首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification and properties of mouse liver coproporphyrinogen oxidase   总被引:2,自引:0,他引:2  
Coproporphyrinogen oxidase was purified to homogeneity from mouse liver. The specific activity of the pure enzyme was 3500 nmol.h-1.mg-1; its apparent molecular mass (35 kDa) was confirmed by immunological characterization of the enzyme in a trichloroacetic-acid-precipitated total-liver-protein extract. The native enzyme appeared to be a dimer of 70 kDa as determined by gel filtration under nondenaturating conditions. The Km value for coproporphyrinogen III was 0.3 microM. The purified enzyme was activated by neutral detergents and phospholipids (affecting both Vmax and Km) but inhibited by ionic detergents. Reactivity toward sulfhydryl agents suggested the possible involvement of (an) SH group(s) for the activity. When compared to the previously purified coproporphyrinogen oxidases (from bovine liver and yeast), the mouse liver coproporphyrinogen oxidase appears to share many common catalytic properties with both enzymes. However, its apparent molecular mass is very different from that of the bovine liver enzyme (71.6 kDa) but identical to that found for the yeast (Saccharomyces cerevisiae) enzyme.  相似文献   

2.
In plants the enzyme coproporphyrinogen oxidase catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX in the heme and chlorophyll biosynthesis pathway(s).We have isolated a soybean coproporphyrinogen oxidase cDNA from a cDNA library and determined the primary structure of the corresponding gene. The coproporphyrinogen oxidase gene encodes a polypeptide with a predicted molecular mass of 43 kDa. The derived amino acid sequence shows 50% similarity to the corresponding yeast amino acid sequence. The main difference is an extension of 67 amino acids at the N-terminus of the soybean polypeptide which may function as a transit peptide.A full-length coproporphyrinogen oxidase cDNA clone complements a yeast mutant deleted of the coproporphyrinogen oxidase gene, thus demonstrating the function of the soybean protein.The soybean coproporphyrinogen oxidase gene is highly expressed in nodules at the stage where several late nodulins including leghemoglobin appear. The coproporphyrinogen oxidase mRNA is also detectable in leaves but at a lower level than in nodules while no mRNA is detectable in roots.The high level of coproporphyrinogen oxidase mRNA in soybean nodules implies that the plant increases heme production in the nodules to meet the demand for additional heme required for hemoprotein formation.  相似文献   

3.
The terminal three steps in haem biosynthesis are the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX, followed by the six-electron oxidation of protoporphyrinogen to protoporphyrin IX, and finally the insertion of ferrous iron to form haem. Interestingly, Nature has evolved distinct enzymic machinery to deal with the antepenultimate (coproporphyrinogen oxidase) and penultimate (protoporphyrinogen oxidase) steps for aerobic compared with anaerobic organisms. The terminal step is catalysed by the enzyme ferrochelatase. This enzyme is clearly conserved with regard to a small set of essential catalytic residues, but varies significantly with regard to size, subunit composition, cellular location and the presence or absence of a [2Fe-2S] cluster. Coproporphyrinogen oxidase and protoporphyrinogen oxidase are reviewed with regard to their enzymic and physical characteristics. Ferrochelatase, which is the best characterized of these three enzymes, will be described with particular emphasis paid to what has been learned from the crystal structure of the Bacillus subtilis and human enzymes.  相似文献   

4.
'Radical SAM' enzymes generate catalytic radicals by combining a 4Fe-4S cluster and S-adenosylmethionine (SAM) in close proximity. We present the first crystal structure of a Radical SAM enzyme, that of HemN, the Escherichia coli oxygen-independent coproporphyrinogen III oxidase, at 2.07 A resolution. HemN catalyzes the essential conversion of coproporphyrinogen III to protoporphyrinogen IX during heme biosynthesis. HemN binds a 4Fe-4S cluster through three cysteine residues conserved in all Radical SAM enzymes. A juxtaposed SAM coordinates the fourth Fe ion through its amide nitrogen and carboxylate oxygen. The SAM sulfonium sulfur is near both the Fe (3.5 A) and a neighboring sulfur of the cluster (3.6 A), allowing single electron transfer from the 4Fe-4S cluster to the SAM sulfonium. SAM is cleaved yielding a highly oxidizing 5'-deoxyadenosyl radical. HemN, strikingly, binds a second SAM immediately adjacent to the first. It may thus successively catalyze two propionate decarboxylations. The structure of HemN reveals the cofactor geometry required for Radical SAM catalysis and sets the stage for the development of inhibitors with antibacterial function due to the uniquely bacterial occurrence of the enzyme.  相似文献   

