共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
REC114 is one of 10 genes known to be required for the initiation of meiotic recombination in Saccharomyces cerevisiae. It is transcribed only in meiosis, and our previous sequence analysis suggested the presence of an intron in the 3′ end
of the gene. Hypotheses in the literature have suggested, because of its unusual location, either that the putative intron
in REC114 is likely to be necessary for expression, or that there may actually be no intron present. This work demonstrates that REC114 does have an intron and is one of only three genes in yeast with introns located in the 3′ end. Furthermore, the 3′ splice
site utilized in REC114 is a very rare AAG sequence; only three other genes in yeast use this nonconsensus sequence. The splicing of REC114 does not require MER1, a gene known to be involved in meiosis-specific RNA processing. In fact, an intronless copy of REC114 can complement a null rec114 mutation. Thus, it does not appear that the intron is essential for expression of REC114. Although the intron is not absolutely required for meiotic function, it is conserved in evolution; two other species of
yeast contain an intron at the same location in their REC114 genes.
Received: 16 October 1996 / Accepted: 10 February 1997 相似文献
3.
Summary Nonreciprocal recombination (gene conversion) between homologous sequences at nonhomologous locations in the genome occurs readily in the yeast Saccharomyces cerevisiae. In order to test whether the rate of gene conversion is dependent on the number of homologous copies available in the cell to act as donors of information, the level of conversion of a defined allele was measured in strains carrying plasmids containing homologous sequences. The level of recombination was elevated in a strain carrying multiple copies of the plasmid, compared with the same strain carrying a single copy of the homologous sequences either on a plasmid or integrated in the genome. Thus, the level of conversion is proportional to the number of copies of donor sequences present in the cell. We discuss these results within the framework of currently favoured models of recombination. 相似文献
4.
Summary The products of 11 switching (swi) genes are required for efficient mating-type (MT) switching in homothallic (h
90) strains of Schizosaccharomyces pombe. The MT region of h
90 comprises three cassette genes: the expression site mat1: 1 and two silent loci, mat2: 2 and mat3: 3. Besides reducing MT switching, the swi6 mutation leads to deletions in the MT region caused by intrachromosomal cross-overs between two paired cassettes. These deletions only arise if DNA double-strand breaks are present at mat1: 1, which initiate MT switching. Furthermore, swi6 allows meiotic recombination in the K region, a region of 16 kb between mat2: 2 and mat3: 3; in wild-type strains no recombination occurs in K. swi6 also allows the simultaneous expression of two different cassettes in the same haploid cell. Thus swi6 may have an influence on the general chromatin structure in the MT region. 相似文献
5.
6.
7.
8.
We have identified a gene in Saccharomyces cerevisiae, MSH3, whose predicted protein product shares extensive sequence similarity with bacterial proteins involved in DNA mismatch repair as well as with the predicted protein product of the Rep-3 gene of mouse. MSH3 was obtained by performing a polymerase chain reaction on yeast genomic DNA using degenerate oligonucleotide primers designed to anneal with the most conserved regions of a gene that would be homologous to Rep-3 and Salmonella typhimurium mutS. MSH3 seems to play some role in DNA mismatch repair, inasmuch as its inactivation results in an increase in reversion rates of two different mutations and also causes an increase in postmeiotic segregation. However, the effect of MSH3 disruption on reversion rates and postmeiotic segregation appears to be much less than that of previously characterized yeast DNA mismatch repair genes. Alignment of the MSH3 sequence with all of the known MutS homologues suggests that its primary function may be different from the role of MutS in repair of replication errors. MSH3 appears to be more closely related to the mouse Rep-3 gene and other similar eukaryotic mutS homologues than to the yeast gene MSH2 and other mutS homologues that are involved in replication repair. We suggest that the primary function of MSH3 may be more closely related to one of the other known functions of mutS, such as its role in preventing recombination between non-identical sequences. 相似文献
9.
10.
R. Valinger G. Braus P. Niederberger M. Künzler G. Paravicini T. Schmidheini R. Hütter 《Archives of microbiology》1989,152(3):263-268
We describe a convenient method for the in vivo construction of large plasmids that possess a multitude of restriction sites. A large (23 kbases) circular self-replicating plasmid carrying a partial LEU2-d gene was cotransformed with a circular non-replicating plasmid carrying the entire LEU2 gene. In vivo recombination results preferentially in a plasmid that carries both the LEU2-d and the entire LEU2 gene. In addition we also found one plasmid with a tandem LEU2 insertion and one plasmid where the LEU2-d gene was replaced by the entire LEU2 gene. 相似文献
11.
12.
