首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the relative magnitudes of inbreeding and outbreeding depression in rare plant populations is increasingly important for effective management strategies. There may be positive and negative effects of crossing individuals in fragmented populations. Conservation strategies may include introducing new genetic material into rare plant populations, which may be beneficial or detrimental based on whether hybrid offspring are of increased or decreased quality. Thus, it is important to determine the effects of pollen source on offspring fitness in rare plants. We established pollen crosses (i.e. geitonogamous‐self, autonomous‐self, intrasite‐outcross, intersite‐outcross and open‐pollinated controls) to determine the effects of pollen source on fitness (seeds/fruit and seed mass) and early offspring traits (probability of germination, number of leaves, leaf area and seedling height) in the rare plant Polemonium vanbruntiae. Open‐pollinated, intrasite‐outcross and geitonogamous‐self treatments did not differ in fitness. However, plants receiving autonomous‐self pollen had the lowest fitness and the lowest probability of seed germination. Intersite‐outcross plants contained fewer seeds/fruit, but seeds germinated at higher frequencies and seedlings were more vigorous. We also detected heterosis at the seed germination stage. These data may imply that natural populations of P. vanbruntiae exhibit low genetic variation and little gene flow. Evidence suggests that deleterious alleles were not responsible for reduced germination; rather environmental factors, dichogamy, herkogamy and/or lack of competition among pollen grains may have caused low germinability in selfed offspring. Although self‐pollination may provide some reproductive assurance in P. vanbruntiae, the result is a reduction in germination and size‐related early traits for selfed offspring.  相似文献   

2.
For rare plants, self-pollination and inbreeding can increase in small populations, while unusual levels of outcrossing can occur through restoration efforts. To study both inbreeding and outcrossing, we performed experimental pollinations using Panax quinquefolius (American ginseng), a wild-harvested plant with a mixed mating system. For inbreeding, plants were either cross-pollinated within the population or self-pollinated, which resulted in a higher proportion of seeds from self-pollinated flowers. For outcrossing, wild plants were either cross-pollinated within the population or with cultivated plants from West Virginia or Wisconsin. Offspring of all crosses were followed for 4 yr. Two-yr-old seedlings from self-pollination had 45% smaller leaf areas and 33% smaller heights relative to those from cross-pollination. Leaf area is a positive predictor of longer-term survival in wild populations. Our results suggest inbreeding depression, which is unexpected in this self-fertile species. Seedlings from crosses with cultivated plants had 127% greater leaf area and 165% greater root biomass relative to outcrosses within the population. The accelerated growth suggests genetic differences between wild and cultivated populations, but outbreeding depression may not appear until later generations. Assessment of the ultimate fitness consequences of introducing cultivated genotypes requires monitoring over longer time periods.  相似文献   

3.
Restricted gene flow and localized selection should establish a correlation between physical proximity and genetic similarity in many plant populations. Given this situation, fitness may decline in crosses between nearby plants (inbreeding depression), and in crosses between more widely separated plants (“outbreeding depression”) mostly as a result of disruption of local adaptation. It follows that seed set and offspring fitness may be greatest in crosses over an intermediate “optimal outcrossing distance.” This prediction was supported for Ipomopsis aggregata, a long-lived herbaceous plant pollinated by hummingbirds. In six replicate pollination experiments, mean seed set per flower was higher with an outcrossing distance of 1–10 m than with selfing or outcrossing over 100 m. A similar pattern appeared in the performance of offspring from experimental crosses grown under natural conditions and censused for a seven-year period. Offspring from 10-m crosses had higher survival, greater chance of flowering, and earlier flowering than those from 1-m or 100-m crosses. As a result, 1-m and 100-m offspring achieved only 47% and 68%, respectively, of the lifetime fitness of 10-m offspring. Offspring fitness also declined with planting distance from the seed parent over a range of 1–30 m, so that adaptation to the maternal environment is a plausible mechanism for outbreeding depression. Censuses in a representative I. aggregata population indicated that the herbaceous vegetation changes over a range of 2–150 m, suggesting that there is spatial variation in selection regimes on a scale commensurate with the observed effects of outbreeding depression and planting distance. We discuss the possibility that differences in seed set might in part reflect maternal mate discrimination and emphasize the desirability of measuring offspring fitness under natural conditions in assessing outcrossing effects.  相似文献   

