首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In fasting‐incubating seabirds, it has been proposed that egg abandonment and refeeding should be induced when a low body mass (BM) threshold is attained, thus ensuring adult survival at the expense of immediate breeding. In the context of life‐history trade‐offs in long‐lived birds, we have tested this hypothesis by comparing short‐term survival and restoration of BM in King Penguins Aptenodytes patagonicus that abandoned their egg to those that were relieved normally by their mate at the end of the first incubation shift. Since King Penguins have an extended laying period, the possible influence of seasonal factors was also examined by comparing early and late breeders. Forty incubating males were experimentally forced to fast until egg abandonment by preventing relief by the female. At egg abandonment of both early and late breeding males, BM was below the BM threshold, fasting duration was eight days (about 30%) longer than for relieved birds, and plasma uric acid level was elevated (signature of increased body protein catabolism, phase III of fasting). All abandoning birds survived and came back from sea at a BM similar to that of relieved penguins. The duration of the foraging trip of abandoning early breeders was the same as that of relieved birds, and some abandoning birds engaged in a new breeding attempt. Abandoning late breeders, however, made foraging trips twice as long as those of relieved males. This difference can be explained by time constraints rather than nutritional constraints, abandoning early breeders having enough time left in the breeding season to engage in a new breeding attempt in contrast to abandoning late breeders. These observations lend support to the suggestion that not only BM but also an internal clock intervene in the decision to engage in breeding or not. By preventing a lethal energy depletion ashore and by acting at a fasting stage where the capacity to restore BM at sea is unaffected, abandonment at a low body condition threshold plays a major role in the trade‐off between adult penguin survival and reproduction.  相似文献   

2.
Breeding individuals enter an emergency life-history stage when their body reserves reach a minimum threshold. Consequently, they redirect current activity toward survival, leading to egg abandonment in birds. Corticosterone (CORT) is known to promote this stage. How and to what extent CORT triggers egg abandonment when breeding is associated with prolonged fasting, however, requires further investigation.We manipulated free-living male Adélie penguins with CORT-pellets before their laying period. We then examined their behavioral response with respect to nest abandonment in parallel with their prolactin levels (regulating parental care), and the subsequent effects of treatment on breeding success in relieved birds.Exogenous CORT triggered nest abandonment in 60% of the treated penguins ~ 14 days after treatment and induced a concomitant decline in prolactin levels. Interestingly, prolactin levels in treated penguins that did not abandon their nest were higher at the point of implantation and also after being relieved by females, when compared with abandoning penguins. Among successful birds, the treatment did not affect the number of chicks, nor the brood mass.Our results show the involvement of CORT in the decision-making process regarding egg abandonment in Adélie penguins when incubation is associated with a natural long fast. However, we suggest that CORT alone is not sufficient to trigger nest abandonment but that 1) prolactin levels need to reach a low threshold value, and 2) a rise in proteolysis (i.e. utilization of protein as main energy substrate) seems also to be required.  相似文献   

3.
Various exogenous or endogenous factors may induce an emergency response in birds, redirecting current activity towards survival. In fasting, breeding penguins, the achievement of a critical energy depletion was suggested to induce egg abandonment and departure to sea for re-feeding. How such a behavioral shift is hormonally controlled remains unknown. The possible involvement of corticosterone and prolactin was examined by characterizing the nutritional and hormonal states of king penguins at egg abandonment. Further, we tested if these states differ according to whether an egg or a chick is abandoned, and according to the timing of breeding. In every case of abandonment, birds were in phase III fasting characterized by accelerated protein catabolism. However, body condition at egg abandonment was lower in early than in late breeders, suggesting that king penguins are willing to tolerate a larger energy depletion when their potential breeding success is high. At egg and chick abandonment, plasma corticosterone levels were, respectively, increased by 2- and 4-fold, whereas plasma prolactin levels were, respectively, depressed by 3- and 1.4-fold. The increase in plasma corticosterone and the decrease in plasma prolactin could be involved in the control of abandonment by, respectively, stimulating the drive to re-feed and diminishing the drive to incubate or brood. The smaller decrease in prolactin levels and the greater increase in corticosterone levels observed at chick vs egg abandonment suggest that, in addition to nutritionally-related stimuli, tactile or audible stimuli from the egg or chick could intervene in the endocrine control of abandonment.  相似文献   