5.
Pig blood neutrophils were briefly activated by various fatty acids and then fractionated into membrane vesicles with different NADPH oxidase activities. Treatment of these membranes with a detergent, octyl glucoside, resulted in a high yield of solubilized oxidase, which was subjected to isoelectric focusing on gels (pI 4.0-8.0). 1) A distinct band staining with NADPH-nitroblue tetrazolium focused at pI 5.0. The enzyme (pI 5.0) showed high specificity for NADPH and similar characteristics to the oxidase involved in the respiratory burst. 2) The enzyme was extracted from gel slices and analyzed. When measured promptly after its extraction, its NADPH oxidase activity was high, but there was apparent superoxide dismutase-insensitive cytochrome c reduction, probably due to direct electron transfer to the heme protein. However, it could produce superoxide anion (O2-) under some micelle conditions. 3) Therefore, the formation of the enzyme-substrate complex of yeast cytochrome c peroxidase was employed for the detection of H2O2. A fresh extract of stimulated cells catalyzed equimolar NADPH oxidation and H2O2 production of 306 and 300 nmol min-1 (mg protein)-1, respectively. The Km value of the enzyme for NADPH was 30 +/- 13 (S.D.) microM. The recovery of the extract (pI 5.0) was 19% of the total activity. 4) The enzyme extract contained 1.1-1.9 nmol of FAD/mg of protein, giving a turnover number of 300-600 min-1 in terms of O2- generation/FAD. No heme protein was found in the enzyme. The enzyme was mainly of 67-kDa molecular mass.  相似文献   

6.
Coproporphyrinogen oxidase, the sixth enzyme in the biosynthetic heme pathway, catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX. A reversed-phase high pressure liquid chromatography method was developed to measure coproporphyrinogen oxidase enzymatic activity in rat liver. With this method, the separation, identification and quantification of coproporphyrin III (oxidized substrate) and protoporphyrin IX (oxidized product) present in the assays could be carried out with no need of derivatization and in less than 15 min. Rat and human liver coproporphyrinogen oxidase basal activities determined using this method were 0.41+/-0.05 nmol of protoporphyrin IX/h per mg of hepatic protein and 0.87+/-0.06 protoporphyrin IX/h per mg of hepatic protein, respectively. Kinetic studies showed that optimum pH for rat CPGox is 7.3, and that its activity is linear in the range of protein concentrations and incubation times assayed. The present paper describes a sensitive, specific and rapid fluorometric high performance liquid chromatography method to measure coproporphyrinogen oxidase, which could be applied to the diagnosis of human coproporphyria, and which is also suitable for the study of lead and other metal poisoning that produce alterations in this enzymatic activity.  相似文献   

7.
A menadione-stimulated, superoxide-generating enzyme was purified 127-fold from resting bovine polymorphonuclear leukocyte (neutrophil) membranes with a yield of 34%. The enzyme was extracted with Triton X-100 and purified by chromatography on DEAE-Sepharose CL-6B, NAD-agarose, and Sephacryl S-200. The purified enzyme contained FAD and had an apparent molecular mass of 93 kDa by sodium dodecyl sulfate gel electrophoresis. In a nondenaturing gel electrophoresis system, the enzyme was multimeric (Mr greater than 400,000). The oxidase showed 3-4-fold higher activity (Vm) with NADH compared with NADPH, but the Km for both pyridine nucleotides was similar (39 and 47 microM, respectively). The enzyme transferred electrons to cytochrome c, dichlorophenolindophenol, and nitro blue tetrazolium. Cytochrome c reduction was stimulated 4-fold by menadione and was inhibited 70% by superoxide dismutase. Cytochrome c reduction was not inhibited by several mitochondrial respiratory chain inhibitors (azide, cyanide, and rotenone) but was sensitive to thiol-reactive agents (p-chloromercuribenzoate and monoiodo acetate). The catalytic properties of this enzyme distinguish it from the NADPH-dependent superoxide-generating respiratory burst oxidase (NADPH-oxidase) of human neutrophils. Nevertheless, antibodies to this enzyme inhibited not only the purified menadione-stimulated oxidase, but also the respiratory burst oxidase in membranes isolated from activated human neutrophils, indicating similar antigenic determinants are shared by these enzymes. Western blots of human neutrophil membranes visualized a plasma membrane protein of molecular mass 67 kDa, corresponding in size to a protein previously reported in preparations of the human respiratory burst oxidase.  相似文献   

