首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spirochetes in the genus Borrelia carry a linear chromosome and numerous linear plasmids that have covalently closed hairpin telomeres. The overall organization of the large chromosome of Borrelia burgdorferi appears to have been quite stable over recent evolutionary time; however, a large fraction of natural isolates carry differing lengths of DNA that extend the right end of the chromosome between about 7 and 20 kbp relative to the shortest chromosomes. We present evidence here that a rather recent nonhomologous recombination event in the B. burgdorferi strain Sh-2-82 lineage has replaced its right chromosomal telomere with a large portion of the linear plasmid lp21, which is present in the strain B31 lineage. At least two successive rounds of addition of linear plasmid genetic material to the chromosomal right end appear to have occurred at the Sh-2-82 right telomere, suggesting that this is an evolutionary mechanism by which plasmid genetic material can become part of the chromosome. The unusual nonhomologous nature of this rearrangement suggests that, barring horizontal transfer, it can be used as a unique genetic marker for this lineage of B. burgdorferi chromosomes.  相似文献   

2.
Evolution of the linear DNA replicons of the Borrelia spirochetes.   总被引:9,自引:0,他引:9  
Members of the spirochete genus Borrelia carry numerous linear DNA replicons with covalently closed hairpin telomeres. The genome of one member of this genus, B. burgdorferi B31, has now been completely characterized and contains a linear chromosome, twelve linear plasmids and nine circular extra-chromosomal elements. The phylogenetic position of the Borrelia spirochetes strongly suggests that a progenitor with circular replicons acquired the ability to replicate linear DNA molecules.  相似文献   

3.
Linear- and circular-plasmid copy numbers in Borrelia burgdorferi.   总被引:16,自引:0,他引:16       下载免费PDF全文
Borrelia burgdorferi, the Lyme disease agent, and other members of the spirochetal genus Borrelia have double-stranded linear plasmids in addition to supercoiled circular plasmids. The copy number relative to the chromosome was determined for 49- and 16-kb linear plasmids and a 27-kb circular plasmid of the type strain, B31, of B. burgdorferi. All three plasmids were present in low copy number, about one per chromosome equivalent, as determined by relative hybridizations of replicon-specific DNA probes. The low copy number of Borrelia plasmids suggests that initiation of DNA replication and partitioning are carefully controlled during the cell division cycle. The copy numbers of these three plasmids of strain B31 were unchanged after approximately 7,000 generations in continuous in vitro culture. A clone of B. burgdorferi B31 that did not contain the 16-kb linear plasmid was obtained after exposure of a culture to novobiocin, a DNA gyrase inhibitor. The plasmid-cured strain contains only one linear plasmid, the 49-kb plasmid, and thus has the smallest genome reported to date for B. burgdorferi.  相似文献   

4.
The spirochete Borrelia burgdorferi, which causes Lyme disease, and other members of the Borrelia genus are unique among characterized bacteria in having a linear chromosome. A restriction map of the chromosome of B. burgdorferi 212 was constructed by making extensive use of digestions in agarose blocks of restriction endonuclease fragments or chromosomal DNA that had been purified by pulsed-field gel electrophoresis. A total of 47 digestion sites for the enzymes SgrAI, SacII, MluI, BssHII, EagI, SmaI, NaeI, and ApaI were located. In most regions of the map, the gap between sites is 50 kbp or less, and 122 kbp is the largest distance between adjacent sites. The mapping data were consistent with previous conclusions that the B. burgdorferi chromosome is linear. The total size of the B. burgdorferi 212 chromosome was determined to be 946 kbp from the sums of the sizes of SacII, MluI, BssHII, and SmaI fragments, making it one of the smallest known bacterial chromosomes. The rRNA genes were found to be located near the center of the chromosome. One copy of the 16S rRNA gene (rrs) and two copies of the 23S rRNA gene (designated rrlA and rrlB), the latter pair in a tandem repeat, were detected. This particular complement of these two genes has not been reported for another bacterium.  相似文献   