4.
《Hormones and behavior》2011,59(5):762-768
According to life-history theory, long-lived birds should favor their survival over the current reproductive attempt, when breeding becomes too costly. In seabirds, incubation is often associated with spontaneous long-term fasting. Below a threshold in body reserves, hormonal and metabolic shift characteristics of a switch from lipid to protein utilization (phase III, PIII) occur. These metabolic changes are paralleled by nest abandonment and stimulation of refeeding behavior. Parental behavior is then under control of two hormones with opposite effects: corticosterone (CORT) and prolactin which stimulate foraging and incubation behavior, respectively.The aim of this study was to determine the respective role of these two hormones in nest abandonment by Adélie penguins. To this end, plasma hormone levels were measured before egg-laying and at departure from the colony (i.e. when birds were relieved by their partner or abandoned their nest), and related to nutritional state and incubation success.We found that males abandoning their nest in PIII presented high CORT levels and low prolactin levels. Interestingly, males which presented high plasma levels of prolactin in PIII did not abandon. We show that although CORT is the first hormone to be affected by prolonged energy constraints, the combined effects of high CORT and low prolactin levels are necessary for parents to favor self-maintenance and abandon the nest. We provide insights into time-course changes of the endocrine profile as PIII proceeds and report that reaching proteolytic late fasting is not sufficient to induce nest abandonment in a long-lived bird.  相似文献   

5.
According to life-history theory, long-lived birds should favor their survival over the current reproductive attempt, when breeding becomes too costly. In seabirds, incubation is often associated with spontaneous long-term fasting. Below a threshold in body reserves, hormonal and metabolic shift characteristics of a switch from lipid to protein utilization (phase III, PIII) occur. These metabolic changes are paralleled by nest abandonment and stimulation of refeeding behavior. Parental behavior is then under control of two hormones with opposite effects: corticosterone (CORT) and prolactin which stimulate foraging and incubation behavior, respectively.The aim of this study was to determine the respective role of these two hormones in nest abandonment by Adélie penguins. To this end, plasma hormone levels were measured before egg-laying and at departure from the colony (i.e. when birds were relieved by their partner or abandoned their nest), and related to nutritional state and incubation success.We found that males abandoning their nest in PIII presented high CORT levels and low prolactin levels. Interestingly, males which presented high plasma levels of prolactin in PIII did not abandon. We show that although CORT is the first hormone to be affected by prolonged energy constraints, the combined effects of high CORT and low prolactin levels are necessary for parents to favor self-maintenance and abandon the nest. We provide insights into time-course changes of the endocrine profile as PIII proceeds and report that reaching proteolytic late fasting is not sufficient to induce nest abandonment in a long-lived bird.  相似文献   

6.
Altered body condition, increased incubation costs, and egg loss are important proximate factors modulating bird parental behavior, since they inform the adult about its remaining chances of survival or about the expected current reproductive success. Hormonal changes should reflect internal or external stimuli, since corticosterone levels (inducing nest abandonment) are known to increase while body condition deteriorates, and prolactin levels (stimulating incubation) decrease following egg predation. However, in a capital incubator that based its investment on available body reserves and naturally lost about half of its body mass during incubation, corticosterone should be maintained at a low threshold to avoid protein mobilization for energy supply. This study focused on the regulation of corticosterone and prolactin release in such birds during incubation, when facing egg manipulation (control, reduced, or increased) or a stressful event. Blood samples were taken before and after clutch manipulation and at hatching. Corticosterone levels were determined before and after 30 min of captivity. Female eiders exhibited a high hypothalamic-pituitary-adrenal sensitivity, plasma concentration of corticosterone being increased by four- to fivefold following 30 min of captivity. The adrenocortical response was not modified by body mass loss but was higher in birds for which clutch size was increased. In the same way, females did not show different prolactin levels among the experimental groups. However, when incubation started, prolactin levels were correlated to body mass, suggesting that nest attendance is programmed in relation to the female initial body condition. Moreover, due to an artifactual impact of bird manipulation, increased baseline corticosterone was associated with a prolactin decrease in the control group. These data suggest that, in eiders, body mass and clutch size modification can modulate prolactin and corticosterone levels, which cross-regulate each other in order to finely control incubation behavior.  相似文献   

