首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite recent progress in understanding membrane protein folding, little is known about the mechanisms stabilizing these proteins. Here we characterize the kinetic thermal stability of CopA, a thermophilic PIB-type Cu+-ATPase from Archaeoglobus fulgidus. When heterologously expressed in Escherichia coli, purified and reconstituted in mixed micelles, CopA retained thermophilic characteristics with maximum activity at 75 °C. Incubation of CopA in the absence of substrates at temperatures in the 66-85 °C range led to an irreversible exponential decrease in enzyme activity suggesting a two-state process involving fully-active and inactive molecules. Although CopA inactivated much slower than mesophilic proteins, the activation energy was similar to that observed for mesophilic P-type ATPases. The inactivation process was found to be associated with the irreversible partial unfolding of the polypeptide chain, as assessed by Trp fluorescence, Phe UV spectroscopy, far UV circular dichroism, and 1-aniline-8-naphtalenesulfonate binding. However, the inactive thermally denatured protein still conserves large hydrophobic regions and considerable secondary structure.  相似文献   

2.
Diglycerol phosphate accumulates under salt stress in the archaeon Archaeoglobus fulgidus (L. O. Martins, R. Huber, H. Huber, K. O. Stetter, M. S. da Costa, and H. Santos, Appl. Environ. Microbiol. 63:896-902, 1997). This solute was purified after extraction from the cell biomass. In addition, the optically active and the optically inactive (racemic) forms of the compound were synthesized, and the ability of the solute to act as a protecting agent against heating was tested on several proteins derived from mesophilic or hyperthermophilic sources. Diglycerol phosphate exerted a considerable stabilizing effect against heat inactivation of rabbit muscle lactate dehydrogenase, baker's yeast alcohol dehydrogenase, and Thermococcus litoralis glutamate dehydrogenase. Highly homologous and structurally well-characterized rubredoxins from Desulfovibrio gigas, Desulfovibrio desulfuricans (ATCC 27774), and Clostridium pasteurianum were also examined for their thermal stabilities in the presence or absence of diglycerol phosphate, glycerol, and inorganic phosphate. These proteins showed different intrinsic thermostabilities, with half-lives in the range of 30 to 100 min. Diglycerol phosphate exerted a strong protecting effect, with approximately a fourfold increase in the half-lives for the loss of the visible spectra of D. gigas and C. pasteurianum rubredoxins. In contrast, the stability of D. desulfuricans rubredoxin was not affected. These different behaviors are discussed in the light of the known structural features of rubredoxins. The data show that diglycerol phosphate is a potentially useful protein stabilizer in biotechnological applications.  相似文献   

3.
A variant of Archaeoglobus fulgidus VC-16 was isolated from cultures obtained after a stepwise transfer from media containing 1.8-6.3% NaCl by a plating-independent, selected-cell cultivation technique, using a laser microscope. This variant, A. fulgidus VC-16S, had a higher growth rate throughout the salt range of the parental strain, but was also able to grow in media containing NaCl up to 6.3%, whereas the parental strain could not grow above 4.5% NaCl. Diglycerol phosphate (DGP), only encountered in the Archaeoglobales, was the major solute accumulated under supra-optimal salinities, whereas at supra-optimal growth temperatures di-myo-inositol phosphate was the predominant solute. The accumulation of compatible solutes during growth of variant VC-16S was lower than in the parental strain within 1.8-4.5% NaCl, but the levels of compatible solutes, including DGP, increased sharply in the variant at higher salinities (5.5 and 6.0%). This variant represents, at this time, one of the most halophilic hyperthermophiles known, and its ability to grow at high salinity appears to be due to the massive accumulation of DGP.  相似文献   

