicating that it was receptor mediated. We tested whether intravitreally applied GDNF could prevent axotomy-induced RGC degeneration. The RGC were prelabeled with Fluorogold (FG) and axotomized by intraorbital optic nerve transection. GDNF, BDNF (positive control), cytochrome c (negative control), or a GDNF/BDNF combination was injected intravitreally on days 0 and 7. On day 14, FG-labeled RGC were counted from whole-mount retinas. We found that, similar to BDNF, GDNF could significantly attenuate the degeneration of RGC in a dose-dependent fashion. Furthermore, the combination treatment of GDNF and BDNF showed better protection than either factor used individually. Our data indicate that GDNF is a neurotrophic factor for the adult rat RGC. GDNF, like BDNF, may be useful for the treatment of human RGC degenerative diseases.  相似文献   

8.
Neurotrophic factors are essential neurone survival promoting molecules that are often secreted and that bind to neuronal cell surface receptors. Glial cell line-derived neurotrophic factor, GDNF, is a potent neurotrophic factor that promotes the survival of dopaminergic neurones in cultures including embryonic neuronal cultures. We have mapped the gene encoding GDNF by two independent methods: using a cell hybrid panel and by fluorescent in situ hybridisation. We find GDNF lies on the short arm of human chromosome 5, at 5p13.1-p13.3  相似文献   

9.
10.
11.
Enteric neural crest cells (NCC) are multipotent progenitors which give rise to neurons and glia of the enteric nervous system (ENS) during fetal development. Glial cell line-derived neurotrophic factor (GDNF)/RET receptor tyrosine kinase (Ret) signaling is indispensable for their survival, migration and differentiation. Using microarray analysis and isolated NCCs, we found that 45 genes were differentially expressed after GDNF treatment (16 h), 29 of them were up-regulated including 8 previously undescribed genes. Prokineticin receptor 1 (PK-R1), a receptor for Prokineticins (Prok), was identified in our screen and shown to be consistently up-regulated by GDNF in enteric NCCs. Further, PK-R1 was persistently expressed at a lower level in the enteric ganglions of the c-Ret deficient mice when compared to that of the wild-type littermates. Subsequent functional analysis showed that GDNF potentiated the proliferative and differentiation effects of Prok-1 by up-regulating PK-R1 expression in enteric NCCs. In addition, expression analysis and gene knock-down experiments indicated that Prok-1 and GDNF signalings shared some common downstream targets. More importantly, Prok-1 could induce both proliferation and expression of differentiation markers of c-Ret deficient NCCs, suggesting that Prok-1 may also provide a complementary pathway to GDNF signaling. Taken together, these findings provide evidence that Prok-1 crosstalks with GDNF/Ret signaling and probably provides an additional layer of signaling refinement to maintain proliferation and differentiation of enteric NCCs.  相似文献   

12.
13.
Glial cell line-derived neurotrophic factor (GDNF), a member of the GDNF family of neurotrophic factors, promotes the survival and function of several neuronal populations in the peripheral and central nervous system. In the present study, expression of GDNF mRNA in the shaft of adult rat penis is demonstrated. In situ hybridization revealed GDNF mRNA expression in cells lying in the narrow zone between the tunica albuginea and the cavernous tissue. Most subtunical cells exhibited immunoreactivity for vimentin and S100 beta, but they did not stain for smooth muscle alpha actin or PGP9.5. This suggests that the GDNF mRNA-expressing cells may have a mesenchymal origin. Also retrograde axonal transport of intracavernously injected 125I-labeled GDNF in penile parasympathetic and sensory neurons is shown. The transport was inhibited by excess unlabeled GDNF, whereas excess cytochrome c had no effect. This is in agreement with the view that the transport was mediated by binding to specific receptors located on axon terminals. In addition, this study demonstrates expression of GDNF family receptor-alpha 3 (GFR alpha 3) mRNA in most adrenergic, but only in a minor part (5.3%) of the penis-projecting adult rat major pelvic ganglion neurons, as well as in almost half (45.6%) of the penile S1 dorsal root ganglion neurons. In conclusion, the present data suggest that GDNF may act as a neurotrophic factor for subpopulations of adult rat penile parasympathetic and sensory neurons.  相似文献   

