首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of ageing on the lipid/phospholipid profile of brain and liver mitochondria from rats were examined. In the brain mitochondria the contents of total phospholipid (TPL) and cholesterol (CHL) increased with simultaneous increase in the TPL/CHL (mole:mole) ratio. The proportion and contents of lysophospholipid (Lyso), sphingomyelin (SPM), phosphatidylinositol (PI), phosphatidylserine (PS) and diphosphatidylglycerol (DPG) components increased, with maximal increases seen for PS and PI; phosphatidylcholine (PC) and phosphatidylethanolamine (PE) components registered decrease. In the liver mitochondria contents of TPL and CHL increased. However, the TPL/CHL (mole:mole) ratio was not altered. Lyso, PI and PS increased. However, the magnitude of increase was competitively lower; PE and DPG decreased. SPM and PC did not change as a consequence of ageing. These changes altered the contents of individual phospholipids in the two membrane systems. Respiration with glutamate, pyruvate + malate, succinate and ascorbate + N,N,N’,N’-tetramethyl-p-phenylenediamine was significantly impaired in brain mitochondria from old animals. For liver mitochondria the respiratory activity declined with glutamate and succinate. Correlation studies by regression analysis revealed that the lipid/phospholipid classes regulate respiratory function differently in the mitochondria from the two tissues. The respiration-related parameters in the brain mitochondria were dependent on multiple lipid/phospholipid components, and the process of regulation was complex compared to the liver mitochondrial functions.  相似文献   

2.
Santiago AP  Chaves EA  Oliveira MF  Galina A 《Biochimie》2008,90(10):1566-1577
Mitochondrial hexokinase (mt-HK) and creatine kinase (mt-CK) activities have been recently proposed to reduce the rate of mitochondrial ROS generation through an ADP re-cycling mechanism. Here, we determined the role of mt-HK and mt-CK activities in regulate mitochondrial ROS generation in rat brain, kidney, heart and liver, relating them to the levels of classical antioxidant enzymes. The activities of both kinases were significantly higher in the brain than in other tissues, whereas the activities of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were higher in both liver and kidney mitochondria. In contrast, manganese superoxide dismutase (Mn-SOD) activity was not significantly different among these tissues. Activation of mitochondrial kinases by addition of their substrates increased the ADP re-cycling and thus the respiration by enhancing the oxidative phosphorylation. Succinate induced hydrogen peroxide (H(2)O(2)) generation was higher in brain than in kidney and heart mitochondria, and the lowest in liver mitochondria. Mitochondrial membrane potential (DeltaPsi(m)) and H(2)O(2) production, decreased with additions of 2-DOG or Cr to respiring brain and kidney mitochondria but not to liver. The inhibition of H(2)O(2) production by 2-DOG and Cr correspond to almost 100% in rat brain and about 70% in kidney mitochondria. Together our data suggest that mitochondrial kinases activities are potent preventive antioxidant mechanism in mitochondria with low peroxidase activities, complementing the classical antioxidant enzymes against oxidative stress.  相似文献   

3.
Flavonols, which possess the B-catechol ring, as quercetin, are capable of producing o-hemiquinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The action of fisetin on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In isolated mitochondria, fisetin decreased the respiratory control and ADP/O ratios with the substrates α-ketoglutarate and succinate. In the presence of ADP, respiration of isolated mitochondria was inhibited with both substrates, indicating an inhibitory action on the ATP-synthase. The stimulation of the ATPase activity of coupled mitochondria and the inhibition of NADH-oxidase activity pointed toward a possible uncoupling action and the interference of fisetin with mitochondrial energy transduction mechanisms. In livers from fasted rats, fisetin inhibited ketogenesis from endogenous sources. The β-hydroxybutyrate/ acetoacetate ratio, which reflects the mitochondrial NADH/NAD+ redox ratio, was also decreased. In addition, fisetin (200 μM) increased the production of (14)CO2 from exogenous oleate. The results of this investigation suggest that fisetin causes a shift in the mitochondrial redox potential toward a more oxidized state with a clear predominance of its prooxidant activity.  相似文献   

