首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of zinc compounds on osteoclast-like cell formation in rat marrow culture in vitro was investigated. The bone marrow cells were cultured for 7 days in -minimal essential medium containing a well-known bone resorbing hormone (1, 25-dihydroxyvitamin D3 and parathyroid hormone [1–34]). Osteoclast-like cell formation was estimated by staining for tartrateresistant acid phosphatase (TRACP), a marker enzyme of osteoclasts. The presence of 1, 25-dihydroxyvitamin D3 (10–8 M) or parathyroid hormone (PTH; 10–8 M) induced a remarkable increase in osteoclast-like multinucleated cells (MNC). These increases were clearly inhibited by the presence of zinc sulfate or zinc-chelating dipeptide (-alanyl-L-histidinato zinc; AHZ) in the concentration range of 10–7 to 10–5 M. The inhibitory effect was seen at the earlier stage of osteoclast-like MNC formation. However, zinc compounds (10–6 M) did not have an effect on PTH (10–8 M)-induced osteoclast-like cell formation in the presence of EGTA (5 × 10–4 M), dibucaine (10–5 M) or staurosporine (10–9 M). Moreover, when osteoclasts isolated from rat femoraldiaphyseal tissues were cultured for 24 h in the presence of zinc compounds (10–7 to 10–5 M), the compounds did not have an effect on cell numbers or lysosomal enzymes activity (acid phosphatase and -glucuronidase) in the cells. The present study clearly demonstrates that zinc compounds inhibit osteoclast-like cell formation at the earlier stage with differentiation of marrow cells.  相似文献   

2.
Of the primary neuronal tissue cultures (glia cell, neuronal cells, mixed and retina cultures), the neuronal cells of (cells + medium) display the highest total porphyrin production from 10–3 M delta-aminolaevulinic acid (ALA). In the presence of 10–3–10–6 M melatonin, the quantity of total prophyrins produced by the neuronal cultures decreases in inverse proportion to the concentration. Oxytocin, lysine-vasopressin, CCK-8 sulphate ester and des-Tyr-gamma-endorphin in concentrations of 10–5 and 10–6 M block the porphyrin synthesis of the glia cells and display different effects on that of the neuronal cells. They enhance the total porphyrin synthesis of the cell cultures, with the exception of 10–5 M des-Tyr-gamma-endorphin, which exerts an inhibitory effect on the glia cells.  相似文献   

3.
L-alanine and its peptides (L-Ala-2–6) do not attract or repulse Tetrahymena in a 10–8M concentration. In 10–10M concentration there is a consistent repellent effect. Twenty four hours after L-alanine or L-alanine-peptides' pretreatment (imprinting) the progeny generation of the cells react differently to the same materials. L-Alanine, L-alanine penta- and hexapeptide in both concentrations are chemoattractant, while L-alanine tetrapeptide is repellent. L-Alanine dipeptide is inert in 10–10M and repellent at 10–8M concentrations, while L-alanine tripeptide is strongly repellent at 10–10M and attractant at 10–8M concentrations. This means, that the first encounter (imprinting) with an exogeneous amino acid or peptide is decisive to the later reaction of the protozoan cell. The chain length is important in the imprinting, however the reaction is not consistent. The experiments call the attention to the significance of imprinting in the receptor and hormone evolution.  相似文献   

4.
The effects of 10–10–10–5 M parathyroid hormone (PTH) on voltage-dependent potassium channels at theHelix pomatia neuronal membrane were investigated in voltage-clamped experiments using intracellular perfusion techniques. The hormone was found to produce a 2-stage effect on calcium current (ICa). The initial, brief stage of PTH action consisted of a minor (7–10%) increase in ICa and was partially reversible. This was followed by the second (slow) stage, developing for 60–70 min, whereupon level of ICa doubled. This hormonal action was not easily reversed and did not occur unless the intracellular solution contained ATP or the hormone was applied after perfusing the cell. Introducing 10 mM EDTA into the perfusate induced a considerable decline in PTH effects. Adding concentrations of 100 and 60 µM of exogenous cAMP and cGMP, respectively, did not imitate the action of this hormone. The first-mentioned effect is thought to be produced by indirect PTH action on channel protein or structures closely associated with the channel and the second by metabolic processes, possibly the phosphoinositide pathway of signal transmission.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Medical Institute, Erevan. Translated from Neirofiziologiya, Vol. 22, No. 3, pp. 373–380, May–June, 1990.  相似文献   