4.
A gene encoding an L-aspartate dehydrogenase (EC 1.4.1.21) homologue was identified in the anaerobic hyperthermophilic archaeon Archaeoglobus fulgidus. After expression in Escherichia coli, the gene product was purified to homogeneity, yielding a homodimeric protein with a molecular mass of about 48 kDa. Characterization revealed the enzyme to be a highly thermostable L-aspartate dehydrogenase, showing little loss of activity following incubation for 1 h at up to 80 degrees C. The optimum temperature for L-aspartate dehydrogenation was about 80 degrees C. The enzyme specifically utilized L-aspartate as the electron donor, while either NAD or NADP could serve as the electron acceptor. The Km values for L-aspartate were 0.19 and 4.3 mM when NAD or NADP, respectively, served as the electron acceptor. The Km values for NAD and NADP were 0.11 and 0.32 mM, respectively. For reductive amination, the Km values for oxaloacetate, NADH and ammonia were 1.2, 0.014 and 167 mM, respectively. The enzyme showed pro-R (A-type) stereospecificity for hydrogen transfer from the C4 position of the nicotinamide moiety of NADH. This is the first report of an archaeal L-aspartate dehydrogenase. Within the archaeal domain, homologues of this enzyme occurred in many Methanogenic species, but not in Thermococcales or Sulfolobales species.  相似文献   

5.
WrbA (tryptophan [W] repressor-binding protein) was discovered in Escherichia coli, where it was proposed to play a role in regulation of the tryptophan operon; however, this has been put in question, leaving the function unknown. Here we report a phylogenetic analysis of 30 sequences which indicated that WrbA is the prototype of a distinct family of flavoproteins which exists in a diversity of cell types across all three domains of life and includes documented NAD(P)H:quinone oxidoreductases (NQOs) from the Fungi and Viridiplantae kingdoms. Biochemical characterization of the prototypic WrbA protein from E. coli and WrbA from Archaeoglobus fulgidus, a hyperthermophilic species from the Archaea domain, shows that these enzymes have NQO activity, suggesting that this activity is a defining characteristic of the WrbA family that we designate a new type of NQO (type IV). For E. coli WrbA, the K(m)(NADH) was 14 +/- 0.43 microM and the K(m)(benzoquinone) was 5.8 +/- 0.12 microM. For A. fulgidus WrbA, the K(m)(NADH) was 19 +/- 1.7 microM and the K(m)(benzoquinone) was 37 +/- 3.6 microM. Both enzymes were found to be homodimeric by gel filtration chromatography and homotetrameric by dynamic light scattering and to contain one flavin mononucleotide molecule per monomer. The NQO activity of each enzyme is retained over a broad pH range, and apparent initial velocities indicate that maximal activities are comparable to the optimum growth temperature for the respective organisms. The results are discussed and implicate WrbA in the two-electron reduction of quinones, protecting against oxidative stress.  相似文献   

6.
Methylene-H4MPT reductase was found to be present in Archaeoglobus fulgidus in a specific activity of 1 U/mg. The reductase was purified 410-fold. The native enzyme showed an apparent molecular mass of approximately 200 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only 1 polypeptide of apparent molecular mass 35 kDa. The ultraviolet/visible spectrum of the reductase was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was dependent on reduced coenzyme F420 as electron donor. Neither NADH, NADPH, nor reduced viologen dyes could substitute for the reduced deazaflavin. From reciprocal plots, which showed an intersecting patter, a K m for methylene-H4MPT of 16 M, a K m for F420H2 of 4 M, and a V max of 450 U/mg (Kcat=265 s-1) were obtained. The enzyme was found to be rapidly inactivated when incubated at 80°C in 100 mM Tris/HCl pH 7. The rate of inactivation, however, decreased to essentially zero in the presence of either F420 (0.2 mM), methylene-H4MPT (0.2 mM), albumin (1 mg/ml), or KCl (0.5 M). The N-terminal amino acid sequence was determined and found to be similar to that of methylene-H4MPT reductase (F420-dependent) from the methanogens Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Methanopyrus kandleri. The purification and some properties of formylmethanofuran dehydrogenase from A. fulgidus are also described.Abbreviations H4MPT tetrahydromethanopterin - CH2=H4MPT N 5,N 10-methylene-H4MPT - CH3–H4MPT N 5-methyl-H4MPT - CHH4MPT methenyl-H4MPT - F420 coenzyme F420 - MFR methanofuran - CHO-MFR formyl-MFR - 1 U 1 mol/min  相似文献   

