首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Habitat loss and fragmentation are major ecological forces threatening animal communities across the globe. These issues are especially true in Madagascar, where forest loss is ongoing. We examined the effects of forest fragmentation on the distribution and abundance of sympatric, endemic gray, and golden-brown mouse lemurs (Microcebus murinus and Microcebus ravelobensis), the endemic western tuft-tailed rat (Eliurus myoxinus), and the invasive black rat (Rattus rattus) in two regions in northwestern Madagascar. We used systematic capture procedures in 40 forest fragments and four continuous forest sites which differed in size, shape, and degree of isolation. With a trapping effort of 11,567 trap nights during two dry seasons (2017–2018), we captured 929 individuals (432 M. ravelobensis, 196 M. murinus, 116 E. myoxinus, and 185 R. rattus). We examined the influence of study region, forest type (fragment vs. continuous), forest size, forest shape, the proportion of 50-m forest edge and distance to continuous forest on the abundance and interaction of the four species. Responses to fragmentation differed strongly between species, but no interaction could be detected between the abundance of the different species. Thus competition within and between native and invasive species may not be regulating abundances in these regions. On the contrary, the abundance of M. ravelobensis and E. myoxinus differed significantly between study regions and was negatively affected by fragmentation. In contrast, there was no evidence of an impact of fragmentation on the abundance of M. murinus. Finally, the invasive R. rattus responded positively to the increasing distance to the continuous forest. In conclusion, the response of small Malagasy mammals to forest fragmentation varies largely between species, and fragmentation effects need to be examined at a species-specific level to fully understand their ecological dynamics and complexity.  相似文献   

2.
The Réserve Spéciale d' Anjanaharibe-Sud and the Parc National de Marojejy are two important areas of biodiversity and endemicity in northeastern Madagascar. These reserves are separated by about 40 km, including the extensive Andapa Basin, and connected by a rather narrow mid-altitude montane ridge. Nothing was previously known about the biota of this corridor and its faunal relations with the two reserves. At this purpose, during 1997 the Ambolokopatrika rainforest (lying about midway between Anjanaharibe-Sud and Marojejy massifs) was surveyed for amphibians, reptiles, and for small mammals belonging to the order Lipotyphla. As a general rule these vertebrates may be important ecological indicators, while the herpetofauna (Amphibia, Reptilia) exhibits a high degree of habitat specialisation and endemicity. Furthermore, the herpetofauna and lipotyphlans of Ambolokopatrika Forest were compared to those known from the forests of Anjanaharibe-Sud, Marojejy, and Tsararano massifs, the latter site being a southern extension of the Anjanaharibe-Sud chain. These animals were surveyed by use of opportunistic searching and pitfall trapping during two seasonal periods, May–June (winter), and November–December (summer). Forty-two species of amphibians, 23 of reptiles, and nine of lipotyphlans were recorded at Ambolokopatrika Forest. The biodiversity of Ambolokopatrika is comparable to those of other analysed sites, and this stresses the value of this forest in assuring biotic exchange between Anjanaharibe-Sud and Marojejy reserves. Considerations are also provided on the faunal similarities and differences in terms of exclusivity and endemisms. It is therefore suggested that a certain degree of protection should be given to Ambolokopatrika rainforest, to assure a biological connection and exchange between the protected areas of Anjanaharibe-Sud and Marojejy.  相似文献   

3.
Recent studies on the effects of tropical forest fragmentation indicate that fragmented landscapes are complex and heterogeneous systems influenced by factors other than the size or degree of isolation of forest remnants: of particular importance are the quality of the matrix and the edge-induced habitat changes. In order to investigate the influence of these factors, small mammals were surveyed in 36 sites in the landscape of Una, a region that encompasses some of the last and largest Atlantic Forest remnants in northeastern Brazil. Six sites were distributed on each of six landscape components – the interiors and edges of small remnants, the interiors and edges of large remnants, and the most common forested habitats found in the matrix. The survey comprised 46,656 trap-nights and yielded 1725 individuals of 20 species of rodents and marsupials. Results revealed: an increase in beta-diversity caused by fragmentation; the contrasting effects of the altered forested habitats of the matrix, which harbor both forest and disturbance-adapted species; a greater importance of edge effect than of patch size to the observed changes in small mammal community in remnants; an association among terrestrial forest species and among arboreal forest species in terms of the distribution and abundance in the Una mosaic; and a distinctive vulnerability of these two groups of species to fragmentation. Results emphasize the biological importance and conservation value of both fragmented landscapes and small remnants in the Atlantic Forest, as well as the importance of management techniques to control and attenuate edge effects.  相似文献   