5.
In the presence of 3-isobutyi-l-methylxanthine, VIP produced a dose-related (3×10–9–10–7 M) increase (g-fold) in cAMP production in isolated HEp-2 cells incubated at 15°C in KRP buffer. Among the peptides structurally related to VIP, including secretin (10–7 M), pancreatic glucagon (10–6 M), PHI, somatostatin-14 (10–6 M), hpGRF (10–8–4×10–M), GIP (2×10–7 M), only PHI (3×10–7 M and above) is able to activate the cAMP-generating system in HEp-2 cells, but at 102 times lower potency. Under the same conditions, histamine (10–3 M) was also ineffective, while PGE 2 (10–7–10–4 M) increased (0-fold) basal cAMP levels in HEp-2 cells. The VIP effect is related to the interaction os the peptide on VIP recognition sites (12SI-VIP-binding capacity ), coupled to the membrane-bound adenylate cyclase . The results indicate that the transformed laryngeal cell line HEp-2 possessesa receptor-cAMP system preferentially activated by VIP (relative potencies: VIP > PHI other peptides of the secretin family), and suggest that this neuropeptide could modulate biological functions in normal laryngeal epithelia in man.  相似文献   

6.
This study assessed mitochondrial membrane potential changes in cultured osteoblasts treated with hormones known to regulate osteoblasts. A fluorescent carbocyanine dye, 5,5′, 6,6′-tetrachloro-1,1′, 3,3′-tetraethylbenzimidazolocarbocyanine iodide, also called JC-1, was used as a probe. JC-1 emits photons at 585 nm (orange–red) when the membrane potential in mitochondria is highly negative, but when the potential becomes reduced emission occurs at 527 nm (green). Osteoblasts were rinsed in serum-free medium for 5 min, then loaded with 1 × 10−6MJC-1 for 10 min. The distribution and intensity of JC-1 fluorescence were evaluated with a laser-scanning confocal microscope system. Hormone treatments included parathyroid hormone (PTH; 10−8M), 17β-estradiol (10−8M), and thyroxine (T4; 10−8M). The potassium ionophore valinomycin (10−6M) was used as a control since it is known to disrupt the electrochemical gradient of mitochondria without interfering with the pH gradient. Valinomycin caused a profound, rapid increase (22.5% above untreated values) in the green/red ratio, which indicated a lowering of the mitochondrial membrane potential in all samples evaluated. PTH caused a less pronounced, but significant (7–14%), reduction in membrane potential in all cells examined. PTH is known to affect osteoblasts in a number of ways and is inhibitory to mitochondrial respiration; the results confirm this effect. For estradiol, half of the cells responded at a significant level, with a membrane potential reduction of 6 to 13% being recorded; the other half did not respond. Thyroxine did not alter mitochondrial membrane potential. Responses were detectable within 20 s for valinomycin, but occurred at a slower rate, over 200 to 300 s, following PTH and estradiol treatment. Responses to PTH and estradiol could be due to mitochondrial uptake of cytosolic Ca2+.  相似文献   

7.
The effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells in vitro was investigated to determine a cellular mechanism by which the isoflavones stimulate bone formation. Cells were cultured for 48 h in -minimal essential medium containing either vehicle, genistein (10–7–10–5 M) or daidzein (10–7–10–5 M). The 5,500 g supernatant of cell homogenate was used for assay of protein synthesis with [3H]leucine incorporation in vitro. The culture with genistein or daidzein caused a significant elevation of protein synthesis in the cell homogenate. The effect of genistein (10–5 M) or daidzein (10–5 M) in elevating protein synthesis was significantly prevented, when cells were cultured for 48 h in a medium containing either actinomycin D (10–7 M) or cycloheximide (10–6 M) in the absence or presence of isoflavones. Moreover, when genistein (10–7–10–5 M) or daidzein (10–6 and 10–5 M) was added to the reaction mixture containing the cell homogenate obtained from osteoblastic cells cultured without isoflavone, protein synthesis was significantly raised. This increase was markedly blocked by the addition of cycloheximide (10–7 M). In addition, [3H]leucyl-tRNA synthetase activity in the cytosol of osteoblastic cells was significantly increased by the addition of genistein (10–6 and 10–5 M) or daidzein (10–5 M) into the enzyme reaction mixture. The present study demonstrates that genistein or daidzein can stimulate protein synthesis in osteoblastic MC3T3-E1 cells. The isoflavones may have a stimulatory effect on osteoblastic bone formation due to increasing protein synthesis.  相似文献   