7.
The incubation routine and mass changes of male and female Blue Petrel Halobaena caerulea were studied at the Kerguelen Islands to investigate factors influencing the durations of incubation stints and foraging trips at sea and the factors determining nest desertion and return to the nest.
The body mass at the start of an incubation shift and also when the bird was relieved varied throughout the incubation period, whereas the mass when birds deserted the nest was stable. Birds deserted the nest when their mass decreased to threshold, independent of the duration of the fast. Temporary egg neglect was observed in successful as well as in unsuccessful breeding attempts, but it increased the risk of breeding failure. The net and daily massgained at sea during the second part of the incubation period were higher than during the first part, suggesting an increase in food availability. During the first part, the mass gained at sea and time spent foraging were inversely related to the mass of the bird before it left the burrow, whereas a similar relationship did not occur thereafter.
The results suggest the occurrence of a fixed mass threshold when birds decide to leave the nest if not relieved by their partner. The mass when a bird left its nest inffuenced the time spent foraging or mass gained when food was scarce. Although decision rules to leave the nest or return from the sea are related to body condition. the possibility of neglecting the eggs temporarily enables Blue Petrels to regulate the trade-off between risks of breeding failure and risks of an increase in adult mortality. A model for behavioural decision to stop incubating or stop feeding, based on a variable set point, is proposed.  相似文献   

8.
Seasonal timing of reproduction and the number of clutches produced per season are two key avian life-history traits with major fitness consequences. Female condition may play an important role in these decisions. In mammals, body condition and leptin levels are correlated. In birds, the role of leptin remains unclear. We did two experiments where we implanted female great tits with a pellet releasing leptin evenly for 14 days, to manipulate their perceived body condition, or a placebo pellet. In the first experiment where females were implanted when feeding their first brood offspring we found, surprisingly, that placebo treated females were more likely to initiate a second brood compared to leptin treated females. Only one second brood fledged two chicks while five were deserted late in the incubation stage or when the first egg hatched. No difference was found in female or male return rate or in recruitment rate of fledglings of the first brood, possibly due to the desertion of the second broods. In our study population, where there is selection for early egg laying, earlier timing of reproduction might be hampered by food availability and thus nutritional state of the female before egg laying. We therefore implanted similar leptin pellets three weeks before the expected start of egg laying in an attempt to manipulate the laying dates of first clutches. However, leptin treated females did not initiate egg laying earlier compared to placebo treated females, suggesting that other variables than the perceived body condition play a major role in the timing of reproduction. Also, leptin treatment did not affect body mass, basal metabolic rate or feeding rates in captive females. Manipulating life history decisions using experimental protocols which do not alter individuals' energy balance are crucial in understanding the trade-off between costs and benefits of life history decisions.  相似文献   

9.
Fasting is part of penguin's breeding constraints. During prolonged fasting, three metabolic phases occur successively. Below a threshold in body reserves, birds enter phase III (PIII), which is characterized by hormonal and metabolic shifts. These changes are concomitant with egg abandonment in the wild and increased locomotor activity in captivity. Because corticosterone (CORT) enhances foraging activity, we investigated the variations of endogenous CORT, and the effects of exogenous CORT on the behavioral, hormonal, and metabolic responses of failed breeder Adélie penguins. Untreated and treated captive male birds were regularly weighed and sampled for blood while fasting, and locomotor activity was recorded daily. Treated birds were implanted with various doses of CORT during phase II. Untreated penguins entering PIII had increased CORT (3.5-fold) and uric acid (4-fold; reflecting protein catabolism) levels, concomitantly with a rise in locomotor activity (2-fold), while prolactin (involved in parental care in birds) levels declined by 33%. In CORT-treated birds, an inverted-U relationship was obtained between CORT levels and locomotor activity. The greatest increase in locomotor activity was observed in birds implanted with a high dose of CORT (C100), locomotor activity showing a 2.5-fold increase, 4 days after implantation to a level similar to that of birds in PIII. Moreover, uric acid levels increased three-fold in C100-birds, while prolactin levels declined by 30%. The experimentally induced rise in CORT levels mimicked metabolic, hormonal, and behavioral changes, characterizing late fasting, thus supporting a role for this hormone in the enhanced drive for refeeding occurring in long-term fasting birds.  相似文献   