4.
Worldwide, many crops rely on insect pollination. Insufficient pollination can reduce fruit and seed set by directly reducing pollen deposition, and can also affect offspring quality, such as growth rate and resistance to herbivores, by limiting outcrossing opportunities. Both effects are important in fruit agroecosystems where fruit size and the quality of seeds for re-planting are dependent on sufficient pollination. We experimentally manipulated pollination of the cape gooseberry, Physalis peruviana L. (Solanaceae), to test the effects of honey and bumble bee pollination compared to manual outcrossing and autonomous self-pollination on fruit and offspring characteristics. Compared to manual and self-pollination, bee pollination increased fruit size, seed set and germination rates, supporting the hypothesis that sufficient pollination increases plant fitness. Interestingly, plant growth rate and herbivore resistance were significantly and marginally greater in manually outcrossed plants compared to self-pollinated offspring, suggesting that inbreeding reduces offspring quality. Herbivore resistance and plant growth did not differ between one honeybee visit and self-pollination suggesting that multiple pollinator visits are needed to prevent inbreeding events. Our data suggest that the quantity and quality of pollen deposited by bee visitation can significantly alter ecologically and economically relevant traits in this agroecosystem.  相似文献   

5.
Fragmentation may negatively affect plant fitness through pollen limitation and increased levels of inbreeding. Effects of fragmentation may vary with regard to life form and breeding system, and few studies exist for wind-pollinated trees. We examined the effects of hand-selfing, varying outcrossing distances and pollen addition on seed mass and germination rate of Polylepis australis BITT. (Rosaceae), a wind-pollinated treeline species endemic to Argentina. We also investigated pollen germination on the stigma and pollen tube growth to determine compatibility resulting from selfing and outcrossing. Selfing reduced seed germination rates with significant differences between open pollination and outcrosses at 30 km. In addition, we found a tendency for pollen germination and pollen tube growth to decrease following selfing. Between-fragment crosses resulted in a trend of higher reproductive output than within-fragment crosses, whereas values were similar between open pollination and between-fragment crosses. Pollen addition did not increase reproductive success neither in small nor in larger fragments. Our results suggest that highly isolated P. australis forests have a potential for inbreeding depression through selfing and within-fragment crosses. However, the results also indicate that pollen flow between P. australis forest fragments is still effective at the current fragmentation level, counteracting negative effects on seed quality resulting from reproductive isolation.  相似文献   

6.
Silene vulgaris is a gynodioecious plant native to Eurasia and now found throughout much of North America. Using hermaphrodite plants from three geographic regions (Stamford, NY; Broadway,VA; and Giles Co., VA) and four local populations within each region, we employed a hierarchical crossing design to explore the geographic structure of sex determining genes. Sex determination in this species is cytonuclear involving multiple cytoplasmic male sterility and nuclear restorer loci. Due to dominance effects within nuclear restorer loci, self-fertilization of hermaphrodites heterozygous at restorer loci should produce some homozygous recessive female offspring. Female offspring may also result from outcrossing among related individuals. At greater geographic and genetic distances, mismatches between cytoplasmic and nuclear sex determining genes should also produce high frequencies of female offspring if coevolution between cytoplasmic and nuclear sex determining alleles occurs independently among widely separated populations. We found evidence of dominance effects among nuclear restorer loci but no evidence of nuclear-cytoplasmic mismatches at the regional level. Of 63 maternal lines, 55 produced at least one female offspring when self-fertilized. Outcrossing within populations produced significantly fewer female offspring than self-fertilization. Outcrossing among regions produced the lowest proportion of female offspring, significantly fewer than outcrossing among populations within regions. Regions responded differently to among-region outcrossing with pollen donors from the two Virginia regions producing far fewer female offspring with New York dams than crosses among New York populations. These results indicate that nuclear restoration is complex, involving multiple loci with epistatic interactions and that most hermaphrodites in nature are heterozygous at one or more restorer locus. Further, regional differences in restorer frequencies indicate significant genetic structure for sex determining genes at large geographic scales, perhaps reflecting invasion history.  相似文献   