7.
The major AP endonuclease in Escherichia coli Exonuclease III (ExoIII) is frequently used in gene technology due to its strong exonucleolytic activity. A thermostabilized variant of ExoIII or a homologous enzyme from thermophilic organisms could be most useful for further applications. For this purpose we characterized a nuclease from the hyperthermophilic archaeon Archaeoglobus fulgidus (Af_Exo), which shares 33% overall sequence identity and 55% similarity to ExoIII. The gene coding for this thermostable enzyme was cloned and expressed in E. coli. The purified protein shows a strong Mg2+-dependent nicking activity at AP-sites, nicking of undamaged double-stranded (ds) DNA and a weak exonucleolytic activity. A V217G variant of the enzyme was crystallized with decamer ds-DNA molecule, and the three-dimensional structure was determined to 1.7 Å resolution. Besides our goal to find or produce a thermostable exonuclease, the structural and catalytic data of Af_Exo and a series of mutant proteins, based on the crystal structure, provide new insight into the mechanism of abasic site recognition and repair. Each of the hydrophobic residues Phe 200, Trp 215 and Val 217, forming a binding pocket for the abasic deoxyribose in Af_Exo, were mutated to glycine or serine. By expanding the size of the binding pocket the unspecific endonucleolytic activity is increased. Thus, size and flexibility of the mostly hydrophobic binding pocket have a significant influence on AP-site specificity. We suggest that its tight fitting to the flipped-out deoxyribose allows for a preferred competent binding of abasic sites. In a larger or more flexible pocket however, intact nucleotides more easily bind in a catalytically competent conformation, resulting in loss of specificity. Moreover, with mutations of Phe 200 and Trp 215 we induced a strong exonucleolytic activity on undamaged DNA.  相似文献   

8.
9.
Archaeoglobus fulgidus accumulates di-myo-inositol phosphate (DIP) and diglycerol phosphate (DGP) in response to heat and osmotic stresses, respectively, and the level of glycero-phospho-myo-inositol (GPI) increases primarily when the two stresses are combined. In this work, the pathways for the biosynthesis of these three compatible solutes were established based on the detection of the relevant enzymatic activities and characterization of the intermediate metabolites by nuclear magnetic resonance analysis. The synthesis of DIP proceeds from glucose-6-phosphate via four steps: (i) glucose-6-phosphate was converted into l-myo-inositol 1-phosphate by l-myo-inositol 1-phosphate synthase; (ii) l-myo-inositol 1-phosphate was activated to CDP-inositol at the expense of CTP; this is the first demonstration of CDP-inositol synthesis in a biological system; (iii) CDP-inositol was coupled with l-myo-inositol 1-phosphate to yield a phosphorylated intermediate, 1,1'-di-myo-inosityl phosphate 3-phosphate (DIPP); (iv) finally, DIPP was dephosphorylated into DIP by the action of a phosphatase. The synthesis of the two other polyol-phosphodiesters, DGP and GPI, proceeds via the condensation of CDP-glycerol with the respective phosphorylated polyol, glycerol 3-phosphate for DGP and l-myo-inositol 1-phosphate for GPI, yielding the respective phosphorylated intermediates, 1X,1'X-diglyceryl phosphate 3-phosphate (DGPP) and 1-(1X-glyceryl) myo-inosityl phosphate 3-phosphate (GPIP), which are subsequently dephosphorylated to form the final products. The results disclosed here represent an important step toward the elucidation of the regulatory mechanisms underlying the differential accumulation of these compounds in response to heat and osmotic stresses.  相似文献   

10.
A putative perA gene from Archaeoglobus fulgidus was cloned and expressed in Escherichia coli BL21(DE3), and the recombinant catalase-peroxidase was purified to homogeneity. The enzyme is a homodimer with a subunit molecular mass of 85 kDa. UV-visible spectroscopic analysis indicated the presence of protoheme IX as a prosthetic group (ferric heme), in a stoichiometry of 0.25 heme per subunit. Electron paramagnetic resonance analysis confirmed the presence of ferric heme and identified the proximal axial ligand as a histidine. The enzyme showed both catalase and peroxidase activity with pH optima of 6.0 and 4.5, respectively. Optimal temperatures of 70 degrees C and 80 degrees C were found for the catalase and peroxidase activity, respectively. The catalase activity strongly exceeded the peroxidase activity, with Vmax values of 9600 and 36 U mg(-1), respectively. Km values for H2O2 of 8.6 and 0.85 mM were found for catalase and peroxidase, respectively. Common heme inhibitors such as cyanide, azide, and hydroxylamine inhibited peroxidase activity. However, unlike all other catalase-peroxidases, the enzyme was also inhibited by 3-amino-1,2,4-triazole. Although the enzyme exhibited a high thermostability, rapid inactivation occurred in the presence of H2O2, with half-life values of less than 1 min. This is the first catalase-peroxidase characterized from a hyperthermophilic microorganism.  相似文献   