10.
The triggering of transitory egg desertion in fasting and incubating blue petrels (Halobaena caerulea, nocturnal burrowing seabirds living in the subantarctic region) was investigated by continuously monitoring both body temperature (T sto) and egg temperature (T egg) with a telemetry system, and by measuring body mass (BM) loss. The birds were kept captive in their burrow and incubated day and night without any interruption; there was no day-night cycle in T sto and T egg, which averaged 39.9 °C and 32.0 °C, respectively. There was no evidence of hypothermia as a way to save energy in this fasting situation. Egg desertion occurred at night and was an abrupt and definitive phenomenon reflected by a simultaneous fall in T egg and a peak in T sto. After egg desertion, a distinct day-night cycle of body temperature was observed, T sto being 0.6 °C higher during night-time (P < 0.05), probably reflecting increased nocturnal activity. BM at egg desertion averaged 166.7 ± 3.8 g in telemetered birds and 164.4 ± 1.6 g in␣a group of free-living birds. Throughout fasting, the␣specific daily BM loss remained at 46 ± 1 g · kg−1 · day−1, but increased sharply below a critical BM of 160.0 ± 2.5 g. Thus, fasting incubating blue petrels spontaneously desert their egg when reaching a BM threshold. This BM is very close to a critical value in fasting birds and mammals that corresponds to a critical depletion of fat stores and to a shift from lipid to protein utilization. This strongly suggests that such a metabolic shift triggers behavioural changes leading to egg desertion and refeeding, which is of great relevance to the understanding of the long-term control of food intake and BM. Accepted: 16 July 1998  相似文献   

11.
We investigated changes in incubation behaviour induced by body fuel depletion in incubating female common eiders, which, in contrast to pelagic seabirds, fast despite being close to marine food sources. In the Svalbard Archipelago, electronic scales were placed under eider nests and the incubation of six birds was prolonged by using wax-filled eggs. Based on changes in the rate of body mass loss in normally incubating females and in ten captive birds that did not incubate, body reserves neared depletion on average four days after hatching. During prolonged incubation, females took more frequent and longer recesses. Nest attentiveness consequently decreased, but was still high. In contrast to recesses during normal incubation, during which body mass of the birds decreased, mass remained constant during the recesses of prolonged incubation. The body stores of female eiders seemed to enable them to complete incubation with a limited safety margin. A further drop in body mass is avoided when a critical body mass is reached, because birds then start feeding enough to maintain mass while continuing incubation. Presumably, a similar mechanism will enable eiders to continue incubation when body reserves are prematurely depleted before hatching.  相似文献   

12.
Three galliform species (grey partridges, ring-necked pheasants, and king quail) were involved in body temperature and resting metabolic rate measurements over a broad range of ambient temperatures (20–45 °C). At thermoneutrality, inter-species differences in colonic temperature, as well as in metabolic rate, were observed. During heat exposure, all species reacted by elevating their body temperatures above 44 °C, thereby inducing temporary hyperthermia. Heat-stressing birds resulted in a slightly increased metabolic rate in king quail, but not in partridges and pheasants. Based on data of body temperature and weight specific (per body mass unit) basal metabolic rate among ten species of Galliformes order, classical and phylogenetically corrected analyses of covariation between these two physiological traits were performed. The scaling of body temperature to body mass, revealed a significant exponent of: −0.0062 and −0.0080 for conventional and phylogenetical methods, respectively. In the analyzed species, a strong positive relationship between residuals of body mass values between body temperature and metabolic rate were found. The results obtained may show a plausible evolutionary link between these traits in galliform birds.  相似文献   

13.
Numerous new fossils have driven an interest in reproduction of early birds, but direct evidence remains elusive. No Mesozoic avian eggs can be unambiguously assigned to a species, which hampers our understanding of the evolution of contact incubation, which is a defining feature of extant birds. Compared to living species, eggs of Mesozoic birds are relatively small, but whether the eggs of Mesozoic birds could actually have borne the weight of a breeding adult has not yet been investigated. We estimated maximal egg breadth for a range of Mesozoic avian taxa from the width of the pelvic canal defined by the pubic symphysis. Known elongation ratios of Mesozoic bird eggs allowed us to predict egg mass and hence the load mass an egg could endure before cracking. These values were compared to the predicted body masses of the adult birds based on skeletal remains. Based on 21 fossil species, we show that for nonornithothoracine birds body mass was 187% of the load mass of the eggs. For Enantiornithes, body mass was 127% greater than the egg load mass, but some early Cretaceous ornithuromorphs were 179% heavier than their eggs could support. Our indirect approach provides the best evidence yet that early birds could not have sat on their eggs without running the risk of causing damage. We suggest that contact incubation evolved comparatively late in birds.  相似文献   

