首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The lamprey (Lampetra fluviatilis L.) is an extant representative of the ancient vertebrate group of Agnathans. During the prespawning migration (the river period of life from autumn until spring) lamprey hepatocytes exhibit widely different energy states: a high-energy state in autumn and spring, corresponding to a normal physiological standard, and a low-energy state in winter, which is provoked by prolonged starvation and profound metabolic arrest. In spring the restoration of energy status (return to an active state) is associated with hormonally induced lipolysis of the lipid droplets stored in the cells. Lamprey hepatocytes demonstrate an aerobic metabolism based on oxidation of free fatty acids. The dynamics of mitochondrial membrane potential (MMP) were measured throughout the prespawning migration. Pharmacological inhibition of the electron transport chain decreased the MMP and caused extensive depletion of cellular ATP without loss of cell viability. The potential molecular mechanisms responsible for winter metabolic depression in lamprey hepatocytes are discussed.  相似文献   

2.
The work dealt with study of mitochondria in reversible metabolic suppression of hepatocytes of the river lamprey Lampetra fluviatilis in the course of prespawning starvation and of liver mitochondria of the common frog Rana temporaria during hibernation and activity. In winter the metabolic depression of lamprey hepatocytes, unlike that of frog hepatocytes, has been found to be due to deactivation of complex I of the electron transport mitochondrial chain, a low rate of NAD-dependent substrate oxidation, a low content of adenine nucleotide content, and a high degree of mitochondrial membrane permeability to H+ and other monovalent ions (KCl-, K+). The mitochondrial membrane permeability decreases in the presence of ethyleneglycoldiamineethyltetraacetic acid (EGTA), cyclosporine A (CsA), adenosine-5'-diphosphate (ADP), and Mg+. These facts indicate the presence in these mitochondria of the Ca2+ -dependent unspecific pore in the low-conductance state. Histological studies showed the lamprey and the frog to have principal differences in use of energy substrates at the period of metabolic depression. Lampreys utilize predominantly lipids, whereas frogs--glycogen. The clearly pronounces activation of lipid consumption is observed at the spring period before spawning and death of lamprey. Possible causes of metabolic depression are discussed as well as similarity and difference in behavior of mitochondria of cyclostomes and amphibians throughout metabolic depression and activity.  相似文献   

3.
Hepatocyte heterogeneity in the metabolism of carbohydrates.   总被引:8,自引:0,他引:8  
K Jungermann  R G Thurman 《Enzyme》1992,46(1-3):33-58
Periportal and perivenous hepatocytes possess different amounts and activities of the rate-generating enzymes of carbohydrate and oxidative energy metabolism and thus different metabolic capacities. This is the basis of the model of metabolic zonation, according to which periportal cells catalyze predominantly the oxidative catabolism of fatty and amino acids as well as glucose release and glycogen formation via gluconeogenesis, and perivenous cells carry out preferentially glucose uptake for glycogen synthesis and glycolysis coupled to liponeogenesis. The input of humoral and nervous signals into the periportal and perivenous zones is different; gradients of oxygen, substrates and products, hormones and mediators and nerve densities exist which are important not only for the short-term regulation of carbohydrate metabolism but also for the long-term regulation of zonal gene expression. The specialization of periportal and perivenous hepatocytes in carbohydrate metabolism has been well characterized. In vivo evidence is provided by the complex metabolic situation termed the 'glucose paradox' and by zonal flux differences calculated on the basis of the distribution of enzymes and metabolites. In vitro evidence is given by the different flux rates determined with classical invasive techniques, e.g. in periportal-like and perivenous-like hepatocytes in cell culture, in periportal- and perivenous-enriched hepatocyte populations and in perfused livers during orthograde and retrograde flow, as well as with noninvasive techniques using miniature oxygen electrodes, e.g. in livers perfused in either direction. Differences of opinion in the interpretation of studies with invasive and noninvasive techniques by the authors are discussed. The declining gradient in oxygen concentrations, the decreasing glucagon/insulin ratio and the different innervation could be important factors in the zonal expression of the genes of carbohydrate-metabolizing enzymes. While it is clear that the hepatocytes sense the glucagon/insulin gradients via the respective hormone receptors, it is not known how they sense different oxygen tensions; the O2 sensor may be an oxygen-binding heme protein. The zonal separation of glucose release and uptake appears to be important for the liver to operate as a 'glucostat'. Thus, zonation of carbohydrate metabolism develops gradually during the first weeks of life, in part before and in part with weaning, when (in rat and mouse) the fat- and protein-rich but carbohydrate-poor nutrition via milk is replaced by carbohydrate-rich food. Similarly, zonation of carbohydrate metabolism adapts to longer lasting alterations in the need of a 'glucostat', such as starvation, diabetes, portocaval anastomoses or partial hepatectomy.  相似文献   