14.
Dexmedetomidine (DEX) has been found to improve neuronal survival after transient global or focal cerebral ischemia in rats. Astrocyte cells may possess beneficial properties that promote neuronal recovery by secreting neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF). The purpose of this study was to investigate the effects of DEX on GDNF release from astrocytes and the possible mechanisms involved. Astrocyte cells were treated with DEX, and GDNF level in the conditioned media was determined by ELISA assay. The expression of CREB, p-CREB and PKCα was analyzed by Western blotting to explore the mechanisms involved in GDNF release. Our results showed that DEX stimulated GDNF release in a time- and dose-dependent manner; and this stimulation was blocked by the α2-adrenoreceptor antagonist yohimbine, but not by α1-adrenoreceptor antagonist prasozin, demonstrating that DEX induced GDNF release likely acts via activating the α2A adrenoreceptor. In addition, DEX-stimulated GDNF release was also blocked by the universal PKC inhibitor Ro-318220 and PKCα/β inhibitor G? 6976, but not by PKCδ inhibitor rottlerin and PKCβ inhibitor LY333531. Interestingly, DEX also activated CREB phosphorylation, which was inhibited by Ro-318220, G? 697 and ERK kinase inhibitor PD98059. Silencing CREB by siRNA decreased the DEX-stimulated GDNF release. In addition, the membrane translocation of PKCα was enhanced following DEX treatment. Furthermore, we found that DEX stimulated GDNF release rescued neurons against OGD-induced neurotoxicity; this effect was partly abolished by GDNF antibody. Thus, through α2A adrenergic receptors, DEX may activate astrocytes, and promote GDNF release to protect neurons after stroke, and this signaling is possibly dependent on PKCα and CREB activation.  相似文献   

15.
The retina is protected from somatic circulation by the blood-retinal barrrier (BRB) composed of tight junctions between retinal vascular endothelial cells (the inner BRB) and those between retinal pigment epithelial cells (the outer BRB). Our recent studies showed that glial cell line-derived neurotrophic factor (GDNF) secreted from astrocytes regulates the permeability of the BBB. In the present study, we immunohistochemically examined the expression of GDNF, neurturin (NTN) and their receptors, GFRalpha1 for GDNF and GFRalpha2 for NTN, because the capillaries of the inner BRB show specialization very similar to the blood-brain barrier (BBB). GDNF and NTN were detected in glial fibrillary acidic protein (GFAP)-positive cells, including Müller cells. GFRalpha1 and GFRalpha2 were localized in von Willebrand factor-positive cells. GDNF and NTN enhanced the barrier function of endothelial cells derived from porcine brain cortex. These results strongly suggest that the barrier function of the BRB is regulated by GDNF and NTN secreted from glial cells, like the BBB.  相似文献   

16.
17.
NGF increases expression and content of substance P in developing and mature spinal sensory neurons. The role this neurotrophin plays in peptide release, however, is less clear. Accordingly, we examined substance P release from cultures of mature rat sensory neurons, which do not require NGF for survival. Neurons grown without NGF have a low but detectable basal release, which increases with depolarization by KCl (50 mM) but never achieves statistical significance. In contrast, basal release is 3 times higher from neurons that have been cultured in the presence of NGF, and KCl depolarization triples the amount of SP released. Stimulation with capsaicin (10–7 M) yields similar results. Residual peptide remaining after capsaicin stimulation is refractory to release for up to 24 h. Bradykinin does not induce SP secretion from mature neurons nor does it potentiate the action of capsaicin. GDNF, which also increases SP content, mimics NGF. Addition of NGF to the bath during release does not directly induce SP secretion, nor does it alter the effects of KCl, capsaicin, or bradykinin. It appears therefore that NGF increases SP release indirectly by increasing intracellular stores.  相似文献   

18.
19.
Axotomy-induced neuronal death occurs in neonatal motoneurons, but not in adult rat. Here we demonstrated that during the course of postnatal development, nerve injury induced down-regulation of the glial cell line-derived neurotrophic factor (GDNF) receptor GFRalpha1 in axotomized hypoglossal motoneurons of rat are gradually converted to the adult up-regulation pattern of response. The compensatory expression of GFRalpha1 specifically in the injured motoneurons of neonates by adenovirus succeeded in rescuing the injured neurons without an application of growth factors. To the contrary, the nuclear antisense RNA for GFRalpha1 expression accelerates the axotomy-induced neuronal death in pups. These findings suggest that the receptor expression response after nerve injury is critical for the determination of injured motoneuron fate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号