首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The heterodimeric actin-capping protein (CP) regulates actin assembly and cell motility by binding tightly to the barbed end of the actin filament. Here we demonstrate that myotrophin/V-1 binds directly to CP in a 1:1 molar ratio with a Kd of 10-50 nm. V-1 binding inhibited the ability of CP to cap the barbed ends of actin filaments. The actin-binding COOH-terminal region, the "tentacle," of the CP beta subunit was important for binding V-1, with lesser contributions from the alpha subunit COOH-terminal region and the body of the protein. V-1 appears to be unable to bind to CP that is on the barbed end, based on the observations that V-1 had no activity in an uncapping assay and that the V-1.CP complex had no capping activity. Two loops of V-1, which extend out from the alpha-helical backbone of this ankyrin repeat protein, were necessary for V-1 to bind CP. Parallel computational studies determined a bound conformation of the beta tentacle with V-1 that is consistent with these findings, and they offered insight into experimentally observed differences between the alpha1 and alpha2 isoforms as well as the mutant lacking the alpha tentacle. These results support and extend our "wobble" model for CP binding to the actin filament, in which the two COOH-terminal regions of CP bind independently to the actin filament, and bound CP is able to wobble when attached only via its mobile beta-subunit tentacle. This model is also supported by molecular dynamics simulations of CP reported here. The existence of the wobble state may be important for actin dynamics in cells.  相似文献   

2.
Capping protein (CP) is a ubiquitously expressed, heterodimeric 62-kDa protein that binds the barbed end of the actin filament with high affinity to block further filament elongation. Myotrophin (V-1) is a 13-kDa ankyrin repeat-containing protein that binds CP tightly, sequestering it in a totally inactive complex in vitro. Here, we elucidate the molecular interaction between CP and V-1 by NMR. Specifically, chemical shift mapping and intermolecular paramagnetic relaxation enhancement experiments reveal that the ankyrin loops of V-1, which are essential for V-1/CP interaction, bind the basic patch near the joint of the α tentacle of CP shown previously to drive most of the association of CP with and affinity for the barbed end. Consistently, site-directed mutagenesis of CP shows that V-1 and the strong electrostatic binding site for CP on the barbed end compete for this basic patch on CP. These results can explain how V-1 inactivates barbed end capping by CP and why V-1 is incapable of uncapping CP-capped actin filaments, the two signature biochemical activities of V-1.  相似文献   

3.
Formins are a conserved class of proteins expressed in all eukaryotes, with known roles in generating cellular actin-based structures. The mammalian formin, FRLalpha, is enriched in hematopoietic cells and tissues, but its biochemical properties have not been characterized. We show that a construct composed of the C-terminal half of FRLalpha (FRLalpha-C) is a dimer and has multiple effects on muscle actin, including tight binding to actin filament sides, partial inhibition of barbed end elongation, inhibition of barbed end binding by capping protein, acceleration of polymerization from monomers, and actin filament severing. These multiple activities can be explained by a model in which FRLalpha-C binds filament sides but prefers the topology of sides at the barbed end (end-sides) to those within the filament. This preference allows FRLalpha-C to nucleate new filaments by side stabilization of dimers, processively advance with the elongating barbed end, block interaction between C-terminal tentacles of capping protein and filament end-sides, and sever filaments by preventing subunit re-association as filaments bend. Another formin, mDia1, does not reduce the barbed end elongation rate but does block capping protein, further supporting an end-side binding model for formins. Profilin partially relieves barbed end elongation inhibition by FRLalpha-C. When non-muscle actin is used, FRLalpha-C's effects are largely similar. FRLalpha-C's ability to sever filaments is the first such activity reported for any formin. Because we find that mDia1-C does not sever efficiently, severing may not be a property of all formins.  相似文献   