8.
Hormone-sensitive adenylyl cyclase signaling system (ACS) provides transduction of a wide spectrum of hormonal signals in cells of the higher eucaryotes. At the same time, ACS in the lower eucaryotes at present is practically not studied. We studied regulatory effects on ACS of the infusoria Dileptus anser and Tetrahymena pyriformis of peptide hormones of the higher eukaryotes—insulin, IGF-1, and relaxin, whose action on ACS of the higher eucaryotes was the subject of our earlier studies. The action of these hormones at concentrations of 10–10–10–8 M on the AC activity in infusoria had clearly stimulating character, the dose–effect curves being of a bell-shaped form with a maximum of the stimulating effect of the hormones at concentrations of 10–9–10–8 M. the shape of the curves and the value of the stimulating effect of the peptide hormones depended substantially on the level of the AC basal activity in homogenates of infusorian cell cultures. All the hormones (10–8 M) stimulated GTP-binding activity of G-proteins. It was shown by the example of relaxin that its stimulating effect on GTP-binding in infusorian cells was dose-dependent and increased in the range of hormone concentrations from 10–10 to 10–8 M to reach its maximum at concentrations of 10–8–10–7 M. In the presence of suramin, an inhibitor of heterotrimeric G-proteins, the stimulating effects of the hormones on the GTP-binding and the AC activity decreased essentially or were absent completely. This indicates that the heterotrimeric G-proteins are ones of components of the signaling cascade that mediates regulatory effects of the hormones of the insulin group on the AC activity in infusorian cell cultures. Based on the obtained data, it is suggested that the basic molecular mechanisms of regulation of ACS by insulin and the related peptides that are similar to those found in the higher vertebrates already begin to be formed as early as at the level of the lower eucaryotes.  相似文献   

9.
Summary Kidney proximal tubule Na/H exchange is inhibited by PTH. To analyze further the cellular mechanisms involved in this regulation we have used MCT cells (a culture of SV-40 immortalized mouse cortical tubule cells) grown on permeant filter supports. Na/H exchange was measured using single cell fluorescence microscopy (BCECF) and phosphate transport (measured for comparisons) by tracer techniques. MCT cells express apical and basolateral Na/H exchangers which respond differently to inhibition by ethylisopropylamiloride and by dimethylamiloride, the basolateral membrane transporter being more sensitive. Apical membrane Na/H exchange was inhibited by PTH (10–8 m; by an average of 25%); similar degrees of inhibition were observed when cells were exposed either to forskolin, 8-bromo-cAMP or phorbol ester. Basolateral membrane Na/H exchange was stimulated either by incubation with PTH (to 129% above control levels) or by addition of phorbol ester (to 120% above control levels); it was inhibited after exposure to either forskolin or 8-bromo-cAMP. The above effects of PTH and phorbol ester (apical and basolateral) were prevented by preincubation of cells with protein kinase C antagonists, staurosporine and calphostin C; both compounds did not affect forskolin or 8-bromo-cAMP induced effects. PTH also inhibited apical Na-dependent phosphate influx (29% inhibition at 10–8 m); it had no effect on basolateral phosphate fluxes (Na-dependent and Na-independent). Incubation with PTH (10–8 m) resulted in a rapid and transient increase in [Ca2+] i (measured with the fluorescent indicator, fura-2), due to stimulation of a Ca2+ release from intracellular stores. Exposure of MCT cells to PTH did not elevate cellular levels of cAMP. Taken together, these results suggest that PTH utilizes in MCT cells the phospholipase C/protein kinase C pathway to differently control Na/H exchangers (apical vs. basolateral) and to inhibit apical Na/P i cotransport.This work was supported by the Swiss National Science Foundation (Grant No. 32-30785.91), the Stiftung für wissenschaftliche Forschung an der Universität Zürich, the Hartmann-Müller Stiftung, the Sandoz-Stiftung, the Roche Research Foundation and the Geigy-Jubiläumsstiftung. We are grateful to Denise Rossi and Christa Knellwolf for their excellent secretarial assistance.  相似文献   

