首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymorphism of electrophoretic mobility of adenine phosphoribosyltransferase (APRT) was found in a population of domestic mice, Mus musculus bactrianus. The Aprt gene was mapped using two markers: plasma esterase 1 coded by the gene Es-1 situated at the distance of 26 morgans from the centromere, and a Robertsonian translocation Rb (8.17) 1 Iem which marks the centromere. The results of linkage analysis permitted to localize the gene Aprt at 51 morgans from the centromere, and 25 morgans distal from the gene Es-1 on the genetic map of chromosome 8. It is found that emotional stress does not alter the recombination rate at chromosome 8, when spermatocytes are at the pachytene stage.  相似文献   

2.
Chromosomal locations of theAtm(ataxia–telangiectasia (AT)-mutated) andAcat1(mitochondrial acetoacetyl-CoA thiolase) genes in mouse, rat, and Syrian hamster were determined by direct R-banding FISH. Both genes were colocalized to the C-D band of mouse chromosome 9, the proximal end of q24.1 of rat chromosome 8, and qa4–qa5 of Syrian hamster chromosome 12. The regions in the mouse and rat were homologous to human chromosome 11q. Fine genetic linkage mapping of the mouse AT region was performed using the interspecific backcross mice.Atm, Acat1,andNpat,which is a new gene isolated from the AT region, and 12 flanking microsatellite DNA markers were examined. No recombinations were found among theAtm, Npat, Acat1,andD9Mit6loci, and these loci were mapped 2.0 cM distal toD9Mit99and 1.3 cM proximal toD9Mit102.Comparison of the linkage map of mouse chromosome 9 (MMU9) and that of human chromosome 11 (HSA11) indicates that there is a chromosomal rearrangement due to an inversion betweenEts1andAtm–Npat–Acat1and that the inversion of MMU9 originated from the chromosomal breakage at the boundary betweenGria4andAtm–Npat–Acat1on HSA11. This type of inversion appeared to be conserved in the three rodent species, mouse, rat, and Syrian hamster, using additional comparative mapping data with theRckgene.  相似文献   

3.
A method for detecting two alleles at Np-1 (nucleoside phosphorylase) and three alleles at Es-10 (esterase 10) from mouse blood by cellulose acetate electrophoresis is described. The allelic constitution at these loci for 44 inbred strains and stocks was determined. The location of Np-1 on chromosome 14 was established by backcross experiments in which alleles at Np-1 and Robertsonian translocations were segregating. Es-10 was shown to be linked to Np-1, and the following genetic map of Chr 14 was constructed: centromere-(8.9±4.0 cM)-[Np-1, Wc]-(10.2±1.9 cM)-Es-10-(15.5±3.7 cM)-s. The homologous human loci, NP and ES-D, are not linked.This work was supported by Contract E(11-1)-3267 with the Energy Research and Development Administration, by Contracts NO1-ES4-2156 and NO1-ES4-2159 with the National Institute of Environmental Health Sciences, and by Grants GM 19656 and GM 20919 from the National Institute of General Medical Sciences. D. A. K. was a participant in the 1975 Summer Program for College, Graduate, and Medical Students, which was supported, in part, by the Clark Foundation. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

4.
An improved method for detecting four Np-1 (purine nucleoside phosphorylase) alleles in mouse erythrocytes by cellulose acetate electrophoresis is described. The previous linkage of Np-1 and Es-10 (esterase-10) was confirmed, with a map distance of 13.0±2.6 cM. Np-2 was detected by either specific activity assay or starch gel electrophoresis and shown to be linked to Es-10, 15.9 ± 3.1 cM, on chromosome 14. No recombinants between Np-1 and Np-2 were observed in 52 offspring, indicating either that these loci are either closely associated or that Np-2 represents simply a property of existing allelic products of the Np-1 locus.This research was supported by Medical Research Council of Canada grants to F.G.B. and F.F.S.  相似文献   

5.
Linkage between theMls locus and the chromosome 1 markersDip-1 andald was detected using two sets of recombinant inbred strains. Linkage betweenMls andDip-1 was confirmed in the fifth and sixth backcross generations of an incipient congenic strain. The AKXL data indicate that the gene order isDip-1-ald-Mls. The recombination frequency betweenald andMls is estimated to be 0.07 ±0.05, based on the AKXL data. The recombination frequency betweenDip-1 andMls is estimated to be 0.18 ±0.04, based on all the available data.  相似文献   