7.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

8.
Studies of inbreeding depression in plant populations have focused primarily on comparisons of selfing versus outcrossing in self-compatible species. Here we examine the effect of five naturally occurring levels of inbreeding (f ranging from 0 to 0.25 by pedigree) on components of lifetime fitness in a field population of the self-incompatible annual, Raphanus sativus. Pre- and postgermination survival and reproductive success were examined for offspring resulting from compatible cross-pollinations. Multiple linear regression of inbreeding level on rates of fruit and seed abortion as well as seed weight and total seed weight per fruit were not significant. Inbreeding level was not found to affect seed germination, offspring survival in the field, date of first flowering, or plant biomass (dry weight minus fruit). The effect of inbreeding on seedling viability in the greenhouse and viability to flowering was significant but small and inconsistently correlated with inbreeding level. Maternal fecundity, however, a measure of seed yield, was reduced almost 60% in offspring from full-sib crosses (f = 0.25) relative to offspring resulting from experimental outcross pollinations (f = 0). Water availability, a form of physiological stress, affected plant biomass but did not affect maternal fecundity, nor did it interact with inbreeding level to influence these characters. The delayed expression of strong inbreeding depression suggests that highly deleterious recessive alleles were not a primary cause of fitness loss with inbreeding. Highly deleterious recessives may have been purged by bottlenecks in population size associated with the introduction of Raphanus and its recent range expansions. In general, reductions in total relative fitness of greater than 50% associated with full-sib crosses should be sufficient to prohibit the evolution of self-compatibility via transmission advantage in Raphanus.  相似文献   

9.
We examined the effects of self-pollination and resource addition to maternal plants of Wild Lupine on seed production in the field, and on offspring performance in the greenhouse. Although 24% of flowers set fruits when open-pollinated, only 11% of flowers set fruits when self-pollinated. Self-pollination significantly reduced fruit and seed production per inflorescence and increased aborted seeds per fruit. Resource addition to maternal plants significantly increased fruit and seed number in the field. Moreover, selfed plants exhibited greater variability in seed production in the absence of resource addition to the maternal plant. We planted a total of 1,306 of the seeds from this experiment in the greenhouse. While self-pollination did not affect the proportion of seeds emerging, it slowed seedling emergence by 5–10%, and reduced offspring biomass by 25–35%. Interestingly, resource addition to the maternal plants significantly decreased proportion of seedlings surviving after 5 months. Moreover, offspring from maternal plants with resource addition expressed more inbreeding depression in the seedling stage compared to offspring from maternal plants without resource addition, for which more inbreeding depression occurred during seed maturation and emergence. These results indicate that conservation efforts using benign environments to increase number of seeds or offspring may face compensating reductions in survivorship at other life stages.  相似文献   

10.
When genes in the offspring control the provisioning of the seed, the optimal seed size can be calculated exactly by applying Hamilton's rule. When seed size is a compromise between mother and offspring, we predict that outcrossing plant species produce larger seeds than selfers. This trend was found in the British flora and in a number of well-studied plant families. The analysis was extended to imprinting, a conditional strategy in which a gene in the offspring takes more resources when derived from the father than from the mother. The conditions for imprinting to be selected were rather restrictive. The analysis is relevant for the current debate about the evolution of imprinting in Arabidopsis thaliana.  相似文献   