10.
Increase in DNA replication sites in cells held at the beginning of S phase   总被引:2,自引:5,他引:2  
CHO cells were pulse labeled with 3H-thymidine after synchronization and blockage at the beginning of S phase for various intervals. The distribution of initiation sites for DNA replication and rates of chain growth were measured in autoradiographs prepared from these cells. Origins used for replication are widely distributed at or near the beginning of S phase, but usable origins increase continuously for many hours when FdU is used to block the synthesis of thymidylate. Potential origins are located about four microns apart, but in normal replication in these fibroblasts only one in 15 to 20 potential origins are used for initiation. On the other hand, when cells are held at the beginning of S phase for 12–14 h, about one-half of the potential origins are activated in part of the DNA and utilized when the cell is released from the block by supplying 3H-thymidine (10–6M). Chain growth during a short pulse decreases with time of the blockage at what appears to be a linear rate. However, cells can replicate long continuous stretches of their DNA with only 2×10–8M thymidine available in the medium for several hours when synthesis is blocked by FdU. The total amount of DNA replicated is, however, much less than when a concentration of 10–6 M thymidine is supplied for the same period. The origins which are finally used under any experimental condition appear to be a random sample of the total potential origins which are distributed in a regular repeating sequence along the DNA at about 12 kilobase intervals.  相似文献   

11.
The effect of -alanyl-L-histidinato zinc (AHZ) on bone metabolism was investigated in osteoblastic MC3T3-El cells. Cells were cultured for 3 days at 37°C in a CO2 incubator in plastic dishes containing -modified minimum essential medium supplemented with 10% fetal bovine serum. After the cultures, the medium was exchanged for that containing 0.1% bovine serum albumin plus various concentrations of AHZ or other reagents, and the cells were cultured further for appropriate periods of time. The presence of AHZ (10–7–10–5M) stimulated the proliferation of cells. AHZ (10–6 and 10–5M) increased deoxyribonucleic acid (DNA) content in the cells with 48hr-culture. This increase was completely blocked by the presence of cycloheximide (10–6M) or hydroxyurea (10–3M). Also, the presence of cycloheximide (10–6M) completely inhibited the AHZ (10–5M)-induced increase in the proliferation of cells. Meanwhile, parathyroid hormone (10–7M), estrogen (10–9M) and insulin (10–M) significantly increased cellular DNA content. However, these hormonal effects clearly lowered in comparison with that of AHZ (10–5M). Dibutyryl cyclic AMP (10–4M) and zinc sulfate (10–5M) did not cause a significant increase in cellular DNA content. The present results support the view that AHZ has a direct specific proliferative effect on osteoblastic cellsin vitro and that this effect is dependent on protein synthesis.  相似文献   

12.
Summary Cultured human fibroblasts and amniotic fluid cells (AF cells) were examined for the presence of steroid hormone receptors. In both cell types, the androgen (DHT) or glucocorticoid (dexamethasone) receptor was detected, but not the estrogen receptor. Binding parameters in fibroblasts were: for androgen: KD=3.7×10-9M, Bmax=13 fmol/mg; for dexamethasone: KD=4.5×10-9M, Bmax=120 fmol/mg. Binding parameters in AF cells were: for androgen: KD=4×10-9M, Bmax=8 fmol/mg; for dexamethasone: KD=1.9×10-8M, Bmax=375 fmol/mg. Cultured cells derived from the gonads (of a patient with 17-ketosteroid reductase deficiency) seem to have more receptors than cells from extragenital body parts (Bmax=21 fmol). With the aid of gel chromatography, the molecular weight of the androgen receptor was estimated to be 30–40 000D.  相似文献   

13.
The interaction of various hormones and regucalcin on (Ca2+–Mg2+)-ATPase activity in rat liver plasma membranes was investigated. The presence of epinephrine (10–6–10–4 M), and insulin (10–8–10 M) in the reaction mixture produced a significant increase in (Ca2+–Mg2+)-ATPase activity, while the enzyme activity was decreased significantly by calcitonin, (3×10–8–3×10–6 M). These hormonal effects, except for calcitonin, were clearly inhibited by the presence of vanadate (10–4 M) which can inhibit the Ca2+-dependent phosphorylation of enzyme. Meanwhile, regucalcin (0.25 and 0.50 M), isolated from rat liver cytosol, elevated significantly (Ca2+–Mg2+)-ATPase activity in the plasma membranes, although this elevation was not inhibited by vanadate (10–4 M). the epinephrine (10–5 M) or phenylephrine (10–4 M)-induced increase in (Ca2+–Mg2+)-ATPase activity was disappeared in the presence of regucalcin; in this case the effect of regucalcin was also weakened. However, the inhibitory effect of calcitonin (3×10–6 M) was not weakened by the presence of regucalcin (0.5 M). Moreover, GTP (10–5 and 10–4 M)-induced increase in (Ca2+–Mg2+)-ATPase activity was not seen in the presence of regucalcin (0.25 M). The present finding suggests that the activating mechanism of regucalcin on (Ca2+–Mg2+)-ATPase is not involved on GTP-binding protein which modulates the receptor-mediated hormonal effect in rat liver plasma membranes.  相似文献   