6.
Summary An F1 plant fromSecale cereale ssp.ancestrale xtelocentric substitution lines3R of the cultivated rye Petkus spring was used as female in a cross with the inbred line Riodeva (I28), which has the standard chromosome arrangement. Single plants from this backcross progeny were analyzed for chromosome constitution, storage protein, and isozymic patterns. The seed protein loci were identified asSec-1a andSec-1b loci controlling 40-K-secalins and-secalins, respectively. These loci are located on the short arm of chromosome1R. TheSec-3 locus controlling high-molecular-weight secalins is located on the long arm of chromosome1R. A further seed protein locus,Pr-3 (55-K protein), was located on the short arm of chromosome1R. A linkage was found between the6Pgd-2 isozyme locus controlling 6-phosphogluconate dehydrogenase isozymes located on the long arm of chromosome1R and the four seed protein loci. The results favor the gene order:6Pgd-2 ...Sec-3 ... [centromere] ...Pr-3 ...Sec-1b ...Sec-1a. Other linkages detected werePer-3a andPer-3b (0.33±0.33 cM),Est-8 andEst-12 (0.33±0.33 cM), andGot-3 and centromere (20.57±2.42 cM). The proxidase (Per), glutamate oxaloacetate transaminase (Got), and esterase (Est) loci were located on chromosome arms2RS,3RL, and6RL, respectively. The distances and the maps obtained are compared with data available in the literature.  相似文献   

7.
van Zutphen  L. F. M.  den Bieman  M.  Hedrich  H. J.  Kluge  R. 《Biochemical genetics》1985,23(7-8):599-606
Genetic analysis of backcross progeny from previously characterized rat inbred strains revealed that the biochemical marker Lap-1 is localized in linkage group I (LG I). Lap-1 codes for leucine arylaminopeptidase (EC 3.4.11). The distances of Lap-1 to c, RT6, and Hbb, based on recombination frequencies, are 3.1±1.5, 8.3±4.0, and 11.4±2.8 cM, respectively. Acon-1 codes for aconitase (EC 4.2.1.3). The calculated distances of Acon-1 to c and Hbb are 30.1±5.0 and 36.1±5.3 cM, respectively. This suggests that Acon-1 is also in LG I, but the observed high frequency of double crossovers requires further confirmation of this linkage. Ahd-2, Es-6, and Gdc-1 are linked neither to markers of LG I nor to one another.  相似文献   

8.
Genetic variation of a new codominantly inherited esterase, designated ES-17, has been discovered in the house mouse using isoelectric focusing in polyacrylamide gels. The ES-17 A phenotype (three bands; isoelectric points, betweenpH 5.55 andpH 5.90) was found in C57 BL/10Sn. LP/J possessed the Es-17B phenotype (three bands; isoelectric points,pH 5.05–5.55). ES-17 was present in all tissues examined, except for hemolysate and serum, and was most clearly expressed in the small intestine. Because of its reaction toward various substrates and inhibitors, ES-17 has tentatively been classified as acetyl esterase (EC 3.1.1.6). ES-17 was shown to be controlled by the structural locusEs-17, located on chromosome 9. From test-cross data, a gene order ofEs-17-8.7±2.5 map units-Mpi-1-10.2±2.7 map units-Mod-1 was established. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 46). This is communication No. 35 of a research program devoted to the cellular distribution and genetics of nonspecific esterases.  相似文献   

9.
 The two GA-insensitive dwarfing gene loci Rht-B1 and Rht-D1 were mapped using three F2 populations, segregating for Rht-B1c (Rht3), Rht-D1b (Rht2) or Rht-D1c (Rht10). Rht-B1c was mapped on chromosome 4BS in the centromere region, distal and closely linked to the RFLP markers Xpsr144 (11.9 cM) and Xpsr584 (17.8 cM), but proximal to Xmwg634 (30 cM). Rht-D1c, however, was found to be closely linked to the distally located markers Xpsr921 (0.8 cM) and Xmwg634 (1.5 cM). The homoeologous relationships between the GA-insensitive dwarfing genes within the Triticeae are discussed. Received: 2 May 1997 / Accepted: 9 June 1997  相似文献   