11.
Aims In most natural plant populations, there is a strong right-skewed distribution of body sizes for reproductive plants—i.e. the vast majority are relatively small, suppressed weaklings that manage not just to survive effects of crowding/competition and other hazards but also to produce offspring. Recent research has shown that because of their relatively large numbers, these relatively small resident plants collectively contribute most of the seed offspring production available for the population in the next generation. However, the success of these offspring will depend in part on their quality, e.g. reflected by seed size and resource content. Accordingly, in the present study, we used material from natural populations of herbaceous species to test the null hypothesis that there is no significant relationship between body size variation in resident plants—resulting from between-site variation in the intensity of crowding/competition—and variation in the mass or N content of their individual seeds.Methods Using populations of 56 herbaceous species common in eastern Ontario, total above-ground dry plant mass, mean mass per seed and mean nitrogen (N) content per seed were recorded for a sample of the largest resident plants and also for the smallest reproductive plants growing in local neighbourhoods with the most severe crowding/competition from near neighbours.Important findings Mass per seed was numerically smaller from the smallest resident plants for most study species, but with few exceptions, this was not significantly different (P> 0.05) from mass per seed from the largest resident plants. The results therefore showed no general effect of maternal plant body size on individual seed mass, or N content. This suggests that the reproductive output of the smaller half of the resident plant size distribution within these populations is likely to contribute not just most of the seed production available for the next generation but also seed offspring that are just as likely—on a per individual basis—to achieve seedling/juvenile recruitment success as the seed offspring produced by the largest resident plants. This conflicts with the traditional 'size-advantage' hypothesis for predicting plant fitness under severe competition, and instead supports the recent 'reproductive-economy-advantage' hypothesis, where competitive fitness is promoted by capacity to produce offspring that—despite severe body size suppression imposed by neighbour effects—in turn have capacity to produce grand-offspring.  相似文献   

12.
Many biologists studying environmentally induced parental effects have indirectly suggested that the parental environment alters seed mass by altering the amount of endosperm or embryo tissue in the seed. We tested this hypothesis by measuring the effects of parental temperature on total seed mass, seed coat mass, and embryo/endosperm mass in offspring of Plantago lanceolata. Parental temperature significantly affected total seed and coat mass but not endosperm/embryo mass. Thus, larger seeds do not contain more resources in the embryo or endosperm than do small seeds. Rather they have more coat mass, which probably strongly influences germination. These results suggest caution when making assumptions about the pathways by which environmentally induced parental effects are transmitted in plant species. We also observed that controlled crosses differed significantly in their response to parental temperature, which provides evidence for genetic variation in environmentally induced parental effects, i.e., intergenerational phenotypic plasticity, in natural populations of P. lanceolata.  相似文献   

13.
Fruit set is consistently low in the genus Banksia (Proteaceae). One explanation for low fruit:flower ratios is that excess flowers allow plants to selectively abort inferior progeny thereby increasing the average quality of the seed crop. We examined whether self-pollinated fruits were aborted selectively in a partially self-compatible population of Banksia spinulosa. Inflorescences were divided in half and pollinated with cross pollen on both sides, self pollen on both sides or cross pollen on one side and self pollen on the other. Seed production was reduced significantly by 38% on fully self-pollinated compared to fully cross-pollinated inflorescences, indicating partial self-incompatibility or inbreeding depression. On inflorescences pollinated with both cross and self pollen, selfed seed set was reduced by 63% compared to crossed seed set. On the selfed half of these inflorescences, fewer fruits and seeds were produced, and more fruits had aborted seeds than on randomly selected halves of fully self-pollinated inflorescences. These results suggest that self-fertilized embryos were developed in the absence of outcrossed progeny but were selectively aborted when outcrossed progeny were present on inflorescences. To determine the amount of outcrossing occurring in the study population, outcrossing rates (t) of naturally pollinated plants were examined by electrophoretic assessment of progeny arrays. Values of I did not differ significantly from one, indicating complete outcrossing. High outcrossing, despite the high probability of self pollen receipt under natural conditions, is consistent with the conclusion that selective abortion occurs in B. spinulosa.  相似文献   