14.
Chromogranin A is an acidic protein that is costored and cosecreted with parathyroid hormone (PTH) from parathyroid cells. Pancreastatin (PST), is derived from chromogranin A, and inhibits secretion from several endocrine/neuroendocrine tissues. Effects of different pancreastatin peptides were investigated on dispersed cells from bovine and human parathyroid glands. Bovine PST(1–47) and bovine PST(32–47) inhibited PTH release from bovine cells in a dose-dependent manner. The former peptide was more potent and suppressed the secretion at 1–100 nM. This inhibition was evident in 0.5 and 1.25 mM, but not in 3.0 mM external Ca2+. Both peptides failed to alter the concentration of cytoplasmic Ca2+([Ca2+]i) of bovine cells. Human PST(1–52) and PST(34–52) did not affect PTH release or [Ca2+]i of parathyroid cells from patients with hyperparathyroidism, nor [Ca2+]i of normal human parathyroid cells. Furthermore, bovine PST(1–47) and bovine PST(32–47) failed to alter the secretion of abnormal human parathyroid cells. The study indicates that PST exerts secretory inhibition on bovine but not human parathyroid cells, and that this action does not involve alterations of [Ca2+]i.  相似文献   

15.
Growth, protein synthesis and expression of creatine kinase (CK) by embryonic chick myogenic cells are inhibited by vitamin D and certain of its metabolites. 25-OH cholecalciferol was most active in concentrations of 10−5–10−6 M, with cholecalciferol and ergocalciferol less active in that order. Ergosterol had no activity of this sort. Inhibition of CK was most marked on the 4th and 5th day of culture and was due to suppression of the appearance of CK-MM and MB. CK-BB was not affected and CK-MB was more affected than CK-BB. Skin fibroblasts by comparison were slightly stimulated in growth at 10−6 M and much less affected at 10−5 M than the myogenic cells. It is suggested that vitamin D has a direct effect upon the muscle cell, to cause a selective diminution in the production of certain polypeptides.  相似文献   

16.
Effects of Copper on Root Growth, Cell Division, and Nucleolus of Zea Mays   总被引:1,自引:0,他引:1  
The effects of different concentrations (10–5 – 10–2 M) of copper sulfate on root growth, cell division and nucleoli in root tip cells of Zea mays L. were investigated. 10–5 M Cu stimulated root growth, but at higher concentrations (10–4 – 10–2 M) inhibited it. Cu had toxic effects on chromosomal morphology: c-mitosis, anaphase bridges, and chromosome stickiness were induced. Some nuclei had irregular shape and particles extruded from nucleoli to nuclei and finally from the nuclei into the cytoplasm.  相似文献   

17.
The effect of -alany-L-histidinato zinc (AHZ) on bone cell function was investigated in osteoblastic MC3T3-E1 cells. Cells were cultured for 3 days at 37°C in a CO2 incubator in plastic dishes containing -modified minimum essential medium supplemented with 10% fetal bovine serum. After the cultures, the medium was exchanged for that containing 0.1% bovine serum albumin plus AHZ (10–7–10–5 M) or other reagents, and the cells were cultured further for appropriate periods of time. The presence of AHZ (10–7–10–5 M) produced a remarkable increase of alkaline phosphatase activity and protein concentration in osteoblastic cells. Thus increases were seen with the prolonged cultivation (12–21 days). With the culture of 1, 3 and 12 days, the effect of AHZ (10–6 M) to increase alkaline phosphatase activity and protein concentration was more intensive than the effect of zinc sulfate, (10–6 M). The AHZ effects were completely abolished by the presence of cycloheximide (10–6 M), indicating that AHZ stimulates protein synthesis in the cells. The present study suggests that AHZ has a stimulatory effect on cell differentiation, and that this effect is partly involved on protein synthesis in osteoblastic cells.  相似文献   