4.
The work dealt with study of mitochondria in reversible metabolic suppression of heap-tocytes of the river lamprey Lampetra fluviatilis in the course of prespawning starvation and of liver mitochondria of the common frog Rana temporaria during hibernation and activity. In winter the metabolic depression of lamprey hepatocytes, unlike that of frog hepatocytes, has been found to be due to deactivation of complex I of the electron transport mitochondrial chain, a low rate of NAD-dependent substrate oxidation, a low content of adenine nucleotide content, and a high degree of mitochondrial membrane permeability to H+ and other monovalent ions (KCl, K+). The mitochondrial membrane permeability decreases in the presence of ethyleneglycoldiamineethyltetraacetic acid (EGTA), cyclosporine A (CsA), adenosine-5′-diphosphate (ADP), and Mg2+. These facts indicate the presence in these mitochondria of the Ca2+-dependent unspecific pore in the low-conductance state. Histological studies showed the lamprey and the frog to have principal differences in use of energy substrates at the period of metabolic depression. Lampreys utilize predominantly lipids, whereas frogs—glycogen. The clearly pronounced activation of lipid consumption is observed at the spring period before spawning and death of lamprey. Possible causes of metabolic depression are discussed as well as similarity and difference in behavior of mitochondria of cyclostomes and amphibians throughout depression and activity.  相似文献   

5.
Adenylate energy charge of rat and human cultured hepatocytes   总被引:3,自引:0,他引:3  
Summary A simple and rapid method for the assay of adenine nucleotides (ATP, ADP, and AMP) was established to evaluate the adenylate energy charge (ATP+ADP/2)/(ATP+ADP+AMP) of cultured hepatocytes. The effects of inhibitors of glycolysis, fatty acid oxidation, or oxidative phosphorylation on the energy charge were examined. The energy charges of cultured hepatocytes in rats and human were almost identical and were maintained at a high level between 6 and 24 h after changing the media (rat: 0.908±0.008n=9, human: 0.918±0.014n=6, mean ± SD). Inhibition of glycolysis with sodium fluoride or oxidative phosphorylation with antimycin A irreversibly reduced both the adenine nucleotide contents and the energy charge. However, the inhibition of fatty acid oxidation with 2-tetradecylglycidic acid did not affect the nucleotide contents, and the energy charge only decreased transiently to recover within 8 h. When the inhibitor of oxidative phosphorylation was removed, the recovery in the energy charge preceded the recovery in the adenine nucleotide contents. These findings suggest that the adenylate energy charge is a more sensitive measure of the changes in energy metabolism than the adenine nucleotide contents. Furthermore, energy charge regulates adenine nucleotide contents in cultured hepatocytes. It is important to confirm that the high energy charge of the cultured hepatocytes is maintained when these cells are used for metabolic studies.  相似文献   

6.
Metabolic flux analysis of cultured hepatocytes exposed to plasma   总被引:3,自引:0,他引:3  
Hepatic metabolism can be investigated using metabolic flux analysis (MFA), which provides a comprehensive overview of the intracellular metabolic flux distribution. The characterization of intermediary metabolism in hepatocytes is important for all biotechnological applications involving liver cells, including the development of bioartificial liver (BAL) devices. During BAL operation, hepatocytes are exposed to plasma or blood from the patient, at which time they are prone to accumulate intracellular lipids and exhibit poor liver-specific functions. In a prior study, we found that preconditioning the primary rat hepatocytes in culture medium containing physiological levels of insulin, as opposed to the typical supraphysiological levels found in standard hepatocyte culture media, reduced lipid accumulation during subsequent plasma exposure. Furthermore, supplementing the plasma with amino acids restored hepatospecific functions. In the current study, we used MFA to quantify the changes in intracellular pathway fluxes of primary rat hepatocytes in response to low-insulin preconditioning and amino acid supplementation. We found that culturing hepatocytes in medium containing lower physiological levels of insulin decreased the clearance of glucose and glycerol with a concomitant decrease in glycolysis. These findings are consistent with the general notion that low insulin, especially in the presence of high glucagon levels, downregulates glycolysis in favor of gluconeogenesis in hepatocytes. The MFA model shows that, during subsequent plasma exposure, low-insulin preconditioning upregulated gluconeogenesis, with lactate as the primary precursor in unsupplemented plasma, with a greater contribution from deaminated amino acids in amino acid-supplemented plasma. Concomitantly, low-insulin preconditioning increased fatty acid oxidation, an effect that was further enhanced by amino acid supplementation to the plasma. The increase in fatty acid oxidation reduced intracellular triglyceride accumulation. Overall, these findings are consistent with the notion that the insulin level in medium culture presets the metabolic machinery of hepatocytes such that it directly impacts on their metabolic behavior during subsequent plasma culture.  相似文献   