T. Spizzo C. Byersdorfer S. Duesterhoeft D. Eide 《Molecular & general genetics : MGG》1997,256(5):547-556
The yeast FET3 gene encodes an integral membrane multicopper oxidase required for high-affinity iron uptake. The FET4 gene encodes an Fe(II) transporter required for low-affinity uptake. To identify other yeast genes involved in iron uptake,
we isolated genes that could, when overexpressed, suppress the iron-limited growth defect of a fet3 fet4 mutant. The FET5 gene was isolated in this screen and it encodes a multicopper oxidase closely related to Fet3p. Several observations indicate
that Fet5p plays a role analogous to Fet3p in iron transport. Suppression of the fet3 fet4 mutant phenotype by FET5 overexpression required the putative FTR1 transporter subunit of the high-affinity system. Fet5p is an integral membrane protein whose oxidase domain is located on
the cell surface or within an intracellular compartment. Oxidase activity measured in cells with altered levels of FET5 expression suggested that Fet5p is a functional oxidase. FET5 overexpression increased the rate of iron uptake by a novel uptake system. Finally, FET5 mRNA levels are regulated by iron and are increased in cells grown in iron-limited media. These results suggest that Fet5p
normally plays a role in the transport of iron.
Received: 12 May 1997 / Accepted: 4 July 1997 相似文献
13.
Summary Extracts of Rad+ and radiation-sensitive (rad) mutants of the yeast Saccharomyces cerevisiae were examined for total Mg2+-dependent alkaline deoxyribonuclease activity and the presence of a nuclease that crossreacts immunologically with an antiserum raised against an endoexonuclease from Neurospora crassa, an enzyme exhibiting both deoxyribo- and ribonuclease activities. No significant differences were observed in total deoxyribonuclease activity between Rad+ and rad mutants. The antibody precipitable activity, however, was found to be 30%–40% of the total alkaline deoxyribonuclease activity in logarithmically growing Rad+ cells. Extracts of stationary phase cells were lacking in antibody precipitable activity. Using immunoblot methods, a 72 kDa crossreacting protein was identified from logarithmically growing cells that was absent from stationary phase cells. In all radiation-sensitive mutants examined, except rad52, at least 20% of total activity was precipitable. Extracts from logarithmically growing rad52 mutants, including a rad52::LEU2 insertion mutant, exhibited less than 10% of the Rad+ precipitable activity; however, some crossreacting material was detected. Although, the level of endo-exonuclease activity is influenced by the RAD52 gene, it is not the product of this gene. The total deoxyribonuclease and the antibody precipitable endo-exonuclease activities were also followed during meiosis. Unlike the Rad+ strain which had previously been shown to have increased levels of total and immunoprecipitable endo-exonuclease as cells underwent meiosis, the rad52 mutant exhibited no increases in either category of nuclease activity. Given the importance of the RAD52 gene in repair, recombination and mutagenesis, the endo-exonuclease may be a significant component of these processes. 相似文献
14.
Minisatellites are composed of tandem repetitive DNA sequences and are present at many positions in the human genome. They
frequently mutate to new length alleles in the germline, by complex and incompletely understood recombination mechanisms which
may operate during meiosis. In several minisatellites the mutation events are restricted to one end of the repeat array, indicating
a possible association with elements that act in cis. Mutant alleles do not show exchange of flanking regions. To construct a model system suitable for further investigations
of the mutation process, we have integrated the human minisatellite MS32, flanked by synthetic markers, in the vicinity of
a meiotic recombination hot spot upstream of the LEU2 locus in the yeast Saccharomyces cerevisiae. Here we provide direct evidence for a meiotic origin of MS32 mutations. Mutation events were polarised towards both ends
of the minisatellite and varied from simple duplications and deletions to complex intra- and interallelic events. Interallelic
events were frequently accompanied by exchange of regions flanking the minisatellite. The results also support the notion
that cis-acting elements are involved in the mutational process. The fact that MS32 mutant structures are similar in yeast and human
shows that meiotic recombination plays a crucial role in both organisms and emphasises the usefulness of yeast strains harbouring
minisatellites as a model system for the study of minisatellite mutation.
Received: 1 March 1997 / Accepted: 16 May 1997 相似文献
15.