4.
The action of carbenoxolone on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In perfused livers, carbenoxolone (200-300 microM) increased oxygen consumption, glucose production and glycolysis from endogenous glycogen. Gluconeogenesis from lactate or fructose, an energy-dependent process, was inhibited. This effect was already evident at a concentration of 25 microM. The cellular ATP levels and the adenine nucleotide content were decreased by carbenoxolone, whereas the AMP levels were increased. In isolated mitochondria, carbenoxolone stimulated state IV respiration and decreased the respiratory coefficient with the substrates beta-hydroxybutyrate and succinate. The ATPase of intact mitochondria was stimulated, the ATPase of uncoupled mitochondria was inhibited, and the ATPase of disrupted mitochondria was not altered by carbenoxolone. These results indicate that carbenoxolone acts as an uncoupler of oxidative phosphorylation and, possibly, as an inhibitor of the ATP/ADP exchange system. The inhibitory action of carbenoxolone on mitochondrial energy metabolism could be contributing to induce the mitochondrial permeability transition (MPT), a key phenomenon in apoptosis. The results of the present study can explain, partly at least, the in vivo hepatotoxic actions of carbenoxolone that were found in a previous clinical evaluation.  相似文献   

5.
Adenosine diphosphatase (ADPase) activity was studied in rat liver with [beta-32P]ADP as a substrate. Mitochondria and outer mitochondrial membrane fractions were isolated and assayed for ADPase and various marker enzymes. ADPase activity was strikingly reduced when the outer membranes were removed from the mitochondria whether by digitonin treatment or osmotic shock. Addition of the inter-membrane space subfraction to the purified outer membranes resulted in enhanced ADPase activity. Addition of the inter-mitochondrial membrane enzyme adenylate kinase to outer membranes also produced a large stimulation of activity. The ADPase activity could also be reconstituted in vitro with adenylate kinase and either mitoplast ATPase or ouabain-sensitive (Na+ + K+ + Mg2+)-ATPase. Chloroform-released ATPase, however, was not capable of producing an ADPase activity when combined with adenylate kinase. Gel permeation chromatography of Triton-solubilised outer mitochondrial membranes was unable to resolve ADPase activity from contaminating ATPase. These results suggest that the majority of ADPase activity in rat liver mitochondria consists of the coupled activity of adenylate kinase and ATPase.  相似文献   

6.
1. Citreoviridin was a potent inhibitor of the soluble mitochondrial ATPase (adenosine triphosphatase) similar to the closely related aurovertins B and D. 2. Citreoviridin inhibited the following mitochondrial energy-linked reactions also: ADP-stimulated respiration in whole mitochondria from ox heart and rat liver; ATP-driven reduction of NAD+ by succinate; ATP-driven NAD transhydrogenase and ATPase from ox heart submitochondrial particles. 3. The dissociation constant (KD) calculated by a simple law-of-mass-action treatment for the citreoviridin--ATPase complex was 0.5--4.2micron for ox-heart mitochondrial preparations and 0.15micron for rat liver mitochondria. 4. Monoacetylation of citreoviridin decreased its inhibitory potency (KD=2--25micron, ox heart; KD=0.7micron, rat liver). Diacetylation greatly decreased the inhibitory potency (KD=60--215micron, ox heart). 5. Hydrogenation of citreoviridin monoacetate diminished its inhibitory potency considerably. 6. No significant enhancement of fluorescence was observed when citreoviridin interacted with the mitochondrial ATPase.  相似文献   

7.
1. When rat spleen mitochondria are incubated with oxidizable substrates, added MgCl2 (greater than 150 muM free concentration) markedly stimulates state-4 respiration and lowers both the respiratory control and ADP/O ratios; this effect is reversible on addition of excess of EDTA. 2. With [gamma-32P]ATP as substrate, an Mg2+-stimulated ATPase (adenosine triphosphate) was identified in the atractyloside-insensitive and EDTA-accessible space of intact rat spleen mitochondria. 3. Oligomycin has no effect on the activity of the Mg2+-stimulated ATPase at a concentration (2.0mug/mg of protein) that completely inhibits the atractyloside-sensitive reaction. Of the two ATPase activities, only the atracytoloside sensitive reaction is stimulated (approx. 40%) by dinitrophenol. 4. On digitonin fractionation the atractyloside-insensitive Mg2+-stimulated ATPase co-purifies with the outer membrane-fraction of rat spleen mitochondria, whereas (as expected) the atractylosidesensitive activity co-purifies with the inner-membrane plus matrix fraction. 5. Stoicheiometric amounts of ADP and Pi are produced as the end products of ATP hydrolysis by purified outer-membrane fragments; no significant AMP production is detected during the time-course of the reaction. 6. The outer-membrane ATPase is present in rat kidney cortex and heart mitochondria as well as in spleen, but is absent from rat liver, thymus, brain, lung, diaphragm and skeletal muscle.  相似文献   