4.
Aim Few studies have explicitly examined the influence of spatial attributes of forest fragments when examining the impacts of fragmentation on woody species. The aim of this study was to assess the diverse impacts of fragmentation on forest habitats by integrating landscape‐level and species‐level approaches. Location The investigation was undertaken in temperate rain forests located in southern Chile. This ecosystem is characterized by high endemism and by intensive recent changes in land use. Method Measures of diversity, richness, species composition, forest structure and anthropogenic disturbances were related to spatial attributes of the landscape (size, shape, connectivity, isolation and interior forest area) of forest fragments using generalized linear models. A total of 63 sampling plots distributed in 51 forest fragments with different spatial attributes were sampled. Results Patch size was the most important attribute influencing different measures of species composition, stand structure and anthropogenic disturbances. The abundance of tree and shrub species associated with interior and edge habitats was significantly related to variation in patch size. Basal area, a measure of forest structure, significantly declined with decreasing patch size, suggesting that fragmentation is affecting successional processes in the remaining forests. Small patches also displayed a greater number of stumps, animal trails and cow pats, and lower values of canopy cover as a result of selective logging and livestock grazing in relatively accessible fragments. However, tree richness and β‐diversity of tree species were not significantly related to fragmentation. Main conclusions This study demonstrates that progressive fragmentation by logging and clearance is associated with dramatic changes in the structure and composition of the temperate forests in southern Chile. If this fragmentation process continues, the ability of the remnant forests to maintain their original biodiversity and ecological processes will be significantly reduced.  相似文献   

5.
Aim Madagascar's lowland forests are both rich in endemic taxa and considered to be seriously threatened by deforestation and habitat fragmentation. However, very little is known about how these processes affect biodiversity on the island. Herein, we examine how forest bird communities and functional groups have been affected by fragmentation at both patch and landscape scales, by determining relationships between species richness and individual species abundance and patch and landscape mosaic metrics. Location Littoral forest remnants within south‐eastern Madagascar. Methods We sampled 30 littoral forest remnants in south‐eastern Madagascar, within a landscape mosaic dominated by Erica spp. heathland. We quantified bird community composition within remnants of differing size, shape and isolation, by conducting point counts in November–December in 2001 and October–November 2002. Each remnant was characterized by measures of remnant area, remnant shape, isolation, and surrounding landscape complexity. We used step‐wise regression to test the relationship between bird species richness and landscape structural elements, after correcting for sampling effort. Relationships between bird species abundances and the landscape variables were investigated with Canonical Correspondence Analysis and binomial logistic regression modelling. Results Bird species richness and forest‐dependent bird species richness were significantly (P < 0.01) explained by remnant area but not by any measure of isolation or landscape complexity. The majority of forest‐dependent species had significant relationships with remnant area. Minimum area requirements for area‐sensitive species ranged from 15 to 150 ha, with the majority of species having area requirements > 30 ha. Surprisingly, there was no relationship between bird body size and minimum area requirement. Forest‐dependent canopy insectivorous species and large canopy frugivorous species were the most sensitive functional groups, with > 90% species sensitivity within each group. The distribution of four forest‐dependent species also appeared to be related to remnant shape where remnant area was < 100 ha. Main conclusions The majority of forest‐dependent species, including many that are considered widespread and common, were found to have significant relationships with fragment size, indicating that they are sensitive to processes associated with habitat loss and fragmentation. As deforestation and habitat fragmentation remain serious problems on the island, it follows that many forest‐dependent bird species will decline in abundance and become locally extinct. At the regional scale, we urge that large (> 200 ha) blocks of littoral forest are awarded protected status to preserve their unique bird community.  相似文献   

6.
Background: Habitat loss and fragmentation have been argued to drastically alter the composition of tree assemblages inhabiting small forest fragments but the successional trajectory experienced by such edge-affected habitats remains controversial.