8.
9.
The S-adenosylmethionine (AdoMet) radical enzyme oxygen-independent coproporphyrinogen III oxidase HemN catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX during bacterial heme biosynthesis. The recently solved crystal structure of Escherichia coli HemN revealed the presence of an unusually coordinated iron-sulfur cluster and two molecules of AdoMet. EPR spectroscopy of the reduced iron-sulfur center in anaerobically purified HemN in the absence of AdoMet has revealed a [4Fe-4S](1+) cluster in two slightly different conformations. M?ssbauer spectroscopy of anaerobically purified HemN has identified a predominantly [4Fe-4S](2+) cluster in which only three iron atoms were coordinated by cysteine residues (isomer shift of delta = 0.43 (1) mm/s). The fourth non-cysteine-ligated iron exhibited a delta = 0.57 (3) mm/s, which shifted to a delta = 0.68 (3) mm/s upon addition of AdoMet. Substrate binding by HemN did not alter AdoMet coordination to the cluster. Multiple rounds of AdoMet cleavage with the formation of the reaction product methionine indicated AdoMet consumption during catalysis and identified AdoMet as a co-substrate for HemN catalysis. AdoMet cleavage was found to be dependent on the presence of the substrate coproporphyrinogen III. Two molecules of AdoMet were cleaved during one catalytic cycle for the formation of one molecule of protoporphyrinogen IX. Finally, the binding site for the unusual second, non iron-sulfur cluster coordinating AdoMet molecule (AdoMet2) was targeted using site-directed mutagenesis. All AdoMet2 binding site mutants still contained an iron-sulfur cluster and most still exhibited AdoMet cleavage, albeit reduced compared with the wild-type enzyme. However, all mutants lost their overall catalytic ability indicating a functional role for AdoMet2 in HemN catalysis. The reported significant correlation of structural and functional biophysical and biochemical data identifies HemN as a useful model system for the elucidation of general AdoMet radical enzyme features.  相似文献   

10.
K Xu  T Elliott 《Journal of bacteriology》1993,175(16):4990-4999
The 8th step in the 10-step heme biosynthetic pathway of Salmonella typhimurium is the oxidation of coproporphyrinogen III to protoporphyrinogen IX. On the basis of genetic studies, we have suggested that this reaction may be catalyzed by either of two different enzymes, an oxygen-dependent one encoded by hemF or an oxygen-independent enzyme encoded by hemN. Here, we report the cloning of the S. typhimurium hemF gene and its DNA sequence. The predicted amino acid sequence of the HemF protein is 44% identical to that of the coproporphyrinogen oxidase encoded by the yeast HEM13 gene. The wild-type S. typhimurium strain LT-2 produces an oxygen-dependent coproporphyrinogen oxidase activity detectable in crude extracts, which is not found in hemF mutants and is overproduced in strains carrying the hemF gene on a multicopy plasmid. the hemF gene is the second gene in an operon with an upstream gene with an unknown function, whose amino acid sequence suggests a relation to amidases involved in cell wall synthesis or remodeling. The upstream gene and hemF are cotranscribed from a promoter which was mapped by primer extension. A weaker, hemF-specific promoter is inferred from the behavior of an omega-Cm insertion mutation in the upstream gene. Although this insertion decreases expression of beta-galactosidase about 7.5-fold when placed upstream of a hemF-lacZ operon fusion, it still allows sufficient HemF expression from an otherwise wild-type construct to confer a Hem+ phenotype. The hemF operon is transcribed clockwise with respect to the genetic map.  相似文献   