14.
Evidence for maintenance of sex by pathogens in plants   总被引:6,自引:0,他引:6  
The predominance of outcrossing despite the substantial transmission advantage of self-fertilization remains a paradox. Theory suggests that selection can favor outcrossing if it enables the production of offspring that are less susceptible to pathogen attack than offspring produced via self-fertilization. Thus, if pathogen pressure is contributing to the maintenance of outcrossing in plants, there may be a positive correlation between the number of pathogen species attacking plant species and the outcrossing rate of the plant species. We tested this hypothesis by examining the association between outcrossing rate and the number of fungal pathogen species that attack a large, taxonomically diverse set of seed plants. We show that plant species attacked by more fungal pathogen species have higher outcrossing rates than plants with fewer enemies. This relationship persists after correcting for study bias among natural and agricultural species of plants. We also accounted for the nested hierarchy of relationships among plant lineages by conducting phylogenetically independent contrasts (PICs) within genera and families that were adequately represented in our dataset. A meta-analysis of the correlation between pathogen and outcrossing PICs shows that there is a positive correlation between pathogen species number and outcrossing rates. This pattern is consistent with the hypothesis that pathogen-mediated selection may contribute to the maintenance of outcrossing in species of seed plants.  相似文献   

15.
Who is in control of seed size, and do some fathers sire bigger seeds than others? We used isogenic male-sterile genotypes of the Arabidopsis thaliana accessions Col and Ler. By fertilising flowers side-by-side with either pollen from the same accession ('self-pollination') or pollen from another accession (outcrossing), we compared, on the same mother plant, seed set of flowers that were very similar in resource status. Some paternal genotypes had a significant effect on seed mass, with the most extreme father siring seeds 15.3% heavier than seeds resulting from 'self-pollination'. There was no correlation between seed mass of paternal parents and the seeds they sired. We discuss the evolution of seed size as a tug-of-war between parent and offspring.  相似文献   

16.
Satoki Sakai  Akiko Sakai 《Oikos》2005,108(1):105-114
We tested the prediction of the terminal-stream-limitation model using Cardiocrium cordatum . This model predicts that the total offspring mass increases with offspring number, whereas it decreases with offspring size, because the loss of resources via maintenance respiration decreases with offspring number but increases with offspring size. We traced the growth curve of seeds and harvested seeds when they matured. The maximum gross growth rate of a seed had a strong positive effect on final seed dry mass, whereas the respiration cost had a strong negative effect on such mass. The total seed mass produced by a plant decreased with (or was independent of) an increase in the mean seed dry mass of the plant, whereas it increased with an increase in the number of seeds produced by the plant. An increase in seed number resulted in a decrease in the loss of resources due to respiration during seed growth, whereas an increase in the mean seed dry mass did not result in a decrease in the loss of resources due to respiration. Thus, we concluded that these results are consistent overall with the prediction of the model and that an increase in seed number rather than an increase in individual seed size is advantageous in terms of resource use efficiency.  相似文献   

17.
In rare plants that often occur in small or isolated populations the probability of selfing between close relatives is increased as a consequence of demographic stochasticity. The mode of pollination (selfing, outcrossing) may have considerable effects on seed traits and offspring performance and hence potential viability. Since current efforts aiming at the restoration of floodplain grasslands through the transfer of plant material from species-rich source stands may lead to the establishment of initially small populations consisting of founders from different populations, the present paper experimentally investigated the effects of pollen source and floral types (i.e. chasmogamous (CH) and cleistogamous (CL) flowers) on seed traits and offspring performance in three highly endangered violet species (Viola elatior, V. pumila, V. stagnina) of these grasslands. We estimated inbreeding depression and tested the performance of selfed and outcrossed offspring in two microbial environments, i.e. in soil inoculated with (i) non-sterile substrate from the same species (‘home’-conditions) and (ii) sterilised substrate.Plants produced more CL capsules than CH flowers. Pollinator exclusion had only small effects on CH seed production. CL seeds had a significantly lower mass per seed than CH seeds. This may be related to constraints in allocation or environmental conditions. Seedling growth was reduced in plants grown under ‘home’-conditions as compared to control soils. Under ‘home’-conditions, relative fitness of selfed seedlings of V. stagnina was significantly higher than that of crossed progeny. Our results suggest that high genetic differentiation among populations as a consequence of isolation may result in outbreeding depression, e.g., through biochemical or physiological incompatibilities between genes or the breaking of coadapted gene complexes. In V. stagnina, offspring fitness differed considerably between environments, but in general we found no indications for inbreeding depression in these rare species.  相似文献   