5.
Bacteria of the spirochaete genus Borrelia have linear chromosomes about 950 kbp in size. We report here that these linear chromosomes have covalently closed hairpin structures at their termini that are similar but not identical to those reported for linear plasmids carried by these organisms. Nucleotide sequence analysis of the chromosomal telomeric regions indicates that unique, apparently functional genes lie within a  few hundred bp of each of the telomeres, and that there is an imperfect 26 bp inverted repeat at the two telomeres. In addition, we characterize a major chromosomal length polymorphism within the right telomeric regions of various Borrelia isolates, and show that sequences similar to those near the right telomere are often found on linear plasmids in B . burgdorferi ( sensu stricto ) isolates from nature. Sequences similar to a number of other regions of the chromosome, including those near the left telomere, were not found on B . burgdorferi plasmids. These observations suggest that there has been historical exchange of genetic information between the linear plasmids and the right end of the linear chromosome.  相似文献   

6.
A physical map of the 952kbp chromosome of Borrelia burgdorferi Sh-2-82 has been constructed. Eighty-three intervals on the chromosome, defined by the cleavage sites of 15 restriction enzymes, are delineated. The intervals vary in size from 96kbp to a few hundred bp, with an average size of 11.5 kbp. A striking feature of the map is its linearity; no other bacterial groups are known to have linear chromosomes. The two ends of the chromosome do not hybridize with one another, indicating that there are no large common terminal regions. The chromosome of this strain was found to be stable in culture; passage 6, 165 and 320 cultures have identical chromosomal restriction maps. We have positioned all previously known Borrelia burgdorferi chromosomal genes and several newly identified ones on this map. These include the gyrA/gyrB/dnaA/dnaN gene cluster, the rRNA gene cluster, fla, flgE, groEL (hsp60), recA, the rho/hip cluster, the dnaK (hsp70)/dnaJ/grpE cluster, the pheT/pheS cluster, and the genes which encode the potent immunogen proteins p22A, p39 and p83. Our electrophoretic analysis detects five linear and at least two circular plasmids in B. burgdorferi Sh-2-82. We have constructed a physical map of the 53 kbp linear plasmid and located the operon that encodes the two major outer surface proteins ospA and ospB on this plasmid. Because of the absence of functional genetic tools for this organism, these maps will serve as a basis for future mapping, cloning and sequencing studies of B. burgdorferi.  相似文献   

7.
We have characterized seven different 32-kb circular plasmids carried by Borrelia burgdorferi isolate B31. Restriction endonuclease recognition site mapping and partial sequencing of these plasmids indicated that all seven are probably closely related to each other throughout their lengths and have substantial relationships to cp8.3, an 8.3-kb circular plasmid of B. burgdorferi sensu lato isolate Ip21. With the addition of the seven 32-kb plasmids, this bacterial strain is known to carry at least 10 linear and 9 circular plasmids. Variant cultures of B. burgdorferi B31 lacking one or more of the 32-kb circular plasmids are viable and, at least in some cases, infectious. We have examined a number of different natural isolates of Lyme disease borreliae and found that all of the B. burgdorferi sensu stricto isolates and most of the B. burgdorferi sensu lato isolates tested appear to carry multiple 32-kb circular plasmids related to those of B. burgdorferi B31. The ubiquity of these plasmids suggests that they may be important in the natural life cycle of these organisms. They may be highly conjugative plasmids or prophage genomes, which could prove to be useful in genetically manipulating B. burgdorferi.  相似文献   

8.
We have analyzed a panel of independent North American isolates of the Lyme disease agent spirochete, Borrelia burgdorferi (sensu stricto), for the presence of linear plasmids with sequence similarities to the 12 linear plasmids present in the B. burgdorferi type strain, isolate B31. The frequency of similarities to probes from each of the 12 B31 plasmids varied from 13 to 100% in the strain panel examined, and these similarities usually reside on plasmids similar in size to the cognate B31 plasmid. Sequences similar to 5 of the 12 B31 plasmids were found in all of the isolates examined, and >66% of the panel members hybridized to probes from 4 other plasmids. Sequences similar to most of the B. burgdorferi B31 plasmid-derived DNA probes used were also found on linear plasmids in the related Eurasian Lyme agents Borrelia garinii and Borrelia afzelii; however, some of these plasmids had uniform but substantially different sizes from their B. burgdorferi counterparts.  相似文献   

9.
Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ~900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.  相似文献   