4.
We describe herein the purification of a protein from skeletal muscle that binds to ("caps") the morphologically defined barbed end of actin filaments. This actin-capping protein appeared to be a heterodimer with chemically and immunologically distinct subunits of Mr = 36,000 (alpha) and 32,000 (beta), Rs = 37 A, s20,w = 4.0 S, and a calculated native molecular weight of approximately 61,000. The protein was obtained in milligram quantities at greater than 95% purity from acetone powder of chicken skeletal muscle by extraction in 0.6 M KI, precipitation with ammonium sulfate, sequential chromatographic steps on DEAE-cellulose, hydroxylapatite, and Sephacryl S-200, followed by preparative rate zonal sucrose density gradient centrifugation. In immunoblots of myofibrillar proteins, affinity-purified antibodies selectively recognized protein bands of the same molecular weight as the subunits of the capping protein to which they were made, indicating that the isolated capping protein is a native myofibrillar protein, and not a proteolytic digestion product of a larger muscle protein. A specific interaction of the capping protein with the barbed end of actin filaments was indicated by its ability to inhibit actin filament assembly nucleated by spectrin-band 4.1-actin complex in 0.4 mM Mg2+, accelerate actin filament formation and increase the critical concentration of actin in 2-5 mM Mg2+, 75-100 mM KCl, and inhibit the addition of actin monomers to the barbed end of heavy meromyosin-decorated actin filaments as determined by electron microscopy. All of these effects occurred at nanomolar concentrations of capping protein and micromolar concentrations of actin, suggesting a high affinity interaction.  相似文献   

5.
The mechanism by which capping protein (CP) binds barbed ends of actin filaments is not understood, and the physiological significance of CP binding to actin is not defined. The CP crystal structure suggests that the COOH-terminal regions of the CP alpha and beta subunits bind to the barbed end. Using purified recombinant mutant yeast CP, we tested this model. CP lacking both COOH-terminal regions did not bind actin. The alpha COOH-terminal region was more important than that of beta. The significance of CP's actin-binding activity in vivo was tested by determining how well CP actin-binding mutants rescued null mutant phenotypes. Rescue correlated well with capping activity, as did localization of CP to actin patches, indicating that capping is a physiological function for CP. Actin filaments of patches appear to be nucleated first, then capped with CP. The binding constants of yeast CP for actin suggest that actin capping in yeast is more dynamic than in vertebrates.  相似文献   

6.
We investigated how heterodimeric capping proteins bind to and dissociate from the barbed ends of actin filaments by observing single muscle actin filaments by total internal reflection fluorescence microscopy. The barbed end rate constants for mouse capping protein (CP) association of 2.6 x 10(6) M(-1) s(-1) and dissociation of 0.0003 s(-1) agree with published values measured in bulk assays. The polyphosphoinositides (PPIs), phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)), PI(4,5)P(2), and PI(3,4,5)P(3), prevent CP from binding to barbed ends, but three different assays showed that none of these lipids dissociate CP from filaments at concentrations that block CP binding to barbed ends. The affinity of fission yeast CP for barbed ends is a thousandfold less than mouse CP, because of a slower association rate constant (1.1 x 10(5) M(-1) s(-1)) and a faster dissociation rate constant (0.004 s(-1)). PPIs do not inhibit binding of fission yeast CP to filament ends. Comparison of homology models revealed that fission yeast CP lacks a large patch of basic residues along the actin-binding surface on mouse CP. PPIs binding to this site might interfere sterically with capping, but this site would be inaccessible when CP is bound to the end of a filament.  相似文献   

7.
Xenopus actin-interacting protein 1 (XAip1) is thought to promote fragmentation of actin filaments by cofilin. To examine the mechanism of XAip1, we measured polymer lengths by fluorescence microscopy and the concentration of filament ends with an elongation assay. Cofilin creates ends by severing actin filaments. XAip1 alone does not sever actin filaments or prevent annealing/redistribution of mechanically severed filaments and has no effect on the concentration of ends available for subunit addition. In the presence of XAip1, the apparent filament fragmentation by cofilin is enhanced, but XAip1 reduces rather than increases the concentration of ends capable of adding subunits. Electron microscopy with gold-labeled antibodies showed that a low concentration of XAip1 bound preferentially to one end of the filament. A high concentration of XAip1 bound along the length of the filament. In the presence of gelsolin-actin to cap filament barbed ends, XAip1 does not enhance cofilin activity. We conclude that XAip1 caps the barbed end of filaments severed by cofilin. This capping blocks annealing and depolymerization and allows more extensive severing by cofilin.  相似文献   