Aims: Here we examine whether small fragments (3.4–91.2 ha) support seedling assemblages more similar to those in 10–70-year-old secondary forests than to those in mature forests, in order to infer to what extent fragments move toward early successional systems.

Methods: Using 59 0.1-ha plots distributed in a fragmented landscape of Brazilian Atlantic forest, we evaluated species richness and functional and taxonomic composition of seedling assemblages in 20 small forest fragments, 19 stands of secondary forest and 20 stands of mature forests in the interior of an exceptionally large fragment (ca. 3500 ha).

Results: Small fragments presented the least species-rich seedling assemblages (17.2 ± 5.7 species), followed by secondary (22.5 ± 5.3), and mature forest (28.4 ± 5.3). Small fragments had seedling assemblages with functional and taxonomic composition more similar to those in secondary than in mature forest. Small fragments had a greater relative richness and abundance of pioneer trees (ca. 40% more), vertebrate-dispersed (6–25%), and those bearing medium-sized seeds (30–70%), while large-seeded species and individuals were reduced (>50% decrement) in comparison to seedling assemblages in mature forest.

Conclusions: By comparing seedlings across a wide range of successional habitats we offer evidence that small forest fragments are experiencing an alternative successional pathway towards an early-successional system with reduced plant diversity.  相似文献   

7.
In the coastal littoral forest of extreme southeastern Madagascar, westudied tree diameter at breast height (DBH) 10 cm in 20, 50× 50 m plots in each of four forest fragments, andunderstorywoody vegetation (DBH < 10 cm, 1 m tall) in60,10 × 10 m plots in three of the fragments. Oneforestfragment was located in the highly degraded Lokaro region, and three in the nearbySainte-Luce forest. Atotal of 3476 trees, representing 169 species in 55 families, were recorded inthe50 × 50 m plots, and 10282 understory stems, representing195 species in 54 families, were found in the 10 × 10m plots. For each tree, DBH was recorded. Mean tree diameter andpatterns of tree size class distribution did not differ among the four forestfragments. However, the fragments differed significantly in both tree andunderstory stem densities, species richness and diversity values, and familyrichness values, with the Lokaro fragment having the lowest values for allmeasures. Furthermore, floristic patterns, family importance values, and communitysimilarity measures revealed that the species composition at theLokaro fragment was very different from the Sainte-Luce fragments. Anthropogenicdisturbance appears most pronounced in the isolated Lokaro forest, where bioticresources are limited to this single fragment.  相似文献   

8.
9.
10.
Aim To address the relative role of adjacent land use, distance to forest edge, forest size and their interactions on understorey plant species richness and composition in perimetropolitan forests. Location The metropolitan area of Barcelona, north‐eastern Spain. Methods Twenty sampling sites were distributed in two forest size‐categories: small forest patches (8–90 ha) and large forest areas (> 18,000 ha). For each forest‐size category, five sites were placed adjacent to crops and five sites adjacent to urban areas. Vascular plant species were recorded and human frequentation was scored visually in 210 10 × 10 m plots placed at 10, 50 and 100 m from the forest edge, and additionally at 500 m in large forest areas. Plant species were grouped according to their ecology and rarity categories. A nonmetric multidimensional scaling (NMS) ordination was carried out to detect patterns of variation in species assemblage, and to explore the relationships between these patterns and the richness of the species groups and the studied factors. Factorial anovas were used to test the significance of the studied factors on the richness of species groups. Relationships between human frequentation and the studied variables were assessed through contingency tables. Results Forest‐size category was the main factor affecting synanthropic species (i.e. those thriving in man‐made or man‐disturbed habitats). Synanthropic species richness decreased with increasing distance from the forest edge and, when forests were adjacent to crops, it was higher in small forest patches than in large forest areas. Richness of rare forest species was lower in small forest patches than in large forest areas when forests were adjacent to urban areas. Richness of common forest species and of all forest species together were higher close to the forest edge than far from it when forests were adjacent to urban areas. Forests adjacent to urban areas were more likely to experience high human frequentation, particularly in those plots nearest to the forest edge. Main conclusions Forest‐size category and adjacent land use were the most important factors determining species richness and composition. The preservation of large forests adjacent to crops in peri‐urban areas is recommended, because they are less frequented by humans, are better buffered against the percolation of nonforest species and could favour the persistence of rare forest species.  相似文献   