10.
Members of the spirochete genus Borrelia contain large numbers of extrachromosomal DNAs. Sequence analysis of the B. burgdorferi strain B31 genome indicated that its many plasmids contain large quantities of repeated sequences, the most obvious of which are the cp32 plasmid family. Individual spirochetes may carry nine or more different, but homologous, cp32 plasmids. Every other species of Borrelia examined thus far also contains multiple plasmids related to the B. burgdorferi cp32s. These plasmids are arguably the best characterized of all the borrelial plasmids, and epitomize the apparent redundancy evident in the many plasmids carried by these bacteria. Despite their extensive similarities, cp32 plasmids contain some open reading frames whose sequences often vary between plasmids, and which encode proteins synthesized by the bacteria during vertebrate infection. In this review, we analyze the hypervariable and conserved regions of the cp32 plasmid family, and discuss possible reasons why borreliae harbor multiple gene paralogs.  相似文献   

11.
We have determined that Borrelia burgdorferi strain B31 MI carries 21 extrachromosomal DNA elements, the largest number known for any bacterium. Among these are 12 linear and nine circular plasmids, whose sequences total 610 694 bp. We report here the nucleotide sequence of three linear and seven circular plasmids (comprising 290 546 bp) in this infectious isolate. This completes the genome sequencing project for this organism; its genome size is 1 521 419 bp (plus about 2000 bp of undetermined telomeric sequences). Analysis of the sequence implies that there has been extensive and sometimes rather recent DNA rearrangement among a number of the linear plasmids. Many of these events appear to have been mediated by recombinational processes that formed duplications. These many regions of similarity are reflected in the fact that most plasmid genes are members of one of the genome's 161 paralogous gene families; 107 of these gene families, which vary in size from two to 41 members, contain at least one plasmid gene. These rearrangements appear to have contributed to a surprisingly large number of apparently non-functional pseudogenes, a very unusual feature for a prokaryotic genome. The presence of these damaged genes suggests that some of the plasmids may be in a period of rapid evolution. The sequence predicts 535 plasmid genes >/=300 bp in length that may be intact and 167 apparently mutationally damaged and/or unexpressed genes (pseudogenes). The large majority, over 90%, of genes on these plasmids have no convincing similarity to genes outside Borrelia, suggesting that they perform specialized functions.  相似文献   

12.
Spirochetes of the genus Borrelia have double-stranded linear plasmids with covalently closed ends. The physical nature of the terminal connections was determined for the 16-kb linear plasmid of the B31 strain of the Lyme disease agent Borrelia burgdorferi. Native telomeric fragments representing the left and right ends of this plasmid were isolated and subjected to Maxam-Gilbert sequence analysis. At the plasmid ends the two DNA strands formed an uninterrupted, perfectly palindromic, AT-rich sequence. This Borrelia linear plasmid consisted of a continuous polynucleotide chain that is fully base paired except for short single-stranded hairpin loops at each end. The left and right telomeres of the 16-kb plasmid were identical for 16 of the first 19 nucleotide positions and constituted an inverted terminal repeat with respect to each other. The left telomere of the 49-kb plasmid of strain B31 was identical to the corresponding telomere of the 16-kb plasmid. Different-sized plasmids of other strains of B. burgdorferi also contained sequences homologous to the left end of the 16-kb plasmid. When the borrelia telomeres were compared with telomeric sequences of other linear double-stranded DNA replicons, sequence similarities were noted with poxviruses and particularly with the iridovirus agent of African swine fever. The latter virus and a Borrelia sp. share the same tick vector. These findings suggest that the novel linear plasmids of Borrelia originated through a horizontal genetic transfer across kingdoms.  相似文献   