11.
We have solved the crystal structure of a PFL2 from Archaeglobus fulgidus at 2.9 A resolution. Of the three previously solved enzyme structures of glycyl radical enzymes, pyruvate formate lyase (PFL), anaerobic ribonucleotide reductase and glycerol dehydratase (GD), the last one is clearly most similar to PFL2. We observed electron density in the active site of PFL2, which we modelled as glycerol. The orientation of the glycerol is different from that in GD, and changes in the active site indicate that the actual substrate of PFL2 is bigger than a glycerol molecule, but sequence and structural homology suggest that PFL2 may be a dehydratase. Crystal packing, solution X-ray scattering and ultracentrifugation experiments show that PFL2 is tetrameric, unlike other glycyl radical enzymes. A.fulgidus is a hyperthermophile and PFL2 appears to be stabilized by several factors including an increased number of ion pairs, differences in buried charges, a truncated N terminus, anchoring of loops and N terminus via salt-bridges, changes in the oligomeric interface and perhaps also the higher oligomerization state of the protein.  相似文献   

12.
Shikimate 5-dehydrogenase (SKDH; EC 1.1.1.25) catalyzes the reversible reduction of 3-dehydroshikimate to shikimate and is a key enzyme in the aromatic amino acid biosynthesis pathway. The shikimate 5-dehydrogenase gene, aroE, from Archaeoglobus fulgidus was cloned and overexpressed in Escherichia coli. The recombinant enzyme purified as a homodimer and yielded a maximum specific activity of 732 U/mg at 87 degrees C (with NADP+ as coenzyme). Apparent Km values for shikimate, NADP+, and NAD+ were estimated at 0.17+/-0.03 mM, 0.19+/-0.01 mM, and 11.4+/-0.4 mM, respectively. The half-life of the A. fulgidus SKDH is 2 h at the assay temperature (87 degrees C) and 17 days at 60 degrees C. Addition of 1 M NaCl or KCl stabilized the enzyme's half-life to approximately 70 h at 87 degrees C and approximately 50 days at 60 degrees C. This work presents the first kinetic analysis of an archaeal SKDH.  相似文献   

13.
A thermostable homodimeric isocitrate dehydrogenase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus was purified and characterized. The mol. mass of the isocitrate dehydrogenase subunit was 42 kDa as determined by SDS-PAGE. Following separation by SDS-PAGE, A. fulgidus isocitrate dehydrogenase could be renatured and detected in situ by activity staining. The enzyme showed dual coenzyme specificity with a high preference for NADP+. Optimal temperature for activity was 90° C or above, and a half-life of 22 min was found for the enzyme when incubated at 90° C in a 50 mM Tricine-KOH buffer (pH 8.0). Based on the N-terminal amino acid sequence, the gene encoding the isocitrate dehydrogenase was cloned. DNA sequencing identified the icd gene as an open reading frame encoding a protein of 412 amino acids with a molecular mass corresponding to that determined for the purified enzyme. The deduced amino acid sequence closely resembled that of the isocitrate dehydrogenase from the archaeon Caldococcus noboribetus (59% identity) and bacterial isocitrate dehydrogenases, with 57% identity with isocitrate dehydrogenase from Escherichia coli. All the amino acid residues directly contacting substrate and coenzyme (except Ile-320) in E. coli isocitrate dehydrogenase are conserved in the enzyme from A. fulgidus. The primary structure of A. fulgidus isocitrate dehydrogenase confirmes the presence of Bacteria-type isocitrate dehydrogenases among Archaea. Multiple alignment of all the available amino acid sequences of di- and multimeric isocitrate dehydrogenases from the three domains of life shows that they can be divided into three distinct phylogenetic groups. Received: 6 February 1997 / Accepted: 12 June 1997  相似文献   