7.
The unusual energy metabolism of elasmobranchs is characterized by limited or absent fatty acid oxidation in cardiac and skeletal muscle and a great reliance on ketone bodies and amino acids as oxidative fuels in these tissues. Other extrahepatic tissues in elasmobranchs rely on ketone bodies and amino acids for aerobic energy production but, unlike muscle, also appear to possess a significant capacity to oxidize fatty acids. This organization of energy metabolism is reflected by relatively low plasma levels of non-esterified fatty acids (NEFA) and by plasma levels of the ketone body ß-hydroxybutyrate that are as high as those seen in fasted mammals. The preference for ketone body oxidation rather than fatty acid oxidation in muscle of elasmobranchs under routine conditions is opposite to the situation in teleosts and mammals. Carbohydrates appear to be utilized as a fuel source in elasmobranchs, similar to other vertebrates. Amino acid- and lipid-fueled ketogenesis in the liver, the lipid storage site in elasmobranchs, sustains the demand for ketone bodies as oxidative fuels. The liver also appears to export NEFA and serves a buoyancy role. The regulation of energy metabolism in elasmobranchs and the effects of environmental factors remain poorly understood. The metabolic organization of elasmobranchs was likely present in the common ancestor of the Chondrichthyes ca. 400 million years ago and, speculatively, it may reflect the ancestral metabolism of jawed vertebrates. We assess hypotheses for the evolution of the unusual energy metabolism of elasmobranchs and propose that the need to synthesize urea has influenced the utilization of ketone bodies and amino acids as oxidative fuels.  相似文献   

8.
A theoretical analysis of the energy metabolism associated with the conversion of glucose to fat is presented. In tissues where the pentose cycle furnishes some of the NADPH required for fatty acid synthesis, this conversion is an ATP-yielding process. In rat adipose tissue the maximal rate of glucose conversion to fat can be quantatively predicted on the basis of the tissue's ability to use the ATP which is generated in excess during this conversion. The energy-generating nature of this process provides the means for a type of regulation which depends on metabolic state and which, during fasting, contributes to the sparing of carbohydrate. Impairment of lipogenesis in the fasting state is attributed to a decrease in the activity of the malate cycle and to the presence of free fatty acids. However, rather than by inhibiting specific enzymes, it is by virtue of their quality as substrates for energy production that free fatty acids and their CoA derivatives appear to inhibit de novo lipogenesis. The regulatory phenomena discussed here may explain the failure of the attempts made to identify the rate-limiting step for de novo lipogenesis in adipose tissue.  相似文献   

9.
10.
11.
12.
Modification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK) in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS), and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.  相似文献   

13.
Understanding the regulation of hepatocyte lipid metabolism is important for several biotechnological applications involving liver cells. During exposure of hepatocytes to plasma, as is the case in extracorporeal bioartificial liver assist devices, it has been reported that hepatic-specific functions, e.g., albumin and urea synthesis and diazepam removal, are dramatically compromised and hepatocytes progressively accumulate cytoplasmic lipid droplets. We hypothesized that the composition of hepatocyte culture medium significantly affects lipid metabolism during subsequent plasma exposure. Rat hepatocytes were cultured in medium containing either physiological (50 microU/mL) or supra-physiological (500 mU/mL) insulin levels for 1 week and then exposed to human plasma supplemented with or without amino acids. We found that insulin's anabolic effects, such as stimulation of triglyceride storage, were carried over from the pre-conditioning to the plasma exposure period. While hepatocytes cultured in high insulin medium accumulated large quantities of triglycerides during subsequent plasma exposure, culture in low insulin medium largely prevented lipid accumulation. Urea and albumin secretion, as well as the ammonia removal rate, were largely unaffected by insulin but increased with amino acid supplementation. Thus, hepatocyte metabolism during plasma exposure can be modulated by medium pre-conditioning and supplements added to plasma.  相似文献   