18.
The microtubule associated protein called tau, found primarily in neurons, was detected in a human neuroblastoma cell line, LAN-5. Cells treated with retinoic acid (2.0×105M) differentiate and acquire processes similar to neurons. Differentiated and logarithmically growing undifferentiated cells were exposed to varying doses of doxorubicin (an anthracycline chemotherapeutic antibiotic). While doxorubicin was lethal to many undifferentiated dividing cells, it was not as damaging to differentiated cells. After 2 to 4 days of doxorubicin treatment, the cells were harvested, the protein concentration determined and SDS-PAGE performed. Proteins were blotted onto nitrocellulose paper and immunostained with either a rabbit antiserum or mouse monoclonal antibody to tau. Undifferentiated LAN-5 cells treated with 4.0×10–8M doxorubicin for 4 days and cells treated with 8.0×10–8M doxorubicin for 2 days displayed a distinct lower band (just below the 50kd marker) that was either absent or very faint in untreated controls.Special issue dedicated to Dr. Paola S. Timiras.  相似文献   

19.
Rat embryo fibroblasts grown in Eagle's minimal essential medium with 10% serum were labeled with L-[14C]leucine. After a 24 h cold chase, rates of proteolysis were evaluated by measuring the appearance of trichloroacetic acid-soluble 14C in the media. Cells remaining in minimal essential medium with 10% serum (basal) showed a proteolysis rate of 1% per h, whereas cells placed in minimal essential medium alone (serum-deficient) showed a stimulation of proteolysis to 3–4% per h. This enhanced proteolysis was transitory, occuring only for the first 4–8 h after cells were placed in the serum-deficient media. Vinblastine 10−5 M inhibited the enhanced proteolysis 40% but had no effect on basal proteolysis. Control experiments showed no detectable hydrolysis of extracellular proteins, nor did vinblastine affect the rate of protein synthesis. These data suggest that basal and enhanced proteolysis have at least partially distinct mechanisms in the cell and that only enhanced proteolysis involves microtubules.  相似文献   

20.
Summary The cellular distribution (apicalvs. basolateral) of parathyroid hormone (PTH) signal transduction systems in opossum kidney (OK) cells was evaluated by measuring the action of PTH on apically located transport processes (Na/Pi cotransport and Na/H exchange) and on the generation of intracellular messengers (cAMP and IP3).PTH application led to immediate inhibition of Na/H-exchange without a difference in dose/response relationships between apical and basolateral cell-surface hormone addition (halfmaximal inhibition at 5×10–10 m). PTH required 2–3 hr for maximal inhibition of Na/Pi cotransport with a half-maximal inhibition occurring at ×10–12 m for apical application. PTH addition to either side of the monolayer produced a dose-dependent production of both cAMP and IP3. Half-maximal activation of IP3 was at about 7×10–12 m PTH and displayed no differences between apical and basolateral hormone addition, while cAMP was produced with a half maximal concentration of 7×10–9 m for apical PTH application and 10–9 m for basolateral administration.The PTH analog [nle8.18, tyr34]PTH(3-34), (nlePTH), produced partial inhibition of Na/Pi cotransport (agonism) with no difference between apical and basolateral application. When applied as a PTH antagonist, nlePTH displayed dose-dependent antagonism of PTH inhibition of Na/Pi cotransport on the apical surface, failing to have an effect on the basolateral surface. Independent of addition to the apical or basolateral cell surface, nlePTH had only weak stimulatory effect on production of cAMP, whereas high levels of IP3 could be measured after addition of this PTH analog to either cell surface. Also an antagonistic action of nlePTH on PTH-dependent generation of the internal messengers, cAMP and IP3, was observed; at the apical and basolateral cell surface nlePTH reduced PTH-dependent generation of cAMP, while PTH-dependent generation of IP3 was only reduced by nlePTH at the apical surface.Pertussis toxin (PT) preincubation produced an attenuation of both PTH-dependent inhibition of Na/Pi cotransport and IP3 generation while producing an enhancement of PTH-dependent cAMP generation; these effects displayed no cell surface polarity, suggesting that PTH action through either adenylate cyclase or phospholipase C was transduced through similar sets of G-proteins at each cell surface.It is concluded that apparent receptor activities with high and low affinity for PTH exist on both cell surfaces; those with apparent high affinity seem to be coupled preferentially to phospholipase C and those with apparent low affinity to adenylate cyclase. The differences in apparent affinity of receptor events coupled to adenylate cyclase and the differences in PTH/nlePTH interaction on the two cell surfaces are suggestive of the existence of differences in apparent PTH-receptor activities on the two cell surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号