14.
Spontaneous fasting during reproduction (sometimes with a full stomach) and moult is a major characteristic of the annual cycle of penguins. Long-term fasting (up to four months in male emperor penguins) is anticipated by the accumulation of fat (incubation fast) and of fat and protein (moult fast). During most of the incubation fast, birds rely almost entirely on lipids as an energy source, body proteins being spared. However, below a critical (but non-total) fat store depletion, marked behavioural, metabolic, and endocrine changes occur. Spontaneous locomotor activity increases and the egg is transitorily left unincubated for increasingly long periods, until its definitive abandon and the bird departs to re-feed at sea. These changes are thought to be activated by an endogenous re-feeding signal triggered before lethal energy depletion. An increase in body protein catabolism in the face of a reduction in lipid availability and utilisation, and an increase in circulating corticosterone vs. a decrease in plasma prolactin, are likely to be major metabolic and hormonal components of this signal. The survival and rapid restoration of energy stores in birds having departed to re-feed at a stage of near total lipid depletion demonstrates the effectiveness of the re-feeding signal. Penguins, and possibly other seabirds, are therefore appropriate animal models for understanding the long-term interactions between body energy reserves and fasting, breeding and feeding physiology and behaviour.  相似文献   

15.
Returning to the shore after a feeding sojourn at sea, king penguins often undertake a relatively long terrestrial journey to the breeding colony carrying a heavy, mostly frontal, accumulation of fat along with food in the stomach for chick-provisioning. There they must survive a fasting period of up to a month in duration, during which their complete reliance on endogenous energy stores results in a dramatic loss in body mass. Our aim was to determine if the king penguin’s walking gait changes with variations in body mass. We investigated this by walking king penguins on a treadmill while instrumented with an acceleration data logger. The stride frequency, dynamic body acceleration (DBA) and posture of fat (pre-fasting; 13.2 kg) and slim (post fasting; 11 kg) king penguins were assessed while they walked at the same speed (1.4km/h) on a treadmill. Paired statistical tests indicated no evidence for a difference in dynamic body acceleration or stride frequency between the two body masses however there was substantially less variability in both leaning angle and the leaning amplitude of the body when the birds were slimmer. Furthermore, there was some evidence that the slimmer birds exhibited a decrease in waddling amplitude. We suggest the increase in variability of both leaning angle and amplitude, as well as a possibly greater variability in the waddling amplitude, is likely to result from the frontal fat accumulation when the birds are heavier, which may move the centre of mass anteriorly, resulting in a less stable upright posture. This study is the first to use accelerometry to better understand the gait of a species within a specific ecological context: the considerable body mass change exhibited by king penguins.  相似文献   

16.
The breeding of birds, both large and small, is affected by two specific factors: (1) hypometry of egg weight relative to female body weight and (2) seasonality of breeding, with the favorable period being limited and almost equal for birds of different body sizes. Dozens of published allometric formulas describing the dependence of energy parameters of eggs and nestlings at different growth stages and the energy cost of parental care on the body weight of parents, eggs, and nestlings, respectively, are reviewed. It is shown that birds, especially species with a large body weight, repeatedly change their metabolic parameters during ontogeny in order to shorten the period of breeding and growth. In most species, the energy costs of breeding in both sexes are approximately equal. Bringing food in the bill allows birds to supply nestlings with the amount of energy that is dozens of times greater than that expended for obtaining the food. In placental mammals, only females are involved in offspring development. Therefore, the growth rate of embryos and energy expenditures for milk feeding are limited by the metabolic potential of the mother. As a consequence, mammalian offspring grow ten times slower than bird nestlings, the body weights of females being equal.  相似文献   