14.
线粒体是细胞的代谢中心之一,不仅产生大量的ATP为细胞提供能量,还参与多种生物分子(例如核酸、氨基酸、胆固醇和脂肪酸)合成及代谢废物的处理。ATP是细胞重要的“能源货币”,是能量载体和信号分子,参与调节细胞的各种生命活动。动物与人在激烈运动时,ATP消耗速率增加数十倍,但细胞内的ATP仍维持在“设定点”水平,不出现降低。因此,传统生理学观点认为,动物细胞内ATP水平保持恒定。但新的研究结果表明,生物细胞内ATP水平存在波动。生理条件下,增加能量物资(糖、脂和氨基酸等)和氧供,促进线粒体ATP合成,可使细胞内ATP水平出现一过性升高。新的研究证明,在肥胖情况下,由于能量物质的过多供应,细胞内ATP水平出现持续性升高,构成代谢紊乱的源头信号。线粒体ATP合成受多种因素影响,如氧化应激、钙超载、缺氧、线粒体膜通透性增加和线粒体DNA突变等。这些因素与疾病条件下细胞内ATP水平持续降低相关,常见的疾病包括阿尔茨海默症、帕金森疾病、精神分裂症、肿瘤、心衰、全身炎症反应综合征等。本综述简要概述线粒体调节细胞内ATP水平的研究进展,重点讨论造成ATP波动的因素、机制及病理生理学意义。  相似文献   

15.
To study role of glycolysis and oxidative metabolism in providing active transport of monovalent cations, isolated erythrocytes of the lamprey Lampetra fluviatlis were incubated at 20°C in the presence of various metabolic inhibitors. The active (ouabain-sensitive) K+ (86Rb) influx into erythrocytes did not change after cell incubation for 1–2 h in the absence of glucose or in the presence of 10 mM deoxy-D-glucose or 1 mM monoiodoacetate. Inhibitors of oxidative phosphorylation (antimycin A, rotenone, sodium azide, cyanide) produced a significant decrease (on average, by 74% ) in the active K+ transport in the lamprey erythrocytes. All blockers of oxidative phosphorylation produced the same degree of inhibition of the K+ transport after the cell pre-incubation with them for 30 and 60 min. In experiments with rotenone, the K+ influx was reduced statistically significantly as early as in 5 min of cell incubation and reached a maximal effect after 10–20 min. The intracellular ATP content in erythrocytes decreased by 17, 37, and 45% after 5, 10, and 20 min of cell incubation with rotenone, respectively. The active K+ transport in the lamprey erythrocytes is most likely to be closely associated with the intracellular ATP concentration. The data obtained indicate that the energy supply of the Na,K-pump in the lamprey erythrocytes is due exclusively to oxidative phosphorylation processes.  相似文献   

16.
线粒体是细胞的代谢中心之一,不仅产生大量的ATP为细胞提供能量,还参与多种生物分子(例如核酸、氨基酸、胆固醇和脂肪酸)合成及代谢废物的处理。ATP是细胞重要的“能源货币”,是能量载体和信号分子,参与调节细胞的各种生命活动。动物与人在激烈运动时,ATP消耗速率增加数十倍,但细胞内的ATP仍维持在“设定点”水平,不出现降低。因此,传统生理学观点认为,动物细胞内ATP水平保持恒定。但新的研究结果表明,生物细胞内ATP水平存在波动。生理条件下,增加能量物资(糖、脂和氨基酸等)和氧供,促进线粒体ATP合成,可使细胞内ATP水平出现一过性升高。新的研究证明,在肥胖情况下,由于能量物质的过多供应,细胞内ATP水平出现持续性升高,构成代谢紊乱的源头信号。线粒体ATP合成受多种因素影响,如氧化应激、钙超载、缺氧、线粒体膜通透性增加和线粒体DNA突变等。这些因素与疾病条件下细胞内ATP水平持续降低相关,常见的疾病包括阿尔茨海默症、帕金森疾病、精神分裂症、肿瘤、心衰、全身炎症反应综合征等。本综述简要概述线粒体调节细胞内ATP水平的研究进展,重点讨论造成ATP波动的因素、机制及病理生理学意义。  相似文献   

17.
《BBA》2020,1861(11):148276
In living cells, growth is the result of coupling between substrate catabolism and multiple metabolic processes that take place during net biomass formation and maintenance processes. During growth, both ATP/ADP and NADH/NAD+ molecules play a key role. Cell energy metabolism hence refers to metabolic pathways involved in ATP synthesis linked to NADH turnover. Two main pathways are thus involved in cell energy metabolism: glycolysis/fermentation and oxidative phosphorylation. Glycolysis and mitochondrial oxidative phosphorylation are intertwined through thermodynamic and kinetic constraints that are reviewed herein. Further, our current knowledge of short-term and long term regulation of cell energy metabolism will be reviewed using examples such as the Crabtree and the Warburg effect.  相似文献   