18.
The importance of pollinator visitation for determining both maternal reproductive success and outcrossing rates was investigated in the facultatively autogamous annual, Lupinus nanus. Sixty plants in each of two adjacent sites were assigned to either a pollinator-exclusion, pollen-augmentation, or open-pollinated (control) treatment. Flower, fruit, and seed production were recorded for each plant, and outcrossing rates were determined for plants in all three treatments at each site. Pollinator-exclusion reduced the reproductive success of plants at Site 1, but had no effect on reproduction for plants at Site 2. Pollen-augmentation increased fruit production by 22% and seed production by 45% at Site 2, but had no effect on reproduction for plants at Site 1. Plants in the open-pollinated, control treatment outcrossed at intermediate rates at both sites, with plants at Site 2 (outcrossing rate, t = 0.66) outcrossing at a significantly higher rate than plants at Site 1 (t = 0.40). The pollen-augmentation treatment increased the outcrossing rate for plants at both sites (Site 1, t = 0.72; Site 2, t = 0.78). These results indicate that pollinator availability can limit maternal reproductive success for this facultatively autogamous plant species. Additionally, the intermediate outcrossing rates observed in nature for this species are not a consequence of plant characters alone, but instead result from plant characters combined with the local pollination ecology.  相似文献   

19.
Abstract: Seed weight, seed germination, seedling survival, and juvenile/adult fitness in chasmogamously (CH) and cleistogamously (CL) derived offspring of Oxalis acetosella were compared during three growing seasons, to test hypotheses of fitness differences between the offspring types accounting for the maintenance of cleistogamy. In plots at three field sites, CH and CL seeds originating from all sites were sown to compare the performance of offspring growing in their habitat of origin and offspring growing in new habitats. Seeds were also sown in pots in a common garden, to test for effects of sibling competition. CL seeds had significantly lower germination than CH seeds in the field, possibly because of lower mean seed weight due to later flowering. Since the outcrossing rate in the CH flowers of O. acetosella is not known, it is uncertain whether the lower CL germination is a consequence of inbreeding depression. CH seeds had higher germination if sown at their home sites than at new sites, while for CL seeds this made no difference; this contradicts the local adaptation hypothesis for cleistogamy. No other fitness differences were found between the offspring types, and the findings did not support the sibling competition or local adaptation hypotheses. We suggest that the maintenance of the dimorphic reproductive system in O. acetosella is not explained by offspring characteristics, but rather by the two flowering phases complementing each other in maximizing annual seed production in the face of environmental variability. It is, therefore, important to include temporal and spatial variation in studies of reproductive strategies.  相似文献   

20.
We studied the effects of pollinator exclusion, interparental distance, and supplementary hand pollination on reproduction and progeny vigor in Scorzonera humilis (Asteraceae), a rare plant of fragmented, nutrient-poor grasslands. Caged flowers produced no seeds and selfed flowers only very rarely, indicating that S. humilis is mainly self-incompatible. Seed production, seed mass, and seed germination following between-population crosses were consistently, but not significantly, higher than after within-population crosses. Seed set increased with local density of conspecifics, indicating that the reduced plant density in fragmented populations may reduce plant reproductive success. Seed set was pollen limited in all four populations studied. Supplementary hand-pollination strongly increased the survival of offspring, indicating that either pollinators transferred pollen from related individuals resulting in inbreeding depression in spite of the incompatibility system or that higher pollen loads increased pollen competition and the selectivity among gametes. In one of the populations, adding pollen from a different population strongly increased progeny fitness compared with both natural pollination and pollen supplementation from the same population. The results indicate that S. humilis is sensitive to inbreeding and that pollen limitation can reduce both the number and quality of offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号