14.
BACKGROUND: Endonuclease III is the prototype for a family of DNA-repair enzymes that recognize and remove damaged and mismatched bases from DNA via cleavage of the N-glycosidic bond. Crystal structures for endonuclease III, which removes damaged pyrimidines, and MutY, which removes mismatched adenines, show a highly conserved structure. Although there are several models for DNA binding by this family of enzymes, no experimental structures with bound DNA exist for any member of the family. RESULTS: Nuclear magnetic resonance (NMR) spectroscopy chemical-shift perturbation of backbone nuclei (1H, 15N, 13CO) has been used to map the DNA-binding site on Archaeoglobus fulgidus endonuclease III. The experimentally determined interaction surface includes five structural elements: the helix-hairpin-helix (HhH) motif, the iron-sulfur cluster loop (FCL) motif, the pseudo helix-hairpin-helix motif, the helix B-helix C loop, and helix H. The elements form a continuous surface that spans the active site of the enzyme. CONCLUSIONS: The enzyme-DNA interaction surface for endonuclease III contains five elements of the protein structure and suggests that DNA damage recognition may require several specific interactions between the enzyme and the DNA substrate. Because the target DNA used in this study contained a generic apurinic/apyrimidinic (AP) site, the binding interactions we observed for A. fulgidus endonuclease III should apply to all members of the endonuclease III family and several interactions could apply to the endonuclease III/AlkA (3-methyladenine DNA glycosylase) superfamily.  相似文献   

15.
Chen L  Zhou C  Yang H  Roberts MF 《Biochemistry》2000,39(40):12415-12423
A gene putatively identified as the Archaeoglobus fulgidus inositol-1-phosphate synthase (IPS) gene was overexpressed to high level (about 30-40% of total soluble cellular proteins) in Escherichia coli. The recombinant protein was purified to homogeneity by heat treatment followed by two column chromatographic steps. The native enzyme was a tetramer of 168 +/- 4 kDa (subunit molecular mass of 44 kDa). At 90 degrees C the K(m) values for glucose-6-phosphate and NAD(+) were estimated as 0.12 +/- 0.04 mM and 5.1 +/- 0.9 microM, respectively. Use of (D)-[5-(13)C]glucose-6-phosphate as a substrate confirmed that the stereochemistry of the product of the IPS reaction was L-myo-inositol-1-phosphate. This archaeal enzyme, with the highest activity at its optimum growth temperature among all IPS reported (k(cat) = 9.6 +/- 0.4 s(-1) with an estimated activation energy of 69 kJ/mol), was extremely heat stable. However, the most unique feature of A. fulgidus IPS was that it absolutely required divalent metal ions for activity. Zn(2+) and Mn(2+) were the best activators with K(D) approximately 1 microM, while NH(4)(+) (a critical activator for all the other characterized IPS enzymes) had no effect on the enzyme. These properties suggested that this archaeal IPS was a class II aldolase. In support of this, stoichiometric reduction of NAD(+) to NADH could be followed spectrophotometrically when EDTA was present along with glucose-6-phosphate.  相似文献   

16.
AF2241 is a hypothetical protein from Archaeoglobus fulgidus and it belongs to the PFam domain of unknown function 369 (DUF369). NMR structural determination reveals that AF2241 adopts a cyclophilin-like fold, with a β-barrel core composed of eight β-strands, one α-helix, and one 310 helix located at each end of the barrel. The protein displays a high structural similarity to TM1367, another member of DUF369 whose structure has been determined recently by X-ray crystallography. Structural similarity search shows that AF2241 also has a high similarity to human cyclophilin A, however, sequence alignment and electrostatic potential analysis reveal that the residues in the PPIase catalytic site of human cyclophilin A are not conserved in AF2241 or TM1367. Instead, a putative active site of AF2241 maps to a negatively charged pocket composed of 9 conserved residues. Our results suggest that although AF2241 adopts the same fold as the human cyclophilin A, it may have distinct biological function. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Oxidative DNA damage is caused by reactive oxygen species formed in cells as by products of aerobic metabolism or of oxidative stress. The 8-oxoguanine (8-oxoG) DNA glycosylase from Archaeoglobus fulgidus (Afogg), which excises an oxidatively-damaged form of guanine, was overproduced in Escherichia coli, purified and characterized. A. fulgidus is a sulfate-reducing archaeon, which grows at between 60 and 95 degrees C, with an optimum growth at 83 degrees C. The Afogg enzyme has both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activities, with the latter proceeding through a Schiff base intermediate. As expected for a protein from a hyperthermophilic organism, the enzyme activity is optimal near pH 8.5 and 60 degrees C, denaturing at 80 degrees C, and is thermally stable at high levels of salt (500mM). The Afogg protein efficiently cleaves oligomers containing 8-oxoG:C and 8-oxoG:G base pairs, and is less effective on oligomers containing 8-oxoG:T and 8-oxoG:A mispairs. While the catalytic action mechanism of Afogg protein is likely similar to the human Ogg1 (hOgg1), the DNA recognition mechanism and the basis for 8-oxoG substrate specificity of Afogg differ from that of hOgg.  相似文献   