17.
This study tests the hypothesis that the metabolic and endocrine shift characterizing the phase II-phase III transition during prolonged fasting is related to a decrease in fatty acid (FA) oxidation. Changes in plasma concentrations of various metabolites and hormones and in lipolytic fluxes, as determined by continuous infusion of [2-(3)H]glycerol and [1-(14)C]palmitate, were examined in vivo in spontaneously fasting king penguins in the phase II status (large fat stores, protein sparing) before, during, and after treatment with mercaptoacetate (MA), an inhibitor of FA oxidation. MA induced a 7-fold decrease in plasma beta-hydroxybutyrate and a 2- to 2.5-fold increase in plasma nonesterified fatty acids (NEFA), glycerol, and triacylglycerols. MA also stimulated lipolytic fluxes, increasing the rate of appearance of NEFA and glycerol by 60-90%. This stimulation might be partly mediated by a doubling of circulating glucagon, with plasma insulin remaining unchanged. Plasma glucose level was unaffected by MA treatment. Plasma uric acid increased 4-fold, indicating a marked acceleration of body protein breakdown, possibly mediated by a 2.5-fold increase in circulating corticosterone. Strong similarities between these changes and those observed at the phase II-phase III transition in fasting penguins support the view that entrance into phase III, and especially the end of protein sparing, is related to decreased FA oxidation, rather than reduced NEFA availability. MA could be therefore a useful tool for understanding mechanisms underlying the phase II-phase III transition in spontaneously fasting birds and the associated stimulation of feeding behavior.  相似文献   

18.
A male migratory songbird (dark-eyed junco, Junco hyemalis) was used as a model for studies on the influence of testosterone (T) on feeding, and on interactive effects on this behavior between T and the opioid antagonist naloxone hydrochloride (Nal). Administered chronically to birds exposed to nonstimulating photoperiods, T increased food intake by 30-58% without altering the body mass, the fat index, or the standard metabolic rate. An intramuscular injection of Nal decreased feeding temporarily in a dose-related manner. T-treated juncos exhibited a decreased sensitivity to the anorexic influence of Nal administration, demonstrating that T interacts with opioids to control food consumption. Neuroendocrine mechanisms that potentially account for this interaction are discussed.  相似文献   

19.
MARK BOLTON 《Ibis》1996,138(3):405-409
Many avian species, such as Storm Petrels Hydrobates pelagicus, are intolerant of disturbance at the nest, which complicates the collection of data relating to metabolic rate and the use of body reserves during incubation. I describe the design of an artificial nest chamber, which is simple and inexpensive to construct and facilitates the collection of such data. Eighty-one nest chambers situated in a large colony of breeding Storm Petrels had high occupancy rates (29/81 in each of 2 years), and the breeding success of birds nesting in boxes was similar to that of pairs nesting in natural crevices. Direct measurement of carbon dioxide production using standard respirometry techniques and estimations of metabolic rate based on the rates of mass loss during incubation indicated close agreement between the two methods of estimating energy consumption. Assuming the metabolic requirements during incubation are furnished entirely from stomach oil, 76% of the daily mass lost represented stomach oil catabolism. The duration of incubation shifts was unrelated to the body mass, and presumably to body reserves, of Storm Petrels on arrival at the nest. Shifts were usually terminated by the return of the foraging partner. The body mass of birds returning from foraging was relatively constant and was unrelated to the amount of time spent foraging at sea, indicating that the decision rule to return from foraging was the acquisition of a threshold level of body mass (about 31 g). There was a negative relationship between the duration of foraging trips and the body mass of Storm Petrels at departure from the nest and a positive relationship between trip duration and the net mass gain at sea. The use of nestboxes based on the design described here would have a wide variety of applications in facilitating data collection for many cavity-or burrow-nesting species which are sensitive to disturbance.  相似文献   

20.
King penguins (Aptenodytes patagonicus) can fast for over a month. However, they return to sea to forage before their body mass reaches a critical value (cMb), beyond which there is an increase in rate of mass loss and in protein catabolism, termed phase III of fasting. Thus when studying king penguins onshore, accurate estimation of their cMb and, in turn, the date at which that body mass would be reached, will be informative to behavioural and physiological data being collected. For penguins being studied during fasts in captivity, knowing cMb is particularly important because of the need to release the birds back into their colony while they are still in good nutritional condition. The present study investigates the validity of using measures of beak, flipper and foot length together to estimate cMb in king penguins and provides a simple and effective prediction equation for researchers. The three morphometric measurements, along with body mass just prior to going to sea after the moult fast (taken to represent cMb), were obtained for nine king penguins in a colony at the Crozet Archipelago. A multiple linear regression of the three morphometric measurements against cMb provided an R 2 of 71.2%. Mean absolute percentage error of the estimate of cMb over the nine birds was 8.82 ± 1.20%. The described technique could probably be employed for estimating cMb in other long-fasting seabirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号