11.
To maintain photosynthetic competence under copper-deficient conditions, the green alga Chlamydomonas reinhardtii substitutes a heme protein (cytochrome c6) for an otherwise essential copper protein, viz. plastocyanin. Here, we report that the gene encoding coproporphyrinogen oxidase, an enzyme in the heme biosynthetic pathway, is coordinately expressed with cytochrome c6 in response to changes in copper availability. We have purified coproporphyrinogen oxidase from copper-deficient C.reinhardtii cells, and have cloned a cDNA fragment which encodes it. Northern hybridization analysis confirmed that the protein is nuclear-encoded and that, like cytochrome c6, its expression is regulated by copper at the level of mRNA accumulation. The copper-responsive expression of coproporphyrinogen oxidase parallels cytochrome c6 expression exactly. Specifically, the copper-sensing range and metal selectivity of the regulatory components, as well as the time course of the responses, are identical. Hence, we propose that the expression of these two proteins is controlled by the same metalloregulatory mechanism. Our findings represent a novel metalloregulatory response in which the synthesis of one redox cofactor (heme) is controlled by the availability of another (Cu).  相似文献   

12.
To determine the radiation sensitivity of galactose oxidase, a 68 kDa monomeric enzyme containing a mononuclear copper ion coordinated with an unusually stable cysteinyl‐tyrosine (Cys‐Tyr) protein free radical. Both active enzyme and reversibly rendered inactive enzyme were irradiated in the frozen state with high‐energy electrons. Surviving polypeptides and surviving enzyme activity were analyzed by radiation target theory giving the radiation sensitive mass for each property. In both active and inactive forms, protein monomer integrity was lost with a single radiation interaction anywhere in the polypeptide, but enzymatic activity was more resistant, yielding target sizes considerably smaller than that of the monomer. These results suggest that the structure of galactose oxidase must make its catalytic activity unusually robust, permitting the enzymatic properties to survive in molecules following cleavage of the polymer chain. Radiation target size for loss of monomers yielded the mass of monomers indicating a polypeptide chain cleavage after a radiation interaction anywhere in the monomer. Loss of enzymatic activity yielded a much smaller mass indicating a robust structure in which catalytic activity could be expressed in cleaved polypeptides.  相似文献   

13.
An aldehyde oxidase, which oxidizes various aliphatic and aromatic aldehydes using O(2) as an electron acceptor, was purified from the cell-free extracts of Pseudomonas sp. KY 4690, a soil isolate, to an electrophoretically homogeneous state. The purified enzyme had a molecular mass of 132 kDa and consisted of three non-identical subunits with molecular masses of 88, 39, and 18 kDa. The absorption spectrum of the purified enzyme showed characteristics of an enzyme belonging to the xanthine oxidase family. The enzyme contained 0.89 mol of flavin adenine dinucleotide, 1.0 mol of molybdenum, 3.6 mol of acid-labile sulfur, and 0.90 mol of 5'-CMP per mol of enzyme protein, on the basis of its molecular mass of 145 kDa. Molecular oxygen served as the sole electron acceptor. These results suggest that aldehyde oxidase from Pseudomonas sp. KY 4690 is a new member of the xanthine oxidase family and might contain 1 mol of molybdenum-molybdpterin-cytosine dinucleotide, 1 mol of flavin adenine dinucleotide, and 2 mol of [2Fe-2S] clusters per mol of enzyme protein. The enzyme showed high reaction rates toward various aliphatic and aromatic aldehydes and high thermostability.  相似文献   

14.
15.
Genetic defects of coproporphyrinogen oxidase (CPO) lead to hereditary coproporphyria, an inherited autosomal dominant porphyria. The recent cloning of human cDNAs and of the gene encoding CPO permits deducing the primary structure of the CPO protein and elucidating the molecular basis of HC in some families.  相似文献   

16.
17.
Aryl-alcohol oxidase (AAO) involved in lignin degradation by Pleurotus pulmonarius has been purified and characterized. The enzyme was produced in glucose-peptone medium and isolated in a sole chromatographic step using Sephacryl S-200. The purified enzyme is an extracellular glycoprotein with 14% N-carbohydrate content and an estimated molecular mass of 70.5 kDa and pI of 3.95. The kinetic studies showed the highest enzyme affinity against p-anisyl alcohol, with constants similar to those of Pleurotus eryngii and Bjerkandera adusta AAO but different from the intracellular AAO described in Phanerochaete chrysosporium, which present the highest activity on m-anisyl alcohol. Simultaneously, the cDNA of P. pulmonarius AAO has been cloned and sequenced. The translation of this sequence consisted of 593 amino acids including a signal peptide of 27 amino acids. The comparison with other alcohol oxidases, 35% amino acid identity with glucose oxidase, showed highly conserved amino acid sequences in N-terminal and C-terminal regions, in spite of differences in substrate specificity. Crystallization of AAO, carried out for the first time using the P. pulmonarius enzyme, will permit to obtain a molecular model for this oxidase and establish some characteristic of its catalytic site and general structure.  相似文献   