13.
ABSTRACT. Analysis of total DNA isolated from the Chrysophyte alga Ochromonas danica revealed, in addition to nuclear DNA, two genomes present as numerous copies per cell. The larger genome (?120 kilobase pairs or kbp) is the plastid DNA, which is identified by its hybridization to plasmids containing sequences for the photosynthesis genes rbcL, psbA, and psbC. The smaller genome (40 kbp) is the mitochondrial genome as identified by its hybridization with plasmids containing gene sequences of plant cytochrome oxidase subunits I and II. Both the 120- and 40-kbp genomes contain genes for the small and large subunits of rDNA. The mitochondrial genome is linear with terminal inverted repeats of about 1.6 kbp. Two other morphologically similar species were examined, Ochromonas minuta and Poteriochromonas malhamensis. All three species have linear mitochondrial DNA of 40 kbp. Comparisons of endonuclease restriction-fragment patterns of the mitochondrial and chloroplast DNAs as well as those of their nuclear rDNA repeats failed to reveal any fragment shared by any two of the species. Likewise, no common fragment size was detected by hybridization with plasmids containing heterologous DNA or with total mitochondrial DNA of O. danica; these observations support the taxonomic assignment of these three organisms to different species. The Ochromonas mitochondrial genomes are the first identified in the chlorophyll a/c group of algae. Combining these results with electron microscopic observations of putative mitochondrial genomes reported for other chromophytes and published molecular studies of other algal groups suggests that all classes of eukaryote algae may have mitochondrial genomes < 100 kbp in size, more like other protistans than land plants.  相似文献   

14.
Although the bulk of the hereditary information in bacteria is organized as a single chromosome, it has been known for some years now that bacteria may also carry pieces of self-replicating extrachromosomal DNA. These units are known as plasmids. Sometimes such plasmids carry the information necessary to give rise to mature bacterial viruses under appropriate conditions, but in other cases they specify the production of enzymes and other proteins which alter the bacterial phenotype. Plasmids are often inessential for survival of bacteria, although they may widen the range of environmental conditions under which they flourish. Thus plasmids may be thought of as adventitious additions to the genetic content of bacterial cells. Recently it has become clear that furthur organizational units of DNA are to be found in bacterial cells. These units are called insertion sequences and transposons. Unlike plasmids and the chromosome, however, these DNA units do not carry enough genetic information to specify their own independent replication: they must rely on plasmids or the chromosome for that purpose. Nevertheless they behave in many respects as independent functional units. Although it is possible to think of the chromosome, plasmids and transposons/insertion sequences as three distinct hierarchies of bacterial DNA, genes may move from one hierarchy to another; and such transitions have important implications for the evolution of bacterial populations. Moreover, their study in bacteria may throw much light on the type of DNA interactions occurring in higher cells.  相似文献   

15.
The Borrelia genome is composed of a linear chromosome and a number of variable circular and linear plasmids. Atypically large linear plasmids of 92 to 105 kb have been identified in several Borrelia burgdorferi sensu lato isolates and characterized. These plasmids carry the p27 and ospAB genes, which in other isolates reside on a 50-kb plasmid. Here we demonstrate that these plasmids are dimers of the 50-kb ospAB plasmid (pAB50). The 94-kb plasmid from isolate VS116, pVS94, was an exception and did not hybridize with any plasmid gene probes. When this plasmid was used as a probe, homologous sequences in other isolates were not detected, suggesting that it is unique to isolate VS116. These analyses provide insight into the mechanism of linear plasmid replication and the mechanisms by which plasmid variability can arise.  相似文献   

16.
Spirochetes of the genus Borrelia have genomes composed of both linear and circular replicons. We characterized the genomic organization of B. burgdorferi, B. hermsii, B. turicatae, and B. anserina with pulsed-field gel electrophoresis. All four species contained a linear chromosome approximately 1 Mb in size and multiple linear plasmids in the 16- to 200-kb size range. Plasmids 180 and 170 kb in size, present in the relapsing fever agents B. hermsii and B. turicatae but not in the other two species, behaved as linear duplex DNA molecules under different electrophoretic conditions. A variant of strain HSI of B. hermsii had a 180-kb circular instead of linear plasmid. There were no detectable differences in the growth rates or in the expression of cellular proteins between cells bearing linear forms and those bearing circular forms of the plasmid. The conversion to a circular conformation of monomeric length was demonstrated by the introduction of strand breaks with irradiation, restriction endonuclease analysis, and direct observation of the DNA molecules by fluorescent microscopy. Consideration of different models for the replication of linear DNA suggests that circular intermediates may be involved in the replication of linear replicons in Borrelia spp.  相似文献   