11.
12.
Due to the impact of anthropogenic activities on forest extent and integrity across Madagascar, it is increasingly necessary to assess how endangered lemur populations inhabiting human-dominated forest fragments can effectively sustain themselves ecologically. Our research addresses this concern by exploring how the distribution patterns of a small population of crowned lemurs (Eulemur coronatus), occupying a degraded forest fragment at Oronjia Forest New Protected Area in northern Madagascar, are impacted by the availability of key ecological and anthropogenic factors. We hypothesize that the distribution of E. coronatus within the fragment is limited by the availability of critical ecological resources and conditions and the intensity of anthropogenic features and activities. To examine this, we used MaxEnt to develop a species distribution model using presence-only occurrence records and 10 independent background covariates detailing the site's ecological and anthropogenic aspects. The results indicate that the realized distribution patterns of E. coronatus within human-dominated forest fragments are strongly associated with sections of forest that contain sparsely and sporadically distributed resources, such as freshwater and continuous hardwood vegetation. We conclude that the distribution of E. coronatus at Oronjia is shaped by their need to maximize foraging opportunities in a degraded forest landscape where they are subject to both environmental and anthropogenic stressors.  相似文献   

13.
Aim To analyse the effects of forest fragmentation on ant communities in an Amazonian landscape that has been fragmented for over a century. Location The region surrounding the village of Alter do Chão in the Brazilian Amazonian state of Pará (2°30′ S, 54°57′ W). Methods Collection of ants and measurements of tree density were performed along transects established in eight sites in continuous forest and in 24 forest fragments surrounded by savanna vegetation. Data on size, perimeter, and degree of isolation (distance to continuous forest and distance to nearest area of forest > 5 ha) of each fragment were obtained from a georeferenced Landsat image of the study area. Results There were significant differences in species richness and composition between fragments and continuous forest, and these differences were not related to intersite variation in vegetation structure (tree density). Fragments supported fewer ant species per plot, and these species tended to represent a nested subset of those found in continuous forests. Fragments had significantly fewer rare species and fewer ant genera. However, fragments and continuous forest had similar numbers of species that also occur in the savanna matrix (i.e. that are not forest specialists). Multiple linear regression analyses indicated that species richness and composition in the fragments are significantly affected by fragment area, but not by fragment shape and degree of isolation. More species were found in larger fragments. Main conclusions Forest fragmentation influences the organization of ant communities in Amazonian savanna/forest landscapes. Forest fragments harboured, on average, 85% of the species found in continuous forest. That these fragments, despite their long history of isolation, support a relatively large complement of the species found in continuous forest is surprising, especially given that in some recently fragmented landscapes the proportion of species surviving in the fragments is lower. Differences in inter‐fragment distance and type of matrix between Alter do Chão and these other landscapes may be involved. The fact that fragments at Alter do Chão are surrounded by a natural (rather than an anthropogenic) habitat, and that most of them are less than 300 m from another forest area, may have helped to ameliorate the adverse effects of forest fragmentation.  相似文献   

14.
The present study was conducted in subtropical humid forests of Meghalaya to study the distributional pattern of species, floristic composition, community structure and tree population structure.Forest fragments of varying sizes(0.5 ha, 1 ha, 2 ha and 5 ha) were used in the study.All of the forest fragments are distributed within the same altitudinal range, and had similar rainfall and temperature regimes.Four forest fragments were sampled using random quadrats to analyze the impact of fragment size on tree...  相似文献   