8.
The effect of acute respiratory hypoxia in rats on mitochondrial respiration, adenine nucleotides and some amino acids of the heart was studied. The decrease in the total (ATP + ADP + AMP) and exchangeable (ATP + ADP) adenine nucleotide pool of the mitochondria was accompanied by a pronounced loss of state 3 respiration with glutamate plus malate and a slight decrease with succinate plus rothenone. The uncoupled respiration of mitochondria with glutamate and malate was decreased in the same degree as in the absence of 2,4-dinitrophenol. State 4 respiration with substrates of both types was unaffected by hypoxia. These data point to a hypoxia-induced impairment of complex I of the respiratory chain. The decrease of tissue and mitochondrial glutamate was accompanied by the elevation of alanine content in the heart and an increase in intramitochondrial aspartate. The ADP-stimulated respiration of mitochondria was correlated with mitochondrial glutamate and ATP as well as with exchangeable adenine nucleotide pools during hypoxia. The experimental results suggest that mitochondrial dysfunction induced by hypoxia may also be attributed to the low level of mitochondrial glutamate.  相似文献   

9.
This study evaluates the effect of Mg2+ on the extramitochondrial hydrolysis of ATP and ADP by human term placental mitochondria (HPM) and submitochondrial particle (SMP). Extramitochondrial ATPase and ADPase activities were evaluated in the presence or absence of K+, and different oxidizable substrates. Mg2+ increased both ATP and ADP hydrolysis according to the experimental conditions, and this stimulation was related to the mitochondrial intactness. The ADPase activity in intact mitochondria is 100-fold higher in presence of K+, succinate and 1mM Mg2+ while this activity is only increased by two-fold on the SMP when compared to the sample without Mg2+. It is clearly demonstrated that up-regulation of these enzyme activities occur in intact mitochondria and not on the enzyme itself. The results suggest that the regulation of ATP and ADP hydrolysis is complex, and Mg2+ plays an important role in the modulation of the extramitochondrial ATPase and ADPase activities in HPM  相似文献   

10.
Aileen F. Knowles 《BBA》1982,681(1):62-71
The uncoupler-stimulated mitochondrial ATPase of four human tumors, mouse kidney, brain and fetal liver exhibited a characteristic behavior when preincubated with the H+-conducting uncouplers, dinitrophenol, CCCP, S-13 and gramicidin. The ATPase activity was considerably lower with preincubation than without. Preincubation with valinomycin (+K+), on the other hand, did not result in a significant decrease of the ATPase activity. These results may be contrasted with those obtained with liver or heart mitochondria, the ATPase activity of which did not suffer any loss when preincubated with dinitrophenol. The effect of preincubation with dinitrophenol on the tumor mitochondria could not be accounted for by dinitrophenol-induced Mg2+ efflux, since the differential effects of dinitrophenol and valinomycin (+K+) remained even when ATPase activity was determined in presence of Mg2+. Small amounts of ATP and ADP in the preincubation mixture containing dinitrophenol protected against the decay of the ATPase activity, implicating the exchangeable adenine nucleotides in the tumor mitochondria. In a model system where liver mitochondria were depleted of their adenine nucleotides, a lower ATPase activity was indeed obtained. However, direct determination of the concentations of adenine nucleotides in dinitrophenol- and valinomycin-treated tumor mitochondria revealed only slight differences.  相似文献   

11.
The effects of ADP, carboxyatractyloside (CAT) and the local anaesthetic nupercaine on the energy-dependent Ca2+ uptake by rat liver mitochondria oxidizing succinate in the presence of oligomycin were compared, using incubation media of 320 mosM and 120 mosM tonicities. In hypotonic media the mitochondrial Ca2+ capacity was increased by 50%, and the mitochondria were more stable to the damaging effects of Ca + Pi. In the presence of ADP the Ca2+ capacities of mitochondria increased both in normotonic and hypotonic media; however, the absolute amounts of calcium consumed were levelled off. CAT abolished the effect of ADP on the mitochondrial Ca2+ uptake and equalized the Ca2+ capacities of rat liver mitochondria in the both media. The local anaesthetic nupercaine also increased the Ca2+ capacity of mitochondria. The effects of nupercaine and ADP were additive. CAT abolished the effect of ADP but not that of nupercaine. Measurements of the intramitochondrial contents of adenine nucleotides showed that in 120 mosM media there was a significant increase in the intramitochondrial content of ATP and the total pool of adenine nucleotides. It was concluded that in hypotonic media the mitochondrial adenine nucleotide carrier exists predominantly in the m-conformation thus facilitating the energization of mitochondria.  相似文献   