8.
Capping protein, a heterodimeric protein composed of alpha and beta subunits, is a key cellular component regulating actin filament assembly and organization. It binds to the barbed ends of the filaments and works as a 'cap' by preventing the addition and loss of actin monomers at the end. Here we describe the crystal structure of the chicken sarcomeric capping protein CapZ at 2.1 A resolution. The structure shows a striking resemblance between the alpha and beta subunits, so that the entire molecule has a pseudo 2-fold rotational symmetry. CapZ has a pair of mobile extensions for actin binding, one of which also provides concomitant binding to another protein for the actin filament targeting. The mobile extensions probably form flexible links to the end of the actin filament with a pseudo 2(1) helical symmetry, enabling the docking of the two in a symmetry mismatch.  相似文献   

9.
Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F- actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.  相似文献   

10.
The interaction of capping protein (CP) with actin filaments is an essential element of actin assembly and actin-based motility in nearly all eukaryotes. The dendritic nucleation model for Arp2/3-based lamellipodial assembly features capping of barbed ends by CP, and the formation of filopodia is proposed to involve inhibition of capping by formins and other proteins. To understand the molecular basis for how CP binds the barbed end of the actin filament, we have used a combination of computational and experimental approaches, primarily involving molecular docking and site-directed mutagenesis. We arrive at a model that supports all of our biochemical data and agrees very well with a cryo-electron microscopy structure of the capped filament. CP interacts with both actin protomers at the barbed end of the filament, and the amphipathic helix at the C-terminus of the β-subunit binds to the hydrophobic cleft on actin, in a manner similar to that of WH2 domains. These studies provide us with new molecular insight into how CP binds to the actin filament.  相似文献   

11.
Twinfilins are conserved actin-binding proteins composed of two actin depolymerizing factor homology (ADF-H) domains. Twinfilins are involved in diverse morphological and motile processes, but their mechanism of action has not been elucidated. Here, we show that mammalian twinfilin both sequesters ADP-G-actin and caps filament barbed ends with preferential affinity for ADP-bound ends. Twinfilin replaces capping protein and promotes motility of N-WASP functionalized beads in a biomimetic motility assay, indicating that the capping activity supports twinfilin's function in motility. Consistently, in vivo twinfilin localizes to actin tails of propelling endosomes. The ADP-actin-sequestering activity cooperates with the filament capping activity of twinfilin to finely regulate motility due to processive filament assembly catalyzed by formin-functionalized beads. The isolated ADF-H domains do not cap barbed ends nor promote motility, but sequester ADP-actin, the C-terminal domain showing the highest affinity. A structural model for binding of twinfilin to barbed ends is proposed based on the similar foldings of twinfilin ADF-H domains and gelsolin segments.  相似文献   

12.
Actin polymerization in cells occurs via filament elongation at the barbed end. Proteins that cap the barbed end terminate this elongation. Heterodimeric capping protein (CP) is an abundant and ubiquitous protein that caps the barbed end. We find that the mouse homolog of the adaptor protein CARMIL (mCARMIL) binds CP with high affinity and decreases its affinity for the barbed end. Addition of mCARMIL to cell extracts increases the rate and extent of Arp2/3 or spectrin-actin seed-induced polymerization. In cells, GFP-mCARMIL concentrates in lamellipodia and increases the fraction of cells with large lamellipodia. Decreasing mCARMIL levels by siRNA transfection lowers the F-actin level and slows cell migration through a mechanism that includes decreased lamellipodia protrusion. This phenotype is reversed by full-length mCARMIL but not mCARMIL lacking the domain that binds CP. Thus, mCARMIL is a key regulator of CP and has profound effects on cell behavior.  相似文献   

13.
Ena/VASP proteins influence the organization of actin filament networks within lamellipodia and filopodia of migrating cells and in actin comet tails. The molecular mechanisms by which Ena/VASP proteins control actin dynamics are unknown. We investigated how Ena/VASP proteins regulate actin polymerization at actin filament barbed ends in vitro in the presence and absence of barbed end capping proteins. Recombinant His-tagged VASP increased the rate of actin polymerization in the presence of the barbed end cappers, heterodimeric capping protein (CP), CapG, and gelsolin-actin complex. Profilin enhanced the ability of VASP to protect barbed ends from capping by CP, and this required interactions of profilin with G-actin and VASP. The VASP EVH2 domain was sufficient to protect barbed ends from capping, and the F-actin and G-actin binding motifs within EVH2 were required. Phosphorylation by protein kinase A at sites within the VASP EVH2 domain regulated anti-capping and F-actin bundling by VASP. We propose that Ena/VASP proteins associate at or near actin filament barbed ends, promote actin assembly, and restrict the access of barbed end capping proteins.  相似文献   