17.
The genome of the type strain (B31) of Borrelia burgdorferi, the causative agent of Lyme disease, is composed of 12 linear and 9 circular plasmids and a linear chromosome. Plasmid content can vary among strains, but one 26-kb circular plasmid (cp26) is always present. The ubiquitous nature of cp26 suggests that it provides functions required for bacterial viability. We tested this hypothesis by attempting to selectively displace cp26 with an incompatible but replication-proficient vector, pBSV26. While pBSV26 transformants contained this incompatible vector, the vector coexisted with cp26, which is consistent with the hypothesis that cp26 carries essential genes. Several cp26 genes with ascribed or predicted functions may be essential. These include the BBB29 gene, which has sequence homology to a gene encoding a glucose-specific phosphotransferase system component, and the resT gene, which encodes a telomere resolvase involved in resolution of the replicated telomeres of the linear chromosome and plasmids. The BBB29 gene was successfully inactivated by allelic exchange, but attempted inactivation of resT resulted in merodiploid transformants, suggesting that resT is required for B. burgdorferi growth. To determine if resT is the only cp26 gene essential for growth, we introduced resT into B. burgdorferi on pBSV26. This did not result in displacement of cp26, suggesting that additional cp26 genes encode vital functions. We concluded that B. burgdorferi plasmid cp26 encodes functions critical for survival and thus shares some features with the chromosome.  相似文献   

18.
The genome of Borrelia burgdorferi is composed of one linear chromosome and approximately 20 linear and circular plasmids. Although some plasmids are required by B. burgdorferi in vivo, most plasmids are dispensable for growth in vitro. However, circular plasmid (cp) 26 is present in all natural isolates and has never been lost during in vitro growth. This plasmid carries ospC, which is critical for mammalian infection. We previously showed that cp26 encodes essential functions, including the telomere resolvase, ResT, and hence cannot be displaced. Here we identify two additional essential genes on cp26, bbb26 and bbb27, through a systematic attempt to inactivate each open reading frame (ORF). Furthermore, an incompatible plasmid carrying resT, bbb26 and bbb27 could displace cp26. Computational and experimental analyses suggested that both BBB26 and BBB27 are membrane-associated, periplasmic proteins. These data indicate that bbb26 and bbb27 encode essential but possibly redundant functions and that one or the other of these cp26 genes, in addition to resT, is required for bacterial viability. We conclude that the genetic linkage of critical physiological and virulence functions on cp26 is pertinent to its stable maintenance throughout the evolution of B. burgdorferi.  相似文献   

19.
Abstract Antigenic variation has been studied in detail for the etiological agent of relapsing fever, Borrelia hermsii . The variable major proteins (vmps) are found at its cell surface, enabling it to avoid the host's immune response. We have cloned and sequenced the vmp -gene ( vmp )-like sequences from the Borrelia miyamotoi strains HT31 and FR64b and the deduced amino acid sequences were compared with the published vmp proteins vmp3, vmp24, and vmp33 of B. hermsii . The sequences were aligned and revealed pairwise sequence identities ranging from 45 to 51%, and differences were scattered throughout the sequences. Southern hybridization using the cloned vmp -like sequence of strain HT31 as a probe suggested that the vmp homologues reside on the linear plasmids of B. miyamotoi . The probe hybridized weakly with B. hermsii linear plasmids and restriction digests. These results suggest that B. miyamotoi has sequences resembling the vmp genes in B. hermsii .  相似文献   

20.
The nucleoids of Escherichia coli and the spirochetes Borrelia burgdorferi and Borrelia hermsii, agents of Lyme disease and relapsing fever, were examined by epifluorescence microscopy of bacterial cells embedded in agarose and lysed in situ with detergent and protease. The typical E. coli nucleoid was a rosette in which 20 to 50 long loops of DNA emanated from a dense node of DNA. The percentages of cells in a population having nucleoids with zero, one, two, and three nodes varied with growth rate and growth phase. The borrelia nucleoid, in contrast, was a loose network of DNA strands devoid of nodes. This nucleoid structure difference correlates with the unusual genome of Borrelia species, which consists primarily of linear replicons, including a 950-kb linear chromosome and linear plasmids. This method provides a simple, direct means to analyze the structure of the bacterial nucleoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号