18.
The mitochondrial location of protoporphyrinogen oxidase   总被引:4,自引:0,他引:4  
Using the digitonin method and subsequent fractionation of rat liver mitochondria, protoporphyrinogen oxidase (penultimate enzyme in the heme biosynthesis pathway) was found to be closely associated with the mitochondrial inner membrane fraction. Chemical treatment with non-specific probes (trypsin and diazobenzene sulfonate) of either intact or inverted mitoplasts, indicated that protoporphyrinogen oxidase was anchored within the lipid bilayer of the inner membrane. Protoporphyrinogen had an equal access to the active site of the enzyme from both sides of the inner membrane and its transformation to protoporphyrin did not appear to be energy-dependent. Studies of protoporphyrinogen synthesis from exogenously added coproporphyrinogen in either intact or hypoosmotically treated mitochondria underlined the importance of the peculiar submitochondrial location of coproporphyrinogen oxidase and protoporphyrinogen oxidase for the transfer of substrates to the inner membrane.  相似文献   

19.
In the yeast Saccharomyces cerevisiae, the enzymes which catalyse the synthesis of ethyl acetate, ethyl n-hexanoate and isoamyl acetate were partly resolved from a fraction containing slowly sedimenting lipoproteins released during cell disruption with glass beads. Solubilization with detergents and fractionation by affinity chromatography have demonstrated the presence of at least three, and probably four, ester synthases which differ in their catalytic properties. Isoamyl-acetate synthase was solubilized and extensively purified to apparent homogeneity by successive chromatographies on various columns. On the basis of its specific activity in cell-free extracts, the enzyme was purified 19,000-fold with a 5% activity yield. As judged by SDS/PAGE, it consists of a single polypeptide chain with a molecular mass of 57 +/- 3 kDa and its apparent pI is 5.5. The enzyme acetylates isoamyl alcohol, ethanol and 12-DL-hydroxystearic acid from acetyl-CoA but is unable to use n-hexanoyl-CoA as a cosubstrate. This enzyme, defined as an acetyl-CoA: O-alcohol acetyltransferase, could be the product of one of the anaerobically induced genes in S. cerevisiae.  相似文献   

20.
gamma-Glutamyltranspeptidase is associated with the brush border membrane of kidney proximal straight tubule cells. It can be solubilized qualitatively by treatment with papain or Triton X-100. Neither procedure affects its catalytic activity but the two resulting forms of the enzyme differ considerably in their physical properties. The papain-solubilized transpeptidase is soluble in aqueous buffers and was purified 430-fold. It has an s20,w of 4.9 S, a Stokes radius of 36 A, and a calculated molecular weight of 69,000. It appears homogeneous by sedimentation equilibrium centrifugation (Mr=66,700). In contrast, the Triton-solubilized transpeptidase is soluble only in the presence of detergents and was purifed 300-fold. This form of the enzyme has a Stokes radius of 70 A but an s20,w of only 4.15 S. Aggregation of the enzyme just below the critical micelle concentration of Triton X-100 and its ability to bind 1.16 mg of Triton X-100-protein complex was calculated to be 169,000, but the glycoprotein portion of the complex is 52% of the total mass (87,000). The mass of Triton X-100 (82,000) is consistent with its reported micelle molecular weight. Treatment of the Triton-purified transpeptidase with papain or bromelain results in a form of the enzyme identical in all respects with the papain-purified enzyme. Both the Triton- and papain-purified transpeptidase exhibit two protein bands on sodium lauryl sulfate-polyacrylamide gel electrophoresis. The smaller subunits of the two forms appear identical (Mr=27,000), while the larger subunits of the Triton- and papain-purified enzyme have apparent molecular weights of 54,000 and 51,000, respectively. These data suggest that a peptide (3,000 to 19,000) in the larger subunit of gamma-glutamyltranspeptidase is responsible for its binding to Triton micelles and probably for holding the enzyme in the brush border membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号