12.
Studies are reported on the interrelationships in liver mitochondria of copper status, cytochrome oxidase activity, adenine nucleotide binding capacity and phospholipid synthesis. Direct exposure of mitochondria to cyanide or diethyldithiocarbamate depressed cytochrome oxidase activity; ADP-binding and phospholipid synthesis. Fractionation of mitochondria to increase the specific activity of cytochrome oxidase about 10-fold did not increase the affinity to bind ADP. Ageing of mitochondria or dialysis of mitochondria or mitochondrial membrane preparations against water or diethyldithiocarbamate at 0--2 degrees for 18 h did not decrease cytochrome oxidase activity or copper content of reisolated and resuspended mitochondria or mitochondrial membrane preparations, but considerably reduced the affinity to bind ADP. The respiratory inhibitors, fluoride and azide, at concentrations inhibitory to cytochrome oxidase did not reduce ADP-binding or phospholipid synthesis. Atractyloside did not inhibit cytochrome oxidase activity but did inhibit ADP-binding and phospholipid synthesis. Pre-incubation of mitochondrial membrane preparations with Cu++ increased the copper content and ADP-binding affinity. The results indicate that cytochrome oxidase is not the ADP-binding site of the mitochondrial membrane system and that reduced cytochrome oxidase activity per se does not depress binding affinity. Copper appears to be a component of the adenine nucleotide binding sites of mitochondrial membranes because the copper-complexing agents, cyanide and diethyldithiocarbamate, depressed ADP-binding, while increased mitochondrial membrane copper content increased ADP-binding.  相似文献   

13.
暗中培养的绿豆幼苗子叶在萌发后3—4天时,外观出现衰老征状,6天后子叶凋落。随子叶日龄的增加,子叶的呼吸强度一直下降,呼吸商始终小于1。当外加L—苹果酸、a—酮戊二酸、琥珀酸和NADH为底物测定离体线粒体氧化活性时,衰老子叶的线粒体对上述四种底物的氧化活性有不同程度的增加;抗氰呼吸也有所升高。子叶衰老时,线粒体的ADP/O和呼吸控制(RC值均降低);线粒体ATPase水解ATP的活性升高。衰老绿豆子叶线粒体氧化磷酸化偶联效率的降低和ATPase水解活性的增强是与线粒体结构改变相联系的一种功能变化,它导致能量亏缺,并进一步加速了衰老的恶化进程。  相似文献   

14.
When intact rat heart mitochondria were pulsed with 150 nmol of CaCl2/mg of mitochondrial protein, only a marginal stimulation of the rate of oxygen consumption was observed. This result was obtained with mitochondria isolated in either the presence or absence of nagarse. In contrast, rat liver mitochondria under similar conditions demonstrated a rapid, reversible burst of respiration associated with energy-linked calcium accumulation. Direct analysis of calcium retention using 45Ca and Millipore filtration indicated that calcium was accumulated by heart mitochondria under the above conditions via a unique energy-dependent process. The rate of translocation by heart mitochondria was less than that of liver mitochondria; likewise the release of bound calcium back into the medium was also retarded. These results suggest that the slower accumulation and release of calcium is characteristic of heart mitochondria. The amound of calcium bound was independent of penetrant anions at low calcium concentrations. Above 100 nmol/mg of mitochondrial protein, the total calcium bound was increased by the presence of inorganic phosphate. Under nonrespiring conditions, a biphasic Scatchard plot indicative of binding sites with different affinities for Ca2+ was observed. The extrapolated constants are 7.5 nmol/mg bound with an apparent half-saturation value of 75 muM and 42.5 nmol/mg bound with half-saturation at 1.15 mM. The response of the reduced State 4 cytochrome b to pulsed additions of Ca2+ was used to calculate an energy-dependent half-saturation constant of 40 muM. When the concentration of free calcium was stabilized at low levels with Ca2+-EGTA buffers, the spectrophotometrically determined binding constant decreased two orders of magnitude to an apparent affinity of 4.16 X 10(-7) M. Primary of calcium transport over oxidative phosphorylation was not observed with heart mitochondria. The phosphorylation of ADP competed with Ca2+ accumulation, depressed the rates of cation transport, and altered the profile of respiration-linked H+ movements. Consistent with these result was the observation that with liver mitochondrial the magnitude of the cytochrome b oxidation-reduction shift was greater for Ca2+ than for ADP, whereas calcium responses never surpassed the ADP response in heart mitochondria. Furthermore, Mg2+ ingibited calcium accumulation by heart mitochondria while having only a slight effect upon calcium transport in liver mitochondria. The unique energetics of heart mitochondrial calcium transport are discussed relative to the regulated flux of cations during the cardiac excitation-relaxation cycle.  相似文献   