10.
Summary The progeny of four crosses between a structural heterozygote for a reciprocal translocation and a homozygote for the standard chromosome arrangement were analyzed in rye (Secale cereale L. cv Ailés) for the electrophoretic patterns of eight different leaf and endosperm isozymes and also for the meiotic configuration at metaphase I. The Pgi-1, 6-Pgd-2 and Mdh-1 loci are linked to each other and also to the reciprocal translocation. These loci have been located on chromosome 1R. The Mdh-1 locus is located in the interstitial segment of chromosome 1R, between the centromere and the breakpoint. The Pgm-1 locus has been located on chromosome arm 4RS and is linked to Pgi-1, 6-Pgd-2, Mdh-1 and the reciprocal translocation. The estimated distance between the Pgm-1 locus and the centromere is 14.98 ± 2.27 cM. Therefore, the reciprocal translocation involves the 1R and 4R chromosomes. Other linked loci detected have been Mdh-2b and Est-2 (7.40 ± 2.90 cM) and Got-3 and Est-2 (5.62 ± 3.07 cM). These three last loci are located on chromosome 3R and their order most probably is Mdh-2bEst-2Got-3.  相似文献   

11.
The linkage of the hemoglobin (Hbb) and albino (c) loci has been determined from backcross progeny of the mating (WAG/Orl × Long Evans/Orl)F 1 × WAG/Orl. The data give 9.1 ± 1.8% recombination. The backcross (August/Orl × WAG/Orl)F 1 × August/Orl segregating for Hbb and pink-eyed yellow (p) shows 21.5±4.2% recombination. The proposed gene order on linkage group I is p-c-Hbb. Linkage of the seminal vesicle protein (Svp-1) and the nonagouti (a) loci has been determined from backcross progeny of the mating (August/Orl × Long Evans/Orl)F 1 × Long Evans/Orl. The data show 7.1±3.4% recombination. Svp-1 thus represents an additional marker in linkage group V. Two new autosomal variants have been reported: The locus which controls a plasma protein's polymorphism has been designated Gl-1 with two codominant alleles Gl-1a and Gl-1b. The other locus, controlling a testis esterases polymorphism, has been assigned the symbol Es-3 and has two codominant alleles Es-3a and Es-3b. The absence of linkage of Gl-1 and Es-3 to each other and to five different loci has also been reported. Rat and mouse analogy with respect to these markers and established linkages is discussed.  相似文献   

12.
We present here the genetic mapping of the -skeletal actin locus (Actsk-1) on mouse Chromosome (Chr) 8, on the basis of the PCR analysis of a microsatellite in an interspecific backcross. Linkage and genetic distances were established for four loci by analysis of 192 (or 222) meiotic events and indicated the following gene order: (centromere)-Es-1-11.7 cM-Tat-8.3 cM-Actsk-1-0.5 cM-Aprt. Mapping of ACTSK to human Chr 1 and of TAT and APRT to human Chr 16 demonstrates the existence of a new short region of homology between mouse Chr 8 and human Chr 1. Intermingling on this scale between human and mouse chromosomal homologies that occurred during evolution creates disorders in comparative linkage studies.  相似文献   

13.
A structural locus (C-6) for the sixth component of complement in mice is assigned to chromosome 15. Three-point linkage analysis indicated that the order of loci is C-6, Gpt-1, Gdc-1, and that the map distances are 25.9±4.9 between C-6 and Gpt-1, and 36.4±5.5 between C-6 and Gdc-1. Since Gdc-1 is more distal than Gpt-1, and C-6 is 26 cM away from Gpt-1, it is estimated that the C-6 is proximal to the centromere. In addition, a new C6 form found in AKR mice is described. We propose the designation C6B for it and C-6 b for the allele encoding C6B.Abbreviations used in this paper IEF isoelectric focusing - GPT glutamic-pyruvic transaminase - GDC L-glycerol 3-phosphate dehydrogenase - cM centimorgan  相似文献   