18.
We studied the metabolic rate, cellular energetic state, hypoxia-inducible factor-1 (HIF-1) activation, and expression of enzymes involved in energy metabolism using rainbow trout (Oncorhynchus mykiss) hepatocytes over the oxygen range from 21 to 1 kPa. Oxygen dependence of these factors was assessed by gradually reducing oxygen supply to cells from 21 kPa to 10, 5, 2, and 1 kPa. Moreover, time course experiments for up to 20 h at oxygen tensions of 1 and 2 kPa were carried out. Reduction of oxygen from 21 kPa to 10, 5, 2, and 1 kPa decreased metabolic rate of the cells by 14, 24, 37, and 46%, respectively. This response was instantaneous and fully reversible upon reoxygenation. Cellular ATP content and the expression of all mRNAs studied decreased when oxygen was reduced from 21 to 5 and 2 kPa. The lowest ATP levels, approximately 43% of the initial value, were measured at 5 kPa of oxygen, whereas the reduction in mRNA amounts was most pronounced at 2 kPa. At 1 kPa oxygen tension, both ATP content and mRNA amounts returned to normoxic (21 kPa) levels with a concomitant activation of HIF-1, indicating reorganization of energy metabolism in adaptation of cells to low oxygen supply. These results show that oxygen has a direct regulatory effect on metabolism of trout hepatocyte cultures, supporting the view that oxygen has a profound role in metabolic regulation in cells.  相似文献   

19.
The worldwide rising prevalence of obesity and insulin resistance is associated with a parallel increase in nonalcoholic fatty liver disease (NAFLD). NAFLD is characterized by excess accumulation of triglyceride in the hepatocyte due to increased inflow of free fatty acids and/or de novo lipogenesis caused by various drugs and multiple defects in energy metabolism. Accumulation of lipids in the hepatocyte impairs the oxidative capacity of the mitochondria, increasing the reduced state of the electron transport chain (ETC) complexes and stimulating peroxisomal and microsomal pathways of fat oxidation. The consequent increased generation of reactive oxygen species (ROS) and reactive aldehydic derivatives causes oxidative stress and cell death, via ATP, NAD, and glutathione depletion and DNA, lipid, and protein damage. Oxidative stress also triggers production of inflammatory cytokines, causing inflammation and a fibrogenic response. This ultimately results in the development of nonalcoholic steatohepatitis (NASH), which can result in end-stage liver disease. The current therapeutic strategies for NASH treatment are mostly directed toward correction of the risk factors. Stimulation of mitochondrial function may also prevent NASH development, protecting the cell against the increased flux of reduced substrates to the ETC and ROS generation.  相似文献   

20.
Ghrelin, classically known as a central appetite-stimulating hormone, has recently been recognized to play an important role in peripheral tissue energy metabolism. In chicken, contrary to mammal, ghrelin acts as an anorexia signal, increased by fasting and further elevated after refed. In the present study, the effect of ghrelin on glucose/lipid utilization by peripheral tissues was investigated. Injection of exogenous acyl ghrelin reduced plasma triglyceride and glucose levels of chickens at both fasting and fed status. In the in vitro cultured chicken primary hepatocytes, adipocytes, and myoblasts, ghrelin suppressed glucose uptake, stimulated fatty acids uptake and oxidation, and decreased TG content. In hepatocyte, ghrelin increased the activities of LPL and HL, and upregulated the expression levels of gene ACC, CPT1, and PPARα. Ghrelin treatment markedly increased the protein level of p-ACC, PPARγ, PGC1α, and CPT1 in hepatocytes, adipocytes and myoblasts. Inhibition of AMPK activity by Compound C had no influence on glucose uptake by hepatocyte, adipocyte, and myoblast, but further amplified the stimulated fatty acid uptake of adipocyte by ghrelin. The present result demonstrates that ghrelin facilitates the uptake and oxidation of fatty acid and cut down the utilization of glucose by the liver, muscle, and adipose tissues. The result suggests that ghrelin functions as a signal of fatty acid oxidation. The study provides a vital framework for understanding the intrinsic role of ghrelin as a crucial factor in the concerted regulation of metabolic substrate of hepatocytes, adipocytes, and myoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号