15.
Membrane composition, particularly of mitochondria, could be a critical factor by determining the propagation of reactions involved in mitochondrial function during periods of high oxidative stress such as rapid growth and aging. Considering that phospholipids not only contribute to the structural and physical properties of biological membranes, but also participate actively in cell signaling and apoptosis, changes affecting either class or fatty acid compositions could affect phospholipid properties and, thus, alter mitochondrial function and cell viability. In the present study, heart and brain mitochondrial membrane phospholipid compositions were analyzed in rainbow trout during the four first years of life, a period characterized by rapid growth and a sustained high metabolic rate. Specifically, farmed fish of three ages (1-, 2- and 4-years) were studied, and phospholipid class compositions of heart and brain mitochondria, and fatty acid compositions of individual phospholipid classes were determined. Rainbow trout heart and brain mitochondria showed different phospholipid compositions (class and fatty acid), likely related to tissue-specific functions. Furthermore, changes in phospholipid class and fatty acid compositions with age were also tissue-dependent. Heart mitochondria had lower proportions of cardiolipin (CL), phosphatidylserine (PS) and phosphatidylinositol, and higher levels of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) with age. Heart mitochondrial membranes became more unsaturated with age, with a significative increase of peroxidation index in CL, PS and sphingomyelin (SM). Therefore, heart mitochondria became more susceptible to oxidative damage with age. In contrast, brain mitochondrial PC and PS content decreased in 4-year-old animals while there was an increase in the proportion of SM. The three main phospholipid classes in brain (PC, PE and PS) showed decreased n-3 polyunsaturated fatty acids, docosahexaenoic acid and peroxidation index, which indicate a different response of brain mitochondrial lipids to rapid growth and maturation.  相似文献   

16.
The following enzymes have been studied (subcellular fractions are shown between parentheses): NAG and beta-glucuronidase (lysosomes); SDH (mitochondrial); glucose-6-phosphatase (endoplasmic reticulum); 5'-nucleotidase and (Na+, K+)Mg2+ ATPase (plasma membranes). Alterations on their activities were observed after subcutaneous injection of sex hormones, compared with controls. NAG activity from liver was always significantly decreased in lysosomal and microsomal fractions after the hormonal treatment. In the same conditions, NAG from brain was always increased. beta-Glucuronidase behaves like NAG in brain; in liver it was not modified by testosterone and it was slightly increased in lysosomal fraction after oestradiol treatment. SDH activity was not modified in mitochondrial fractions from liver, but this activity was always significantly increased in brain. Glucose-6-phosphatase activity was always significantly decreased in microsomal fractions from liver. It was increased in brain after oestradiol and testosterone injection, but medroxyprogesterone treatment caused a decreased activity. 5'-Nucleotidase and (Na+, K+)Mg2+ ATPase from brain were significantly increased in microsomal fractions by oestradiol and testosterone. Medroxyprogesterone, however, caused an increase in ATPase, but did not affect 5'-nucleotidase. Both activities in liver were decreased by oestradiol and increased by testosterone, but medroxyprogesterone caused (Na+, K+)Mg2+ ATPase to rise and 5'-nucleotidase to fall.  相似文献   

17.
The properties of anion-sensitive ATPase of rat heart mitochondria were studied. Na2CO3, NaHCO3 and Na2SO3 stimualted ATPase activity by 69, 41 and 110%, respectively. Azide, tiocinate and perchlorate inhibited bicarbonate-stimulated ATPase. Bivalent cations increased ATPase activity in such a sequence: Zn2+ greater than or equal to Cd2+ greater than or equal to Co2+ greater than or equal to Mg2+ greater than or equal to Mn2+ greater than Ni2+. In the presence of bicarbonate and sulfite. ATPase activity was maximally stimulated with magnesium. Ni2+ and Ca2+-ions inhibited Mg2+-dependent activity of bicarbonate-stimulated ATPase. AMP uninhibited ATPase activity. The 4 mM concentration of ADP inhibited activity of HCO-3-ATPase. Activity of ATPases decreased at lower temperatures. The properties of anion-sensitive ATPase of rat heart mitochondria and that of HCO-2-ATPase of other cells are discussed.  相似文献   