14.
Each actin filament has a pointed and a barbed end, however, filament elongation occurs primarily at the barbed end. Capping proteins, by binding to the barbed end, can terminate this elongation. The rate of capping depends on the concentration of capping protein [1], and thus, if capping terminates elongation, the length of filaments should vary inversely with the concentration of capping protein. In cell extracts, such as those derived from neutrophils, new actin filaments can be nucleated by addition of GTPgammaS-activated Cdc42 (a small GTPase of the Rho family). To determine whether elongation of these filaments is terminated by capping, we manipulated the concentration of capping protein, the major calcium-independent capping protein in neutrophils, and observed the effects on filament lengths. Depletion of 70% of the capping protein from extracts increased the mean length of filaments elongated from spectrin-actin seeds (very short actin filaments with free barbed ends) but did not increase the mean length of filaments induced by Cdc42. Furthermore, doubling the concentration of capping protein in cell extracts by adding pure capping protein did not decrease the mean length of filaments induced by Cdc42. These results suggest that the barbed ends of Cdc42-induced filaments are protected from capping by capping protein.  相似文献   

15.
Actin-depolymerizing factor (ADF)/cofilin and gelsolin are the two major factors to enhance actin filament disassembly. Actin-interacting protein 1 (AIP1) enhances fragmentation of ADF/cofilin-bound filaments and caps the barbed ends. However, the mechanism by which AIP1 disassembles ADF/cofilin-bound filaments is not clearly understood. Here, we directly observed the effects of these proteins on filamentous actin by fluorescence microscopy and gained novel insight into the function of ADF/cofilin and AIP1. ADF/cofilin severed filaments and AIP1 strongly enhanced disassembly at nanomolar concentrations. However, gelsolin, gelsolin-actin complex, or cytochalasin D did not enhance disassembly by ADF/cofilin, suggesting that the strong activity of AIP1 cannot be explained by simple barbed end capping. Barbed end capping by ADF/cofilin and AIP1 was weak and allowed filament elongation, whereas gelsolin or gelsolin-actin complex strongly capped and inhibited elongation. These results suggest that AIP has an active role in filament severing or depolymerization and that ADF/cofilin and AIP1 are distinct from gelsolin in modulating filament elongation.  相似文献   

16.
Actin capping protein (CP) binds barbed ends of actin filaments to regulate actin assembly. CP is an alpha/beta heterodimer. Vertebrates have conserved isoforms of each subunit. Muscle cells contain two beta isoforms. beta1 is at the Z-line; beta2 is at the intercalated disc and cell periphery in general. To investigate the functions of the isoforms, we replaced one isoform with another using expression in hearts of transgenic mice.Mice expressing beta2 had a severe phenotype with juvenile lethality. Myofibril architecture was severely disrupted. The beta2 did not localize to the Z-line. Therefore, beta1 has a distinct function that includes interactions at the Z-line. Mice expressing beta1 showed altered morphology of the intercalated disc, without the lethality or myofibril disruption of the beta2-expressing mice.The in vivo function of CP is presumed to involve binding barbed ends of actin filaments. To test this hypothesis, we expressed a beta1 mutant that poorly binds actin. These mice showed both myofibril disruption and intercalated disc remodeling, as predicted.Therefore, CPbeta1 and CPbeta2 each have a distinct function that cannot be provided by the other isoform. CPbeta1 attaches actin filaments to the Z-line, and CPbeta2 organizes the actin at the intercalated discs.  相似文献   

17.
The focal adhesion protein vinculin is an actin-binding protein involved in the mechanical coupling between the actin cytoskeleton and the extracellular matrix. An autoinhibitory interaction between the N-terminal head (Vh) and the C-terminal tail (Vt) of vinculin masks an actin filament side-binding domain in Vt. The binding of several proteins to Vh disrupts this intramolecular interaction and exposes the actin filament side-binding domain. Here, by combining kinetic assays and microscopy observations, we show that Vt inhibits actin polymerization by blocking the barbed ends of actin filaments. In low salt conditions, Vt nucleates actin filaments capped at their barbed ends. We determined that the interaction between vinculin and the barbed end is characterized by slow association and dissociation rate constants. This barbed end capping activity requires C-terminal amino acids of Vt that are dispensable for actin filament side binding. Like the side-binding domain, the capping domain of vinculin is masked by an autoinhibitory interaction between Vh and Vt. In contrast to the side-binding domain, the capping domain is not unmasked by the binding of a talin domain to Vh and requires the dissociation of an additional autoinhibitory interaction. Finally, we show that vinculin and the formin mDia1, which is involved in the processive elongation of actin filaments in focal adhesions, compete for actin filament barbed ends.  相似文献   