18.
The crystal structure of AFEST, a novel hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus, complexed with a sulphonyl derivative, has been determined and refined to 2.2 A resolution. This enzyme, which has recently been classified as a member of the hormone- sensitive-lipase (H) group of the esterase/lipase superfamily, presents a canonical alpha/beta hydrolase core, shielded on the C-terminal side by a cap region composed of five alpha-helices. It contains the catalytic triad Ser160, His285 and Asp255, whereby the nucleophile is covalently modified and the oxyanion hole formed by Gly88, Gly89 and Ala161. A structural comparison of AFEST with its mesophilic and thermophilic homologues, Brefeldin A esterase from Bacillus subtilis (BFAE) and EST2 from Alicyclobacillus acidocaldarius, reveals an increase in the number of intramolecular ion pairs and secondary structure content, as well as a significant reduction in loop extensions and ratio of hydrophobic to charged surface area. The variety of structural differences suggests possible strategies for thermostabilization of lipases and esterases with potential industrial applications.  相似文献   

19.
Proteins of largely unknown function related to the Sm proteins present in the core domain of eukaryotic small nuclear ribonucleoprotein particles have recently been detected in Archaea. In contrast to eukaryotes, Archaea contain maximally two distinct Sm-related proteins belonging to different subfamilies, we refer to as Sm1 and Sm2. Here we report the crystal structures of the Sm1- and Sm2-type proteins from the hyperthermophilic euryarchaeon Archaeoglobus fulgidus (AF-Sm1 and AF-Sm2) at a resolution of 2.5 and 1.95 A, respectively. While the AF-Sm1 protein forms a heptameric ring structure similar to that found in other archaeal Sm1-type proteins, the AF-Sm2 protein unexpectedly forms a homo-hexamer in the crystals, and, as is evident from the mass spectrometric analysis, also in solution. Both proteins have essentially the same monomer fold and inter-subunit beta-sheet hydrogen bonding giving rise to a similar overall architecture of the doughnut-shaped six and seven-membered rings. In addition, a conserved uracil-binding pocket identified previously in an AF-Sm1/RNA complex, suggests a common RNA-binding mode for the AF-Sm1 and AF-Sm2 proteins, in line with solution studies showing preferential binding to U-rich oligonucleotides for both proteins. Clear differences are however seen in the charge distribution within the two structures. The rough faces of the rings, i.e. the faces not containing the base binding pockets, have opposite charges in the two structures, being predominantly positive in AF-Sm1 and negative in AF-Sm2. Differences in the ionic interactions between subunits provide an explanation for the distinctly different oligomerisation behaviour of the AF-Sm1 and AF-Sm2 proteins and of Sm1- and Sm2-type proteins in general, as well as the stability of their complexes. Implications for the functions of archaeal Sm proteins are being discussed.  相似文献   

20.
A thermostable l-malate dehydrogenase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus was isolated and characterized, and its gene was cloned and sequenced. The enzyme is a homodimer with a molecular mass of 70 kDa and catalyzes preferentially the reduction of oxaloacetic acid with NADH. A. fulgidus l-malate dehydrogenase was stable for 5 h at 90° C, and the half-life at 101° C was 80 min. Thus, A. fulgidus l-malate dehydrogenase is the most thermostable l-malate dehydrogenase characterized to date. Addition of K2HPO4 (1 M) increased the thermal stability by 40%. The primary structure shows a high similarity to l-lactate dehydrogenase from Thermotoga maritima and gram-positive bacteria, and to l-malate dehydrogenase from the archaeon Haloarcula marismortui and other l-lactate-dehydrogenase-like l-malate dehydrogenases. Received: 20 November 1997 / Accepted: 28 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号