18.
We studied the short-term effects of a 20% coconut oil supplementation to the chick diet on lipid composition of liver and hepatic mitochondria, and changes that occurred in mitochondrial-associated enzymes as a result of this diet. No significant differences were observed in the lipid contents of liver when young chicks were fed the experimental diet, whereas hepatic mitochondria rapidly changed in response to this diet. Total cholesterol significantly increased in mitochondria at 24 hours of coconut oil diet feeding and decreased when dietary treatment was prolonged for 5 to 14 days. Changes in total mitochondrial phospholipids showed an inverse profile. A significant decrease in phosphatidylethanolamine and an increase in sphingomyelin were found at 24 hours. The cholesterol/phospholipid molar ratio significantly and rapidly (24 hours) increased in mitochondria from treated animals. Cytochrome oxidase activity drastically increased after 24 hours of experimental diet feeding and lowered to the control values when dietary manipulation was prolonged for 5 to 14 days. ATPase activity showed an inverse profile. Changes in cytochrome oxidase activity were parallel to changes in the cholesterol/phospholipid molar ratio, whereas changes in ATPase activity showed an inverse correlation with changes in this molar ratio. To our knowledge, this is one of the first reports on the very rapid response (24 hours) of mitochondrial lipid composition and function to saturated fat feeding.  相似文献   

19.
During increases in cardiac work there are net increases in cytosolic [Ca(2+)] and ATP hydrolysis by myofiliments and ion transport ATPases. However, it is still unclear what role Ca(2+)or the ATP hydrolysis products, ADP and Pi, have on the regulation of mitochondrial ATP production. In this study, work jumps were simulated by simultaneous additions of Ca(2+) and ATPase to porcine heart mitochondria. The net effects on the mitochondrial ATP production were monitored by simultaneously monitoring respiration (mVo2), [NADH], [ADP] and membrane potential (deltapsi) at 37 degrees C. Addition of exogenous ATPase (300 mlU.ml(-1))]ATP (3.4 mM) was used to generate a 'resting' background production of ADP. This resting metabolic rate was 200% higher than the quiescent rate while [NADH] and deltapsi were reduced. Subsequent ATPase additions (1.3IU.ml(-)) were made with varying amounts of Ca(2+)(0 to 535 nM) to simulate step increases in cardiac work. Ca(2+) additions increased mVo2 and depolarized deltapsi, and were consistent with an activation of Fo/F1)ATPase. In contrast, Ca(2+) reduced the [NADH] response to the ATPase addition, consistent with Ca(2+)-sensitive dehydrogenase activity (CaDH). The calculated free ADP response to ATPase decreased \2-fold in the presence of Ca(2+). The addition of 172nM free Ca(2+)] ATPase increased mVo2 by 300% (P<0.05, n=8) while deltapsi decreased by 14.9+/-0.1 mV without changes in [NADH] (P > or =0.05, n=8), consistent with working heart preparations. The addition of Ca(2+) and ATPase combined increased the mitochondrial ATP production rate with changes in deltapsi, NADH and [ADP], consistent with an activation of CaDH and F o /F(1)ATPase activity. These balancing effects of ATPase activity and [Ca(2+)] may explain several aspects of metabolic regulation in the heart during work transitions in vivo.  相似文献   

20.
The effects of fluoride on respiration of plant tissue and mitochondria were investigated. Fumigation of young soybean plants (Glycine max Merr. cv. Hawkeye) with 9–12 μg × m?3 HF caused a stimulation of respiration at about 2 days of treatment followed by inhibition 2 days later. Mitochondria isolated from the stimulated tissue had higher respiration rates, greater ATPase activity, and lower P/O ratios, while in mitochondria from inhibited tissue, all three were reduced. Treatment of etiolated soybean hypocotyl sections in Hoagland's solution containing KF for 3 to 10 h only resulted in inhibition of respiration. Mitochondria isolated from this tissue elicited increased respiration rates with malate as substrate and inhibited respiration with succinate. With both substrates respiratory control and ADP/O ratios were decreased. Direct treatment of mitochondria from the etiolated soybean hypocotyl tissue with fluoride resulted in inhibition of state 3 respiration and lower ADP/O ratios with the substrates succinate, malate, and NADH. Fluoride was also found to increase the amount of osmotically induced swelling and cause a more rapid leakage of protein with mitochondria isolated from etiolated corn shoots (Zea mays L. cv. Golden Cross Bantam). The results are discussed with respect to possible effects of fluoride on mitochondrial membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号