14.
Sequence-tagged microsatellite site (STMS) and sequence-tagged site (STS) markers linked closely to Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea were identified, and linkage between three wilt resistance genes was elucidated. The resistance to race 3 in chickpea germplasm accession WR-315 was inherited as a single gene, designated foc-3, in 100 F7 recombinant inbred lines derived from the cross of WR-315 (resistant) × C-104 (susceptible). The foc-3 gene was mapped 0.6 cM from STMS markers TA96 and TA27 and STS marker CS27A. Another STMS marker, TA194, at 14.3 cM, flanked the gene on the other side. Linkage between foc-3 and two other chickpea wilt resistance genes, foc-1 (syn. h 1 ) and foc-4, was established. foc-3 was mapped 9.8 cM from foc-1 and 8.7 cM from foc-4, whereas foc-1 and foc-4 are closely linked at 1.1 cM. The identification of closely linked markers to resistance genes will facilitate marker-assisted selection for introgression of the race 3 resistance gene to susceptible chickpea lines.Communicated by H.C. Becker  相似文献   

15.
Sugarcane mosaic virus (SCMV) is one of the most important virus diseases of maize in Europe. Genetic analysis on backcross five (BC5) progeny derived from the cross FAP1360A (resistant) × F7 (susceptible) confirmed that at least two dominant genes, Scm1 and Scm2, are required for resistance to SCMV in the progeny of this cross. With the aid of RFLP and SSR marker analyses, Scm1 was mapped in the region of 8.7 cM – between the nucleolus organizer region (nor) and RFLP marker bnl6.29 on the short arm of chromosome 6, while Scm2 was mapped to an interval of 26.8 cM flanked by the RFLP markers umc92 and umc102 near the centromere region of chromosome 3. Both chromosome regions were further enriched for AFLP markers by successful application of a bulked segregant analysis to this oligogenic trait. A total of 23 linked AFLP markers were identified, clustered in chromosome regions adjacent to either Scm1 or Scm2. Seven AFLP markers linked to Scm1 resided within the nor-bnl6.29 interval, and one of them, E3M8-1, showed no recombination with Scm1. Three AFLP markers linked to Scm2 are located between umc92 and umc102. Received: 13 October 1998 / Accepted: 18 January 1999  相似文献   

16.
Morishima K  Nakayama I  Arai K 《Genetica》2008,132(3):227-241
In the present study, the first genetic linkage map of the loach Misgurnus anguillicaudatus was constructed with 164 microsatellite markers and a color locus, and it included 155 newly developed markers. A total of 159 microsatellite markers and a color locus were mapped in 27 linkage groups (LGs). The female map covered 784.5 cM with 153 microsatellite markers and a color locus, whereas the male map covered 662.2 cM with 119 microsatellite markers. The centromeric position in each LG was estimated by marker-centromere mapping based on half-tetrad analysis. In 4 LGs (LG2, LG3, LG4, and LG5), the centromere was estimated at the intermediate region. In LG1, LG11, and LG12, the centromere was estimated to shift from the sub-intermediate region to the end (telomeric). The number of these LGs (7) was identical to the collective number of bi-arm metacentric (5) and sub-metacentric chromosome (2) of the haploid chromosome set (n = 5) of the loach. In the other LGs, the position of the centromere was estimated at the end or outside. These results indicate satisfactory compliance between the linkage map and the chromosome set. Our map would cover approximately almost the entire loach genome because most markers were successfully mapped.  相似文献   

17.
We have performed a high-resolution linkage analysis for the conserved segment on distal mouse Chromosome (Chr) 8 that is homologous to human Chr 16q. The interspecific backcross used involved M. m. molossinus and an M. m. domesticus line congenic for an M. spretus segment from Chr 8 flanked by phenotypic markers Os (oligosyndactyly) and e, a coat colormarker. From a total of 682 N2 progeny, the 191 animals revealing a recombination event between these phenotypic markers were typed for 23 internal loci. The following locus order with distances in cM was obtained: (centromere)–Os–4.1–Mmp2–0.2–Ces1,Es1, Es22–1.2–Mt1,D8Mit15–2.2–Got2, D8Mit11–3.7–Es30–0.3–Es2, Es7–0.9–Ctra1,Lcat–0.3–Cdh1, Cadp, Nmor1, D8Mit12–0.2–Mov34–2.5–Hp,Tat–0.2–Zfp4–1.6–Zfp1,Ctrb–10.9–e. In a separate interspecific cross involving 62 meioses, Dpep1 was mapped together with Aprt and Cdh3 at 12.9 cM distal to Hp, Tat, to the vicinity of e. Our data give locus order for markers not previously resolved, add Mmp2 and Dpep1 as new markers on mouse Chr 8, and indicate that Ctra1 is the mouse homolog for human CTRL. Comparison of the order of 17 mouse loci with that of their human homologs reveals that locus order is well conserved and that the conserved segment in the human apparently spans the whole long arm of Chr 16. Received: 30 July 1996 / Accepted: 15 November 1996  相似文献   