Summary Genetic recombination in Escherichia coli was investigated by measuring the effect of mutations in ruv and rec genes on F-prime transfer and mobilization of nonconjugative plasmids. Mutation of ruv was found to reduce the recovery of F-prime transconjugants in crosses with recB recC sbcA strains by about 30-fold and with recB recC sbcB sbcC strains by more than 300-fold. Conjugative plasmids lacking any significant homology with the chromosome were transferred normally to these ruv mutants. Mobilization of the plasmid cloning vectors pHSG415, pBR322, pACYC184 and pUC18 were reduced by 20- to 100-fold in crosses with ruv rec
+
sbc
+ strains, depending on the plasmid used. Recombinant plasmids carrying ruv
+ were transferred efficiently. With both F-prime transfer and F-prime cointegrate mobilization, the effect of ruv was suppressed by inactivating recA. It is proposed that the failure to recover transconjugants in ruv recA
+strains is due to abortive recombination and that the ruv genes define activities which function late in recombination to help convert recombination intermediates into viable products. 相似文献
16.
存在于酵母菌细胞表面的絮凝蛋白与邻近细胞表面寡聚甘露糖链相互作用,从而使细胞相互聚集形成细胞团的生理过程称为酵母菌絮凝。编码絮凝蛋白的基因中存在大量衔接重复序列,这些重复序列的变化不但使酵母菌呈现出絮凝特性的多样性,而且由重复序列驱动的基因内或基因间重组使酵母菌的絮凝特性具有非常明显的遗传不稳定性。文中综述了基因内重复序列对酵母菌絮凝特性和遗传稳定性的影响,将为基于序列调控策略改进酵母菌絮凝特性及遗传稳定性奠定理论基础,为絮凝特性在发酵工业或环境修复过程中的可控应用提供新的解决策略。 相似文献
17.
Arai N Kagawa W Saito K Shingu Y Mikawa T Kurumizaka H Shibata T 《The Journal of biological chemistry》2011,286(20):17607-17617
RecA/Rad51 proteins are essential in homologous DNA recombination and catalyze the ATP-dependent formation of D-loops from a single-stranded DNA and an internal homologous sequence in a double-stranded DNA. RecA and Rad51 require a recombination mediator to overcome the interference imposed by the prior binding of single-stranded binding protein/replication protein A to the single-stranded DNA. Rad52 is the prototype of recombination mediators, and the human Rad52 protein has two distinct DNA-binding sites: the first site binds to single-stranded DNA, and the second site binds to either double- or single-stranded DNA. We previously showed that yeast Rad52 extensively stimulates Rad51-catalyzed D-loop formation even in the absence of replication protein A, by forming a 2:1 stoichiometric complex with Rad51. However, the precise roles of Rad52 and Rad51 within the complex are unknown. In the present study, we constructed yeast Rad52 mutants in which the amino acid residues corresponding to the second DNA-binding site of the human Rad52 protein were replaced with either alanine or aspartic acid. We found that the second DNA-binding site is important for the yeast Rad52 function in vivo. Rad51-Rad52 complexes consisting of these Rad52 mutants were defective in promoting the formation of D-loops, and the ability of the complex to associate with double-stranded DNA was specifically impaired. Our studies suggest that Rad52 within the complex associates with double-stranded DNA to assist Rad51-mediated homologous pairing. 相似文献
18.
19.
20.
Lois A. Annab Natalya Kouprina Greg Solomon P. Louann Cable David E. Hill J. Carl Barrett Vladimir Larionov Cynthia A. Afshari 《Gene》2000,250(1-2)
The BRCA1 gene, mutations of which contribute significantly to hereditary breast cancer, was not identified in the existing YAC and BAC libraries. The gene is now available only as a set of overlapping fragments that form a contig. In this work we describe direct isolation of a genomic copy of BRCA1 from human DNA by transformation-associated recombination (TAR) cloning. Despite the presence of multiple repeats, most of the primary BRCA1 YAC isolates did not contain detectable deletions and could be stably propagated in a host strain with conditional RAD52. Similar to other circular YACs, 90 kb BRCA1 YACs were efficiently and accurately retrofitted into bacterial artificial chromosomes (BACs) with the NeoR mammalian selectable marker and transferred as circular BAC/YACs in E. coli cells. The BRCA1 BAC/YAC DNAs were isolated from bacterial cells and were used to transfect mouse cells using the NeoR gene as selectable marker. Western blot analysis of transfectants showed that BRCA1 YACs isolated by a TAR cloning contained a functional gene. The advantage of this expression vector is that the expression of BRCA1 is generated from its own regulatory elements and does not require additional promoter elements that may result in overexpression of the protein. In contrast to the results with cDNA expression vectors, the level of BRCA1 expression from this TAR vector is stable, does not induce cell death, maintains serum regulation, and approximates the level of endogenously expressed BRCA1 in human cells. The entire isolation procedure of BRCA1 described in this paper can be accomplished in approximately 10 days and can be applied to isolation of gene from clinical material. We propose that the opportunity to directly isolate normal and mutant forms of BRCA1 will greatly facilitate analysis of the gene and its contribution to breast cancer. 相似文献