18.
Capping protein (CP) controls the polymerization of actin filaments by capping their barbed ends. In lamellipodia, CP dissociates from the actin cytoskeleton rapidly, suggesting the possible existence of an uncapping factor, for which the protein CARMIL (capping protein, Arp2/3 and myosin-I linker) is a candidate. CARMIL binds to CP via two motifs. One, the CP interaction (CPI) motif, is found in a number of unrelated proteins; the other motif is unique to CARMILs, the CARMIL-specific interaction motif. A 115-aa CARMIL fragment of CARMIL with both motifs, termed the CP-binding region (CBR), binds to CP with high affinity, inhibits capping, and causes uncapping. We wanted to understand the structural basis for this function. We used a collection of mutants affecting the actin-binding surface of CP to test the possibility of a steric-blocking model, which remained open because a region of CBR was not resolved in the CBR/CP co-crystal structure. The CP actin-binding mutants bound CBR normally. In addition, a CBR mutant with all residues of the unresolved region changed showed nearly normal binding to CP. Having ruled out a steric blocking model, we tested an allosteric model with molecular dynamics. We found that CBR binding induces changes in the conformation of the actin-binding surface of CP. In addition, ~30-aa truncations on the actin-binding surface of CP decreased the affinity of CBR for CP. Thus, CARMIL promotes uncapping by binding to a freely accessible site on CP bound to a filament barbed end and inducing a change in the conformation of the actin-binding surface of CP.  相似文献   

19.
CapZ is a heterodimeric Ca(2+)-independent actin binding protein which plays an important role in organizing the actin filament lattice of cross-striated muscle cells. It caps the barbed end of actin filaments and promotes nucleation of actin polymerization, thereby regulating actin filament length. Here we report the expression of the two muscle-specific isoforms alpha2 and beta1, from chicken in Escherichia coli as individual subunits using the pQE60 expression vector and the subsequent renaturation of the functional CapZ heterodimer from inclusion bodies. Optimal renaturation conditions were obtained both by simultaneous refolding of urea-solubilized subunits and by rapid dilution into a buffer containing 20% glycerol, 5 mM EGTA, 2 mM DTT, 1 mM PMSF, and 100 mM Tris, pH 7.4. The refolding mixture was incubated for 24 h at 15 degrees C and the protein was concentrated by ultrafiltration. Biochemical characterization of the recombinant heterodimer revealed actin binding activities indistinguishable from those of native CapZ as purified from chicken skeletal muscle. Using the same protocol, we were able to refold the beta1, but not the alpha2 isoform as a single polypeptide, indicating a role for beta1 as a molecular template for the folding of alpha2. The reported recombinant approach leads to high yields of active heterodimer and allows the renaturation and characterization of the beta subunit.  相似文献   

20.
The heterodimeric actin-capping protein (CP) can be inhibited by polyphosphoinositides, which may be important for actin polymerization at membranes in cells. Here, we have identified a conserved set of basic residues on the surface of CP that are important for the interaction with phosphatidylinositol 4,5-bisphosphate (PIP(2)). Computational docking studies predicted the identity of residues involved in this interaction, and functional and physical assays with site-directed mutants of CP confirmed the prediction. The PIP(2) binding site overlaps with the more important of the two known actin-binding sites of CP. Correspondingly, we observed that loss of PIP(2) binding correlated with loss of actin binding among the mutants. Using TIRF (total internal reflection fluorescence) microscopy, we observed that PIP(2) rapidly converted capped actin filaments to a growing state, consistent with uncapping. Together, these results extend our understanding of how CP binds to the barbed end of the actin filament, and they support the idea that CP can "wobble" when bound to the barbed end solely by the C-terminal "tentacle" of its beta-subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号