15.
In this paper, we tested four hypotheses relative to edge and shape effects on ant communities: (i) forest edges have lower species richness than the remnant core; (ii) species richness increases with distance from the edge; (iii) irregularly shaped remnants have lower species richness than more regular remnants; (iv) there is a higher similarity of species composition between edge and core in irregular than in regular remnants. We sampled litter ant communities on the edge and core of ten remnants, in Viçosa, Minas Gerais, Brazil. Species richness was larger at the forest core than at the edges, although did not increase with distance from the edge. Species richness did not vary with shape complexity. The similarity of species composition between edge and core showed a decreasing trend with remnant area, and did not vary with shape complexity. The observed differences of species richness between forest core and edge may be due to higher harshness of edges, caused by environmental changes. The absence of relationship between species richness and distance from the edge might indicate the range of edge effects, which would be smaller than the smallest distance of core sampled. Therefore, edges would affect litter-dwelling ant species richness in a distance smaller than 50 m. The observation of species composition allowed us to notice an effect of fragmentation that would not be noticed if we were considering only species richness. Edge may serve as step to generalist species, which may use it to colonise forest remnants. Furthermore, small remnants are more colonisation-prone by such species, and have a more homogeneous species composition than large remnants.  相似文献   

16.
17.
18.
We surveyed ground-dwelling small mammals in twenty-four rainforest remnants which were virtual islands surrounded by farmland on a plateau on the east coast of Australia. We investigated the effect of island size, level of disturbance, isolation and microhabitat on the abundance and species richness of the mammals. The remnants ranged from 0.3 to 29 ha, resulting from fragmentation during 175 years of European occupation. Two rodent species (Rattus fuscipes[Waterhouse, 1839] and R. rattus[Linnaeus, 1758] ) and one marsupial insectivore (Antechinus stuartii Macleay, 1841) were trapped in these remnants, with an additional species (A. swainsonii[Waterhouse, 1840] ) several kilometres away in rainforest on the escarpment of the plateau. Small-mammal species richness was low, but the native species (R. fuscipes and A. stuartii) were abundant. Three-way analyses of variance demonstrated that species richness and abundance decreased significantly with decreasing remnant size and increasing disturbance, but showed no distance effect. The abundance and richness of native species responded even more significantly. The interaction between the first two effects is important. Small remnants are affected most detrimentally by increasing disturbance, large remnants are less affected, and medium sized remnants show intermediate effects. The introduced R. rattus which was least abundant in large remnants, but more abundant in distant than near remnants, was also more abundant in those with major disturbance. The single most important variable in step-wise, multiple linear regression analyses was the logarithm of remnant area not influenced by edge effects, explaining 39% of the variance in species richness, 57% for native species richness and 46% for A. stuartii abundance. Disturbance related variables additionally contributed from 12 to 30% of the variance in dependent variables, while habitat variables explained between 22 and 48% of the variance, and accounted for two thirds of the explainable variance in R. fuscipes abundance. The implications of our results for wildlife conservation on the plateau are discussed.  相似文献   

19.
20.
The persistence of species taxa within fragmented habitats is dependent on the source–sink metapopulation processes, and forest patch size and isolation are key factors. Unveiling species–patch area and/or species–patch isolation relationships may help provide crucial information for species and landscape management. In this study, relationship between forest patch size and isolation with abundance and occupancy probability of forest-dependent birds was investigated. This study was based within a coastal landscape that faces deleterious human activities such as clearing for agriculture. The study aimed to answer the question of whether the size and extent of isolation of forest patches influence abundance and/or occupancy probability of forest-specialist and generalist birds. Two bird species, namely Tiny Greenbul Phyllastrephus debilis subsp. rabai and Yellow-bellied Greenbul Chlorocichla flaviventris, were used as models. Birds were surveyed using distance sampling methods, and spatial metrics were measured from satellite imagery. Focal forest size and distance between forest patches were the most influential metrics whereby abundance and occupancy probabilities increased with increasing patch size, but were negatively influenced by increasing gaps between patches. These findings provide evidence of the existence of patch size/ isolation–occupancy relationships characterised by higher occupancy rate of large patches and distance-dependent dispersal, which decreased with increasing gaps between patches. Controlling deleterious human activities that reduce forest size should be a priority for the long-term conservation of forest-dependent birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号