18.
A new carboxylesterase isozyme (EC 3.1.1.1), designated ES-30, is described in mouse liver. Two phenotypes were distinguished, ES-30A, a possible null type, was found in SPE/Pas and in other lines derived fromMus spretus, and ES-30B was found in BALB/cJ and other laboratory inbred strains. ES-30B is characterized by a distinct electrophoretic band when stained using 5-bromoindoxyl acetate as the substrate. After isolation and purification from other esterases by ion-exchange chromatography and molecular sieving, the molecular mass was estimated by two independent methods to be 62 and 64 kDa, respectively. The activity of ES-30B is higher in adult males than in females and can be stimulatedin vivo by testosterone. The distribution of phenotypes on the progeny of a backcross series suggests a separate locus,Es-30, with the allele a for absence andb for presence of the isozyme. LocusEs-30 is shown to be closely linked toEs-2 and toEs-7 of cluster-2 on chromosome 8. The gene orderEs-9—Got-2—(Es-2, Es-7, Es-30) is suggested. This work was supported by the Deutsche Forschungsgemeinschaft. This is communication No. 72 of a research program devoted to the cellular distribution, genetics, and regulation of nonspecific esterases.  相似文献   

19.
A single formamidase, which is different from the formamidases found in other tissues, occurs in the brains of mice. This enzyme is here called formamidase-5 and the gene symbol is designated For-5. Two alleles are recognized on the basis of their differential heat sensitivity: For-5 b is relatively heat stable and is present in strain C57BL/6J, while For-5 d is relatively heat sensitive and is present in strain DBA/2J. The heat sensitivity of formamidase-5 in 44 other inbred strains and substrains was tested and found to resemble that of C57BL/6J or DBA/2J. Thirty-six recombinant inbred strains derived from progenitors that differed at For-5 were studied to test for single-gene inheritance and linkage with other loci. Complete concordance was found with the esterase-10 locus (Es-10), indicating close linkage. The 99% upper confidence limit of the distance between For-5 and Es-10 is 3.7 centimorgans (cM). Es-10 is located on chromosome 14 about 19 cM from the centromere. An independent demonstration of linkage of For-5 with Es-10 and another chromosome 14 marker, hairless (hr), is provided by the finding that the HRS/J strain, which has been sibmated for 60 generations with forced heterozygosity at the hr locus, is cosegregating at For-5 and Es-10. A survey of 32 inbred strains and substrains revealed that the For-5 d allele is associated with the Es-10 b allele, and that the For-5 b allele is associated with Es-10 a and Es-10 c. Formamidase-5 segregates as expected in the F2 generation of crosses between strains bearing For-5 b and For-5 d alleles. It is possible that this unique formamidase of the brain is involved in the metabolism of a neurotransmitter substance.This research was sponsored in part by the Department of Energy under contract with the Union Carbide Corporation and in part by NIH Research Grant GM-18684 from the National Institute of General Medical Sciences. J. C. F. is a predoctoral Fellow supported by Grant CA 09104 from the National Cancer Institute. The Biology Division of Oak Ridge National Laboratory and the Jackson Laboratory are fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

20.
Congenic mouse strains are widely used in mapping traits to specific loci or short chromosomal regions. The precision of the mapping depends on the information available about the length of the differential segment—the segment introduced from the donor into the background strain. Until recently, very few markers flanking the differential locus were known and consequently the length of the foreign segment could only be determined imprecisely. Now, in an attempt to construct a map of the mouse chromosome 17, we have produced a set of DNA markers distributed along the chromosome. These markers provide a new opportunity to measure the length of the differential segment of the congenic strains and thus increase their usefulness for gene mapping. Here we examined the DNA of 96H-2 congenic strains using 30 DNA markers; of these, the most proximal is located roughly 1.5 centiMorgans (cM) from the centromere and the most distal is about 20 cM telomeric from theH-2 complex (the complex itself being some 20 cM from the centromere). The mapping depends on polymorphism among the input strains and can therefore establish only the minimal length of the differential segment. This point is emphasized by the fact that the average observed length of the differential segment is only about one half of the expected values. Offprint requests to: V. Vincek.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号